Skip to main content

Explicit Nonflat Time Evolution for PDE-Based Image Restoration

  • Conference paper
Computer Vision, Graphics and Image Processing

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4338))

  • 1870 Accesses

Abstract

This article is concerned with new strategies with which explicit time-stepping procedures of PDE-based restoration models converge with a similar efficiency to implicit algorithms. Conventional explicit algorithms often require hundreds of iterations to converge. In order to overcome the difficulty and to further improve image quality, the article introduces new spatially variable constraint term and timestep size, as a method of nonflat time evolution (MONTE). It has been verified that the explicit time-stepping scheme incorporating MONTE converges in only 4-15 iterations for all restoration examples we have tested. It has proved more effective than the additive operator splitting (AOS) method in both computation time and image quality (measured in PSNR), for most cases. Since the explicit MONTE procedure is efficient in computer memory, requiring only twice the image size, it can be applied particularly for huge data sets with a great efficiency in computer memory as well.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Perona, P., Malik, J.: Scale-space and edge detection using anisotropic diffusion. IEEE Trans. on Pattern Anal. Mach. Intell. 12, 629–639 (1990)

    Article  Google Scholar 

  2. Alvarez, L., Lions, P., Morel, M.: Image selective smoothing and edge detection by nonlinear diffusion. II. SIAM J. Numer. Anal. 29, 845–866 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  3. Catte, F., Lions, P., Morel, M., Coll, T.: Image selective smoothing and edge detection by nonlinear diffusion. SIAM J. Numer. Anal. 29, 182–193 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  4. Kim, S.: PDE-based image restoration: A hybrid model and color image denoising. IEEE Trans. Image Processing 15, 1163–1170 (2006)

    Article  Google Scholar 

  5. Kim, S., Lim, H.: A non-convex diffusion model for simultaneous image denoising and edge enhancement. Electronic Journal of Differential Equations (accepted, 2006)

    Google Scholar 

  6. Marquina, A., Osher, S.: Explicit algorithms for a new time dependent model based on level set motion for nonlinear deblurring and noise removal. SIAM J. Sci. Comput. 22, 387–405 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  7. Nitzberg, M., Shiota, T.: Nonlinear image filtering with edge and corner enhancement. IEEE Trans. on Pattern Anal. Mach. Intell. 14, 826–833 (1992)

    Article  Google Scholar 

  8. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MATH  Google Scholar 

  9. You, Y.L., Xu, W., Tannenbaum, A., Kaveh, M.: Behavioral analysis of anisotropic diffusion in image processing. IEEE Trans. Image Process. 5, 1539–1553 (1996)

    Article  Google Scholar 

  10. Chan, T., Shen, J.: Image Processing and Analysis. SIAM, Philadelphia (2005)

    Book  MATH  Google Scholar 

  11. Osher, S., Fedkiw, R.: Level Set Methods and Dynamic Implicit Surfaces. Springer, New York (2003)

    MATH  Google Scholar 

  12. Sapiro, G.: Geometric partial differential equations and image analysis. Cambridge University Press, Cambridge (2001)

    Book  MATH  Google Scholar 

  13. Weickert, J., ter Haar Romeny, B., Viergever, M.: Efficient and reliable schemes for nonlinear diffusion filtering. IEEE Trans. on Image Processing 7, 398–410 (1998)

    Article  Google Scholar 

  14. Douglas Jr., J., Gunn, J.: A general formulation of alternating direction methods Part I. Parabolic and hyperbolic problems. Numer. Math. 6, 428–453 (1964)

    Article  MATH  MathSciNet  Google Scholar 

  15. Douglas Jr., J., Kim, S.: Improved accuracy for locally one-dimensional methods for parabolic equations. Mathematical Models and Methods in Applied Sciences 11, 1563–1579 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  16. Cha, Y., Kim, S.: Edge-forming methods for image zooming. J. Mathematical Imaging and Vision (in press, 2006)

    Google Scholar 

  17. Cha, Y., Kim, S.: Edge-forming methods for color image zooming. IEEE Trans. Image Process. 15, 2315–2323 (2006)

    Article  Google Scholar 

  18. Kim, S., Kwon, S.H.: Efficiency and reliability in nonlinear diffusion filtering (in preparation)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Kim, S., Kwon, SH. (2006). Explicit Nonflat Time Evolution for PDE-Based Image Restoration. In: Kalra, P.K., Peleg, S. (eds) Computer Vision, Graphics and Image Processing. Lecture Notes in Computer Science, vol 4338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11949619_4

Download citation

  • DOI: https://doi.org/10.1007/11949619_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68301-8

  • Online ISBN: 978-3-540-68302-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics