Skip to main content

Accurate Foreground Extraction Using Graph Cut with Trimap Estimation

  • Conference paper
Advances in Image and Video Technology (PSIVT 2006)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4319))

Included in the following conference series:

Abstract

This paper describes an accurate human silhouette extraction method as applied to video sequences. In computer vision applications that use a static camera, the background subtraction method is one of the most effective ways of extracting human silhouettes. However it is prone to errors so performance of silhouette-based gait and gesture recognition often decreases significantly. In this paper we propose two-step segmentation method: trimap estimation and fine segmentation using a graph cut. We first estimated foreground, background and unknown regions with an acceptable level of confidence. Then, the energy function was identified by focussing on the unknown region, and it was minimized via the graph cut method to achieve optimal segmentation. The proposed algorithm was evaluated with respect to ground truth data and it was shown to produce high quality human silhouettes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Boykov, Y., Jolly, M.: Iterative graph cuts for optimal boundary and region segmentation of objects in N-D Images. In: Proc. IEEE Int. Conf. on Computer Vision, pp. 105–112 (2001)

    Google Scholar 

  2. Boykov, Y., Kolmogorov, V.: An experimental comparision of min-cut/max-flow algorithms for energy minimization in vision. IEEE Trans. on Pattern Anal. and Mach. Intell. 26(9), 1124–1137 (2004)

    Article  Google Scholar 

  3. Comaniciu, D., Meer, P.: Mean shift: a robust approach toward feature space analysis. IEEE Trans. Pattern Anal. Mach. Intell. 24(5), 603–619 (2002)

    Article  Google Scholar 

  4. Chuang, Y.-Y., Curless, B., Salesin, D., Szeliski, R.: A bayesian approach to digital matting. In: Proc. Int. Conf. Computer Vison and Pattern Recognition 2, pp. 264–271 (2001)

    Google Scholar 

  5. Elgmmal, A., Duraiswami, R., Davis, L.S.: Efficient kernel density estimation using the fast gauss transform with applications to color modeling and tracking. IEEE Trans. Pattern Anal. Mach. Intell. 25(11), 1499–1504 (2003)

    Article  Google Scholar 

  6. Horprasert, T., Harwood, D., Davis, L.S.: A statistical approach for real-time robust background subtraction and shadow detection. In: Proc. IEEE Frame Rate Workshop, pp. 1–19 (1999)

    Google Scholar 

  7. Harville, M.: A framework for high-level feedback to adaptive, per-pixel, mixture-of-Gaussian background models. In: Proc. European Conf. on Computer Vision, pp. 543–560 (2002)

    Google Scholar 

  8. Kolmogorov, V., Criminisi, A., Blake, A., Cross, G., Rother, C.: Bi-layer segmentation of binocular stereo video. In: Proc. Int. Conf. on Computer Vision and Pattern Recognition (2005)

    Google Scholar 

  9. Li, Y., Sun, J., Tang, C.-K., Shum, H.-Y.: Lazy snapping. ACM Trans. Graphics 23(3), 303–308 (2004)

    Article  Google Scholar 

  10. Li, H., Greenspan, M.: Multi-scale gesture recognition from time-varying contours. In: Int. Conf. Computer Vision, pp. 236–243 (2005)

    Google Scholar 

  11. Liu, Z., Sarkar, S.: Effect of silhouette quality on hard problems in gait recognition. IEEE Trans. Systems, Man, and Cybernetics-Part B:Cybernetics 35(2), 170–183 (2005)

    Article  Google Scholar 

  12. Rother, C., Kolmogorov, V., Blake, A.: GrabCut: Interactive foreground extraction using iterated graph cuts. ACM Trans. Graph 23(3), 309–314 (2004)

    Article  Google Scholar 

  13. Senior, A.: Tracking people with probabilistic appearance models. In: Proc. IEEE Int. Workshop on PETS, pp. 48–55 (2002)

    Google Scholar 

  14. Stauffer, C., Grimson, W.E.L.: Learning patterns of activity using real-time tracking. IEEE Trans. Pattern Anal. Mach. Intell. 22, 747–757 (2000)

    Article  Google Scholar 

  15. Sun, J., Jia, J., Tang, C.-K., Shum, H.-Y.: Poisson Matting. ACM Transaction on Graphics 23(3), 315–321 (2004)

    Article  Google Scholar 

  16. Tian, Y.-L., Lu, M., Hampapur, A.: Robust and efficient foreground analysis for real-time video surveillance. In: Proc. Int. Conf. Computer Vision and Pattern Recognition, pp. 970–975 (2005)

    Google Scholar 

  17. Tu, Z.: An integrated framework for image segmentation and perceptual grouping. In: Int. Conf. Computer Vision, pp. 670–677 (2005)

    Google Scholar 

  18. Wang, L., Tan, T., Ning, H., Hu, W.: Silhouette analysis-based gait recognition for human identification. IEEE Trans. Pattern Anal. Mach. Intell. 25(12), 1505–1518 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ahn, JH., Byun, H. (2006). Accurate Foreground Extraction Using Graph Cut with Trimap Estimation. In: Chang, LW., Lie, WN. (eds) Advances in Image and Video Technology. PSIVT 2006. Lecture Notes in Computer Science, vol 4319. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11949534_120

Download citation

  • DOI: https://doi.org/10.1007/11949534_120

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68297-4

  • Online ISBN: 978-3-540-68298-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics