Abstract
This paper proposes a novel, simple and efficient method for face segmentation which works by coupling face detection and segmentation in a single framework. We use the OBJCUT [1] formulation that allows for a smooth combination of object detection and Markov Random Field for segmentation, to produce a real-time face segmentation. It should be noted that our algorithm is extremely efficient and runs in real time.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Kumar, M.P., Torr, P.H.S., Zisserman, A.: OBJ CUT. In: CVPR, vol. I, pp. 18–25 (2005)
Boykov, Y., Jolly, M.: Interactive graph cuts for optimal boundary and region segmentation of objects in n-d images. In: ICCV, vol. I, pp. 105–112 (2001)
Bray, M., Kohli, P., Torr, P.: PoseCut: Simulataneous segmentation and 3d pose estimation of humans using dynamic graph cuts. In: ECCV, pp. 642–655 (2006)
Freedman, D., Zhang, T.: Interactive graph cut based segmentation with shape priors. In: CVPR, vol. I, pp. 755–762 (2005)
Kohli, P., Torr, P.: Efficiently solving dynamic markov random fields using graph cuts. In: ICCV (2005)
Rother, C., Kolmogorov, V., Blake, A.: Grabcut: Interactive foreground extraction using iterated graph cuts. ACM Trans. Graph, 309–314 (2004)
A,, Criminisi, C.G., A,, Blake, K.V.: Bilayer segmentation of live video. In: IEEE Computer Vision and Pattern Recognition (CVPR) (2006)
Sun, I., Zhang, W., Tang, X., Shum, H.: Background cut. In: ECCV (2006)
Kolmogorov, V., Criminisi, A., Blake, A., Cross, G., Rother, C.: Bi-layer segmentation of binocular stereo video. In: CVPR (2), pp. 407–414 (2005)
Huang, R., Pavlovic, V., Metaxas, D.N.: A graphical model framework for coupling mrfs and deformable models. In: CVPR, vol. II, pp. 739–746 (2004)
Boykov, Y., Kolmogorov, V.: An experimental comparison of min-cut/max-flow algorithms for energy minimization in vision. PAMI 26, 1124–1137 (2004)
Greig, D., Porteous, B., Seheult, A.: Exact maximum a posteriori estimation for binary images. Journal of the Royal Statistical Society 2, 271–279 (1989)
Kolmogorov, V., Zabih, R.: What energy functions can be minimized via graph cuts? In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, p. 65. Springer, Heidelberg (2002)
Viola, P., Jones, M.: Robust real-time object detection. International Journal of Computer Vision (2004)
Freund, Y., Schapire, R.E.: A decision-theoretic generalization of on-line learning and an application to boosting. Computational Learning Theory: Eurocolt 95, 23–37 (1995)
Kumar, S., Hebert, M.: Discriminative fields for modeling spatial dependencies in natural images. In: NIPS (2003)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Rihan, J., Kohli, P., Torr, P.H.S. (2006). OBJCUT for Face Detection. In: Kalra, P.K., Peleg, S. (eds) Computer Vision, Graphics and Image Processing. Lecture Notes in Computer Science, vol 4338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11949619_51
Download citation
DOI: https://doi.org/10.1007/11949619_51
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-68301-8
Online ISBN: 978-3-540-68302-5
eBook Packages: Computer ScienceComputer Science (R0)