Skip to main content

Inverse Composition for Multi-kernel Tracking

  • Conference paper
Computer Vision, Graphics and Image Processing

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4338))

  • 1875 Accesses

Abstract

Existing multi-kernel tracking methods are based on a forwards additive motion model formulation. However this approach suffers from the need to estimate an update matrix for each iteration. This paper presents a general framework that extends the existing approach and that allows to introduce a new inverse compositional formulation which shifts the computation of the update matrix to a one time initialisation step. The proposed approach thus reduces the computational complexity of each iteration, compared to the existing forwards approach. The approaches are compared both in terms of algorithmic complexity and quality of the estimation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Comaniciu, D., Ramesh, V., Meer, P.: Kernel-based object tracking. IEEE Transactions on Pattern Analysis and Machine Intelligence 25, 564–575 (2003)

    Article  Google Scholar 

  2. Fan, Z., Wu, Y., Yang, M.: Multiple collaborative kernel tracking. In: IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, pp. 502–509 (2005)

    Google Scholar 

  3. Hager, G.D., Dewan, M., Stewart, C.V.: Multiple kernel tracking with SSD. In: IEEE Conference on Computer Vision and Pattern Recognition, Washington, DC, USA, pp. 790–797 (2004)

    Google Scholar 

  4. Georgescu, B., Meer, P.: Point matching under large image deformations and illumination changes. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 674–688 (2004)

    Article  Google Scholar 

  5. Baker, S., Matthews, I.: Lucas-kanade 20 years on: A unifying framework. International Journal of Computer Vision 56, 221–255 (2004)

    Article  Google Scholar 

  6. Pérez, P., Hue, C., Vermaak, J., Gangnet, M.: Color-based probabilistic tracking. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 661–675. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  7. Elgammal, A.M., Duraiswami, R., Davis, L.S.: Probabilistic tracking in joint feature-spatial spaces. In: IEEE Conference on Computer Vision and Pattern Recognition, Madison, WI, USA, pp. 781–788 (2003)

    Google Scholar 

  8. Zhang, H., Huang, W., Huang, Z., Li, L.: Affine object tracking with kernel-based spatial-color representation. In: IEEE Conference on Computer Vision and Pattern Recognition, San Diego, CA, USA, pp. 293–300 (2005)

    Google Scholar 

  9. Guskov, I.: Kernel-based template alignment. In: IEEE Conference on Computer Vision and Pattern Recognition, New-York, USA, pp. 610–617 (2006)

    Google Scholar 

  10. Liu, T.L., Chen, H.T.: Real-time tracking using trust-region methods. IEEE Transactions on Pattern Analysis and Machine Intelligence 26, 397–402 (2003)

    Google Scholar 

  11. Baker, S., Matthews, I.: Equivalence and efficiency of image alignment algorithms. In: IEEE Conference on Computer Vision and Pattern Recognition, Kauai, HI, USA, pp. 1090–1097 (2001)

    Google Scholar 

  12. Jurie, F., Dhome, M.: Hyperplane approximation for template matching. IEEE Transactions on Pattern Analysis and Machine Intelligence 24, 996–1000 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Megret, R., Mikram, M., Berthoumieu, Y. (2006). Inverse Composition for Multi-kernel Tracking. In: Kalra, P.K., Peleg, S. (eds) Computer Vision, Graphics and Image Processing. Lecture Notes in Computer Science, vol 4338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11949619_43

Download citation

  • DOI: https://doi.org/10.1007/11949619_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68301-8

  • Online ISBN: 978-3-540-68302-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics