Skip to main content

Uniquely Localizable Networks with Few Anchors

  • Conference paper
Algorithmic Aspects of Wireless Sensor Networks (ALGOSENSORS 2006)

Abstract

In the network localization problem the locations of some nodes (called anchors) as well as the distances between some pairs of nodes are known, and the goal is to determine the location of all nodes. The localization problem is said to be solvable (or uniquely localizable) if there is a unique set of locations consistent with the given data. Recent results from graph rigidity theory made it possible to characterize the solvability of the localization problem in two dimensions.

In this paper we address the following related optimization problem: given the set of known distances in the network, make the localization problem solvable by designating a smallest set of anchor nodes. We develop a polynomial-time 3-approximation algorithm for this problem by proving new structural results in graph rigidity and by using tools from matroid theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aspnes, J., Eren, T., Goldenberg, D.K., Morse, A.S., Whiteley, W., Yang, Y.R., Anderson, B.D.O., Belhumeur, P.N.: A theory of network localization. Trans. Mobile Computing (to appear)

    Google Scholar 

  2. Berg, A.R., Jordán, T.: Algorithms for graph rigidity and scene analysis. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 78–89. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  3. Eren, T., Goldenberg, D., Whiteley, W., Yang, Y.R., Morse, A.S., Anderson, B.D.O., Belhumeur, P.N.: Rigidity, Computation, and Randomization in Network Localization. In: Proc. of the IEEE INFOCOM Conference, Hong-Kong, March 2004, pp. 2673–2684 (2004)

    Google Scholar 

  4. Fekete, Z., Jordán, T., Uniquely localizable networks with few anchors, EGRES TR-2006-07, http://www.egres.hu/egres/

  5. Hendrickson, B.: Conditions for unique graph realizations. SIAM J. Comput. 21(1), 65–84 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  6. Hopcroft, J.E., Tarjan, R.E.: Dividing a graph into triconnected components. SIAM J. Comput. 2, 135–158 (1973)

    Article  MathSciNet  Google Scholar 

  7. Jackson, B., Jordán, T.: Connected rigidity matroids and unique realizations of graphs. J. Combinatorial Theory, Ser. B. 94, 1–29 (2005)

    Article  MATH  Google Scholar 

  8. Jackson, B., Jordán, T., Szabadka, Z.: Globally linked pairs of vertices in equivalent realizations of graphs. Discrete and Computational Geometry 35, 493–512 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  9. Laman, G.: On graphs and rigidity of plane skeletal structures. J. Engineering Math. 4, 331–340 (1970)

    Article  MATH  MathSciNet  Google Scholar 

  10. Lorea, M.: Hypergraphes et matroides. Cahiers Centre Etud. Rech. Oper. 17, 289–291 (1975)

    MATH  MathSciNet  Google Scholar 

  11. Lovász, L.: The matroid matching problem. In: Algebraic methods in graph theory, Proc. Conf. Szeged (1978)

    Google Scholar 

  12. Lovász, L., Yemini, Y.: On generic rigidity in the plane. SIAM J. Algebraic Discrete Methods 3(1), 91–98 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  13. Makai, M.: Matroid matching with Dilworth truncation. In: Proc. EuroComb 2005, Berlin (2005)

    Google Scholar 

  14. Recski, A.: Matroid theory and its applications in electric network theory and in statics, Akadémiai Kiadó, Budapest (1989)

    Google Scholar 

  15. Schrijver, A.: Combinatorial Optimization. Springer, Berlin (2003)

    MATH  Google Scholar 

  16. Man-Cho So, A., Ye, Y.: Theory of semidefinite programming for sensor network localization. In: Proceedings of the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms (SODA) (2005)

    Google Scholar 

  17. Whiteley, W.: Some matroids from discrete applied geometry. In: Bonin, J.E., Oxley, J.G., Servatius, B. (eds.) Matroid theory, Seattle, WA. Contemp. Math., vol. 197. Amer. Math. Soc., Providence (1996)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Fekete, Z., Jordán, T. (2006). Uniquely Localizable Networks with Few Anchors. In: Nikoletseas, S.E., Rolim, J.D.P. (eds) Algorithmic Aspects of Wireless Sensor Networks. ALGOSENSORS 2006. Lecture Notes in Computer Science, vol 4240. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11963271_16

Download citation

  • DOI: https://doi.org/10.1007/11963271_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69085-6

  • Online ISBN: 978-3-540-69087-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics