Skip to main content

Machine Learning for Signature Verification

  • Conference paper
Computer Vision, Graphics and Image Processing

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4338))

Abstract

Signature verification is a common task in forensic document analysis. It is one of determining whether a questioned signature matches known signature samples. From the viewpoint of automating the task it can be viewed as one that involves machine learning from a population of signatures. There are two types of learning to be accomplished. In the first, the training set consists of genuines and forgeries from a general population. In the second there are genuine signatures in a given case. The two learning tasks are called person-independent (or general) learning and person-dependent (or special) learning. General learning is from a population of genuine and forged signatures of several individuals, where the differences between genuines and forgeries across all individuals are learnt. The general learning model allows a questioned signature to be compared to a single genuine signature. In special learning, a person’s signature is learnt from multiple samples of only that person’s signature– where within-person similarities are learnt. When a sufficient number of samples are available, special learning performs better than general learning (5% higher accuracy). With special learning, verification accuracy increases with the number of samples.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Osborn, A.: Questioned Documents. Nelson Hall Pub. (1929)

    Google Scholar 

  2. Robertson, E.W.: Fundamentals of Document Examination. Nelson-Hall (1991)

    Google Scholar 

  3. Bradford, R.R., Bradford, R.: Introduction to Handwriting Examination and Identification. Nelson-Hall (1992)

    Google Scholar 

  4. Hilton, O.: Scientific Examination of Questioned Documents. CRC Press, Boca Raton (1993)

    Google Scholar 

  5. Huber, R., Headrick, A.: Handwriting Identification: Facts and Fundamentals. CRC Press, Boca Raton (1999)

    Book  Google Scholar 

  6. Slyter, S.A.: Forensic Signature Examination. Charles C. Thomas Pub. (1995)

    Google Scholar 

  7. Mitchell, T.M.: Machine Learning. McGraw-Hill, New York (1997)

    MATH  Google Scholar 

  8. Srihari, S.N., Xu, A., Kalera, M.K.: Learning strategies and classification methods for off-line signature verification. In: Proceedings of the Seventh International Workshop on Frontiers in Handwriting Recognition(IWHR), pp. 161–166. IEEE Computer Society Press, Los Alamitos (2004)

    Chapter  Google Scholar 

  9. Winston, P.: Learning structural descriptions from examples. In: Winston, P. (ed.) The Psychology of Computer Vision, pp. 157–210. McGraw-Hill, New York (1975)

    Google Scholar 

  10. Leclerc, F., Plamondon, R.: Automatic signature verification: the state of the art, 1989-1993. International Journal of Pattern Recognition and Artificial Intelligence 8, 643–660 (1994)

    Article  Google Scholar 

  11. Guo, J.K., Doermann, D., Rosenfield, A.: Local correspondences for detecting random forgeries. In: Proceedings of the International Conference on Document Analysis and Recognition, pp. 319–323 (1997)

    Google Scholar 

  12. Plamondon, R., Srihari, S.N.: On-line and off-line handwriting recognition: A comprehensive survey. IEEE Transactions on Pattern Analysis and Machine Intelligence 22, 63–84 (2000)

    Article  Google Scholar 

  13. Kalera, M.K., Zhang, B., Srihari, S.N.: Off-line signature verification and identification using distance statistics. International Journal of Pattern Recognition and Artificial Intelligence 18, 1339–1360 (2004)

    Article  Google Scholar 

  14. Fang, B., Leung, C.H., Tang, Y.Y., Tse, K.W., Kwok, P.C.K., Wong, Y.K.: Off-line signature verification by the tracking of feature and stroke positions. Pattern Recognition 36, 91–101 (2003)

    Article  MATH  Google Scholar 

  15. Srihari, S.N., Cha, S., Arora, H., Lee, S.: Individuality of handwriting. Journal of Forensic Sciences, 856–872 (2002)

    Google Scholar 

  16. Srinivasan, H., Beal, M., Srihari, S.N.: Machine learning approaches for person verification and identification. In: Proceedings of SPIE: Sensors, and Command, Control, Communications, and Intelligence Technologies for Homeland Security, vol. 5778, pp. 574–586 (2005)

    Google Scholar 

  17. Deng, P.S., Liao, H.Y., Ho, C., Tyan, H.R.: Wavelet-base off-line handwritten signature verification. Computer Vision Image Understanding 76, 173–190 (1999)

    Article  Google Scholar 

  18. Sabourin, R.: Off-line signature verification: Recent advances and perspectives. BSDIA, 84–98 (1997)

    Google Scholar 

  19. Coetzer, J., Herbst, B.M., du Preez, J.: Off-line signature verification using the discrete radon transform and a hidden markov model. Journal on Applied Signal Processing 4, 559–571 (2004)

    Article  Google Scholar 

  20. Ferrer, M.A., Alonso, J.B., Travieso, C.M.: Off-line geometric parameters for automatic signature verification using fixed-point arithmetic. IEEE Transactions on Pattern Analysis and Machine Intelligence 27, 993–997 (2005)

    Article  Google Scholar 

  21. Press, W.H., Flannery, B.P., Teukolsky, S.A., Vetterling, W.T.: Numerical Recipes in C: The Art of Scientific Computing. Cambridge University Press, Cambridge (1992)

    Google Scholar 

  22. Srikantan, G., Lam, S., Srihari, S.: Gradient based contour encoding for character recognition. Pattern Recognition 7, 1147–1160 (1996)

    Article  Google Scholar 

  23. Zhang, B., Srihari, S.N.: Analysis of handwriting individuality using handwritten words. In: Proceedings of the Seventh International Conference on Document Analysis and Recognition, pp. 1142–1146. IEEE Computer Society Press, Los Alamitos (2003)

    Chapter  Google Scholar 

  24. Zhang, B., Srihari, S.N., Huang, C.: Word image retrieval using binary features. In: Smith, E.H.B., Hu, J., Allan, J. (eds.) SPIE, vol. 5296, pp. 45–53 (2004)

    Google Scholar 

  25. Zhang, B., Srihari, S.: Properties of binary vector dissimilarity measures. Cary, North Carolina (September 2003)

    Google Scholar 

  26. Chen, S., Srihari, S.N.: A new off-line signature verification method based on graph matching. In: Proc. International Conference on Pattern Recognition (ICPR 2006) (August 2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Srinivasan, H., Srihari, S.N., Beal, M.J. (2006). Machine Learning for Signature Verification. In: Kalra, P.K., Peleg, S. (eds) Computer Vision, Graphics and Image Processing. Lecture Notes in Computer Science, vol 4338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11949619_68

Download citation

  • DOI: https://doi.org/10.1007/11949619_68

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68301-8

  • Online ISBN: 978-3-540-68302-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics