Abstract
This paper proves Ω(m) lower bounds on the step complexity of UPDATE operations for partitioned implementations of m-component multi-writer snapshot objects from base objects of any type. These are implementations in which each base object is only modifed by processes performing UPDATE operations to one specific component. In particular, we show that any space-optimal implementation of a multi-writer snapshot object from historyless objects is partitioned. This work extends a similar lower bound by Israeli and Shirazi for implementations of m-component single-writer snapshot objects from single-writer registers.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Afek, Y., Attiya, H., Dolev, D., Gafni, E., Merritt, M., Shavit, N.: Atomic snapshots of shared memory. J. ACM 40(4), 873–890 (1993)
Anderson, J.H.: Multi-writer composite registers. Distributed Computing 7(4), 175–195 (1994)
Attiya, H., Fouren, A.: Adaptive and efficient algorithms for lattice agreement and renaming. SICOMP 31(2), 642–664 (2001)
Attiya, H., Rachman, O.: Atomic snapshots in O(n log n) operations. SICOMP 27(2), 319–340 (1998)
Attiya, H., Welch, J.: Distributed Computing: Fundamentals, Simulations and Advanced Topics, 2nd edn. Wiley-Interscience, Hoboken (2004)
Fatourou, P., Fich, F.E., Ruppert, E.: A Tight Time Lower Bound for Space-Optimal Implementations of Multi-Writer Snapshots. In: STOC 2003, pp. 259–268 (2003)
Fatourou, P., Fich, F.E., Ruppert, E.: A Tight Time Lower Bound for Space-Optimal Implementations of Multi-Writer Snapshots (2006) (manuscript)
Fatourou, P., Kallimanis, N.: Single-Scanner Multi-Writer Snapshot Implementations are Fast. In: PODC 2006, pp. 228–237 (2006)
Fich, F.E.: How Hard is it to Take a Snapshot? In: Vojtáš, P., Bieliková, M., Charron-Bost, B., Sýkora, O. (eds.) SOFSEM 2005. LNCS, vol. 3381, pp. 28–37. Springer, Heidelberg (2005)
Fich, F., Herlihy, M., Shavit, N.: On the Space Complexity of Randomized Synchronization. JACM 45(5), 843–862 (1998)
Fich, F.E., Ruppert, E.: Hundreds of Impossibility Results for Distributed Computing. Distributed Computing 16(2–3), 121–163 (2003)
Herlihy, M.P., Wing, J.M.: Linearizability: A correctness condition for concurrent objects. TOPLAS 12(3), 463–492 (1990)
Inoue, M., Chen, W., Masuzawa, T., Tokura, N.: Linear time snapshots using multi-writer multi-reader registers. In: Tel, G., Vitányi, P.M.B. (eds.) WDAG 1994. LNCS, vol. 857, pp. 130–140. Springer, Heidelberg (1994)
Israeli, A., Shaham, A., Shirazi, A.: Linear-time snapshot implementations in unbalanced systems. Mathematical Systems Theory 28(5), 469–486 (1995)
Israeliand, A., Shirazi, A.: The time complexity of updating snapshot memories. Information Processing Letters 65(1), 33–40 (1998)
Jayanti, P.: f-Arrays: Implementation and Applications. PODC 2002, 270–279 (2002)
Jayanti, P.: An Optimal Multi-Writer Snapshot Algorithm. STOC 2005, 723–732 (2005)
Jayanti, P., Tan, K., Toueg, S.: Time and space lower bounds for nonblocking implementations. SICOMP 30(2), 438–456 (2000)
Kirousis, L.M., Spirakis, P., Tsigas, P.: Reading Many Variables in One Atomic Operation: Solutions with Linear or Sublinear Complexity. IEEE Trans. on Parallel and Distributed Systems 5(7), 688–696 (1994)
Lynch, N.: Distributed Algorithms. Morgan Kaufmann, San Francisco (1996)
Riany, Y., Shavit, N., Touitou, D.: Towards a Practical Snapshot Algorithm. Theoretical Computer Science 269, 163–201 (2001)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Attiya, H., Ellen, F., Fatourou, P. (2006). The Complexity of Updating Multi-writer Snapshot Objects. In: Chaudhuri, S., Das, S.R., Paul, H.S., Tirthapura, S. (eds) Distributed Computing and Networking. ICDCN 2006. Lecture Notes in Computer Science, vol 4308. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11947950_35
Download citation
DOI: https://doi.org/10.1007/11947950_35
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-68139-7
Online ISBN: 978-3-540-68140-3
eBook Packages: Computer ScienceComputer Science (R0)