Abstract
In this survey, we describe three algorithms for testing primality of numbers that use Fermat’s Little Theorem.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Agrawal, M., Kayal, N., Saxena, N.: PRIMES is in P. Annals of Mathematics 160(2), 781–793 (2004)
Lidl, R., Niederreiter, H.: Introduction to finite fields and their applications. Cambridge University Press, Cambridge (1986)
Miller, G.L.: Riemann’s hypothesis and tests for primality. J. Comput. Sys. Sci. 13, 300–317 (1976)
Rabin, M.O.: Probabilistic algorithm for testing primality. J. Number Theory 12, 128–138 (1980)
Solovay, R., Strassen, V.: A fast Monte-Carlo test for primality. SIAM Journal on Computing 6, 84–86 (1977)
Wiles, A.: Modular elliptic curves and fermat’s last theorem. Annals of Mathematics 141, 443–551 (1995)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Agrawal, M. (2006). Primality Tests Based on Fermat’s Little Theorem. In: Chaudhuri, S., Das, S.R., Paul, H.S., Tirthapura, S. (eds) Distributed Computing and Networking. ICDCN 2006. Lecture Notes in Computer Science, vol 4308. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11947950_32
Download citation
DOI: https://doi.org/10.1007/11947950_32
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-68139-7
Online ISBN: 978-3-540-68140-3
eBook Packages: Computer ScienceComputer Science (R0)