Skip to main content

The Complexity of Updating Multi-writer Snapshot Objects

  • Conference paper
Book cover Distributed Computing and Networking (ICDCN 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4308))

Included in the following conference series:

Abstract

This paper proves Ω(m) lower bounds on the step complexity of UPDATE operations for partitioned implementations of m-component multi-writer snapshot objects from base objects of any type. These are implementations in which each base object is only modifed by processes performing UPDATE operations to one specific component. In particular, we show that any space-optimal implementation of a multi-writer snapshot object from historyless objects is partitioned. This work extends a similar lower bound by Israeli and Shirazi for implementations of m-component single-writer snapshot objects from single-writer registers.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots of shared memory. J. ACM 40(4), 873–890 (1993)

    Article  MATH  Google Scholar 

  2. Anderson, J.H.: Multi-writer composite registers. Distributed Computing 7(4), 175–195 (1994)

    Article  Google Scholar 

  3. Attiya, H., Fouren, A.: Adaptive and efficient algorithms for lattice agreement and renaming. SICOMP 31(2), 642–664 (2001)

    MATH  MathSciNet  Google Scholar 

  4. Attiya, H., Rachman, O.: Atomic snapshots in O(n log n) operations. SICOMP 27(2), 319–340 (1998)

    MATH  MathSciNet  Google Scholar 

  5. Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Advanced Topics, 2nd edn. Wiley-Interscience, Hoboken (2004)

    Google Scholar 

  6. Fatourou, P., Fich, F.E., Ruppert, E.: A Tight Time Lower Bound for Space-Optimal Implementations of Multi-Writer Snapshots. In: STOC 2003, pp. 259–268 (2003)

    Google Scholar 

  7. Fatourou, P., Fich, F.E., Ruppert, E.: A Tight Time Lower Bound for Space-Optimal Implementations of Multi-Writer Snapshots (2006) (manuscript)

    Google Scholar 

  8. Fatourou, P., Kallimanis, N.: Single-Scanner Multi-Writer Snapshot Implementations are Fast. In: PODC 2006, pp. 228–237 (2006)

    Google Scholar 

  9. Fich, F.E.: How Hard is it to Take a Snapshot? In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 28–37. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Fich, F., Herlihy, M., Shavit, N.: On the Space Complexity of Randomized Synchronization. JACM 45(5), 843–862 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  11. Fich, F.E., Ruppert, E.: Hundreds of Impossibility Results for Distributed Computing. Distributed Computing 16(2–3), 121–163 (2003)

    Article  Google Scholar 

  12. Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent objects. TOPLAS 12(3), 463–492 (1990)

    Article  Google Scholar 

  13. Inoue, M., Chen, W., Masuzawa, T., Tokura, N.: Linear time snapshots using multi-writer multi-reader registers. In: Tel, G., Vitányi, P.M.B. (eds.) WDAG 1994. LNCS, vol. 857, pp. 130–140. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  14. Israeli, A., Shaham, A., Shirazi, A.: Linear-time snapshot implementations in unbalanced systems. Mathematical Systems Theory 28(5), 469–486 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  15. Israeliand, A., Shirazi, A.: The time complexity of updating snapshot memories. Information Processing Letters 65(1), 33–40 (1998)

    Article  MathSciNet  Google Scholar 

  16. Jayanti, P.: f-Arrays: Implementation and Applications. PODC 2002, 270–279 (2002)

    Google Scholar 

  17. Jayanti, P.: An Optimal Multi-Writer Snapshot Algorithm. STOC 2005, 723–732 (2005)

    Google Scholar 

  18. Jayanti, P., Tan, K., Toueg, S.: Time and space lower bounds for nonblocking implementations. SICOMP 30(2), 438–456 (2000)

    MATH  MathSciNet  Google Scholar 

  19. Kirousis, L.M., Spirakis, P., Tsigas, P.: Reading Many Variables in One Atomic Operation: Solutions with Linear or Sublinear Complexity. IEEE Trans. on Parallel and Distributed Systems 5(7), 688–696 (1994)

    Article  Google Scholar 

  20. Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)

    MATH  Google Scholar 

  21. Riany, Y., Shavit, N., Touitou, D.: Towards a Practical Snapshot Algorithm. Theoretical Computer Science 269, 163–201 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Attiya, H., Ellen, F., Fatourou, P. (2006). The Complexity of Updating Multi-writer Snapshot Objects. In: Chaudhuri, S., Das, S.R., Paul, H.S., Tirthapura, S. (eds) Distributed Computing and Networking. ICDCN 2006. Lecture Notes in Computer Science, vol 4308. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11947950_35

Download citation

  • DOI: https://doi.org/10.1007/11947950_35

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68139-7

  • Online ISBN: 978-3-540-68140-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics