Skip to main content

Retrieving Images for Remote Sensing Applications

  • Conference paper
Computer Vision, Graphics and Image Processing

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 4338))

  • 1877 Accesses

Abstract

A unique way in which content based image retrieval (CBIR) for remote sensing differs widely from traditional CBIR is the widespread occurrences of weak textures. The task of representing the weak textures becomes even more challenging especially if image properties like scale, illumination or the viewing geometry are not known.

In this work, we have proposed the use of a new feature ‘texton histogram’ to capture the weak-textured nature of remote sensing images. Combined with an automatic classifier, our texton histograms are robust to variations in scale, orientation and illumination conditions as illustrated experimentally. The classification accuracy is further improved using additional image driven features obtained by the application of a feature selection procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Kitamoto, A.: Digital typhoon: Near real-time aggregation, recombination and delivery of typhoon-related information. In: Fourth International Symposium on Digital Earth (CD–ROM) (2005)

    Google Scholar 

  2. Puzicha, J., Hofmann, T., Buhmann, J.: Non-parametric similarity measures for unsupervised texture segmentation and image retrieval. In: Computer Vision and Pattern Recognition (CVPR 1997), Washington, DC, USA, p. 267. IEEE Computer Society, Los Alamitos (1997)

    Google Scholar 

  3. Newsam, S., Wang, L., Bhagavathy, S., Manjunath, B.S.: Using texture to annotate remote sensed datasets. In: 3rd International Symposium on Image and Signal Processing and Analysis (ISPA) (2003)

    Google Scholar 

  4. Newsam, S., Wang, L., Bhagavathy, S., Manjunath, B.S.: Using texture to analyze and manage large collections of remote sensed image and video data. Journal of Applied Optics: Information Processing 43, 210–217 (2004)

    Google Scholar 

  5. Wang, L., Liu, J.: Texture classification using multiresolution markov random field models. Pattern Recogn. Lett. 20, 171–182 (1999)

    Article  Google Scholar 

  6. Valeriano, M.I., Escada, S.: Mining patterns of change in remote sensing image databases. In: Fifth IEEE International Conference on Data Mining (ICDM 2005), pp. 362–369 (2005)

    Google Scholar 

  7. Schroder, M., Rehrauer, H., Seidel, K., Datcu, M.: Spatial information retrieval from remote- sensing images - part 2: Gibbs-markov random fields. IEEE Trans. Geosci. Remote Sensing, 1446–1455 (1998)

    Google Scholar 

  8. Unser, M.: Texture classification and segmentation using wavelet frames. Image Processing, IEEE Transactions on 4, 1549–1560 (1995)

    Article  Google Scholar 

  9. Wang, J.Z., Wiederhold, G., Firschein, O., Wei, S.X.: Content-based image indexing and searching using daubechies’ wavelets. International Journal on Digital Libraries 1, 311–328 (1997)

    Article  Google Scholar 

  10. Wang, J., Li, J., Wiederhold, G.: SIMPLIcity: Semantics-sensitive integrated matching for picture LIbraries. IEEE Transactions on Pattern Analysis and Machine Intelligence 23, 947–963 (2001)

    Article  Google Scholar 

  11. Varma, M., Zisserman, A.: Classifying images of materials: Achieving viewpoint and illumination independence. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2352, pp. 255–271. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  12. Varma, M., Zisserman, A.: Statistical approaches to material classification. In: Second Indian Conference on Computer Vision, Graphics and Image Processing, pp. 167–172 (2002)

    Google Scholar 

  13. Varma, M., Zisserman, A.: Texture classification: Are filter banks necessary? In: International Conference on Computer Vision and Pattern recognition, pp. 691–698 (2003)

    Google Scholar 

  14. Julesz, B.: Textons, the elements of texture perception, and their interactions. Nature 290, 91–97 (1981)

    Article  Google Scholar 

  15. Malik, J., Belongie, S., Shi, J., Leung, T.K.: Textons, contours and regions: Cue integration in image segmentation. In: ICCV (2), pp. 918–925 (1999)

    Google Scholar 

  16. Gilles, S.: Robust description and matching of images. Technical report, University of Oxford, Ph.D. Thesis (1998)

    Google Scholar 

  17. Yang, C., Lozano-Perez, T.: Image database retrieval with multiple-instance learning techniques. In: Proc. International Conference on Data Engineering, pp. 233–243 (2000)

    Google Scholar 

  18. Quinlan, J.R.: Induction of decision trees. In: Shavlik, J., Dietterich, T. (eds.) Readings in Machine Learning., Morgan Kaufmann, San Francisco (1990); Originally published in Machine Learning 1, 81–106 (1986)

    Google Scholar 

  19. John, G.H., Kohavi, R., Pfleger, K.: Irrelevant features and the subset selection problem. In: International Conference on Machine Learning, pp. 121–129 (1994)

    Google Scholar 

  20. Vogel, J., Schiele, B.: Natural scene retrieval based on a semantic modeling step. In: Enser, P.G.B., Kompatsiaris, Y., O’Connor, N.E., Smeaton, A.F., Smeulders, A.W.M. (eds.) CIVR 2004. LNCS, vol. 3115, Springer, Heidelberg (2004)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Sawant, N., Chandran, S., Mohan, B.K. (2006). Retrieving Images for Remote Sensing Applications. In: Kalra, P.K., Peleg, S. (eds) Computer Vision, Graphics and Image Processing. Lecture Notes in Computer Science, vol 4338. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11949619_76

Download citation

  • DOI: https://doi.org/10.1007/11949619_76

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-68301-8

  • Online ISBN: 978-3-540-68302-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics