Abstract
Stochastic simulations based on the τ leaping method are applicable to well stirred chemical systems reacting within a single fixed volume. In this paper we propose a novel method, based on the τ leaping procedure, for the simulation of complex systems composed by several communicating regions. The new method is here applied to dynamical probabilistic P systems, which are characterized by several features suitable to the purpose of performing stochastic simulations distributed in many regions. Conclusive remarks and ideas for future research are finally presented.
Work supported by the Italian Ministry of University (MIUR), under project PRIN-04 “Systems Biology: modellazione, linguaggi e analisi (SYBILLA)”.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
Arkin, A., Ross, J., McAdams, H.H.: Stochastic kinetic analysis of developmental pathway bifurcation in phage lambda-infected Escherichia coli cells. Genetics 149, 1633–1648 (1998)
Besozzi, D., Cazzaniga, P., Pescini, D., Mauri, G.: Modelling metapopulations with stochastic membrane systems (submitted)
Blake, W.J., Kærn, M., Cantor, C.R., Collins, J.J.: Noise in eukaryotic gene expression. Nature 422, 633–637 (2003)
Cao, Y., Gillespie, D.T., Petzold, L.R.: Avoiding negative populations in explicit Poisson tau-leaping. Journ. Chem. Phys. 123, 054104 (2005)
Cao, Y., Gillespie, D.T., Petzold, L.R.: Efficient step size selection for the tau-leaping simulation method. Journ. Chem. Phys. 124, 044109 (2006)
Cazzaniga, P., Pescini, D., Romero-Campero, F.J., Besozzi, D., Mauri, G.: Stochastic approaches in P systems for simulating biological systems. In: Gutiérrez-Naranjo, M.A., Păun, G., Riscos-Núnez, A., Romero-Campero, F.J. (eds.) Proceedings of the Fourth Brainstorming Week on Membrane Computing, RGNC REPORT 02/2006, Fénix Editora, pp. 145–164 (2006)
Chatterjee, A., Vlachos, D.G., Katsoulakis, M.A.: Binomial distribution based tau-leap accelerated stochastic simulation. Journ. Chem. Phys. 122, 024112, (2005)
Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.): Applications of Membrane Computing. Springer, Berlin (2005)
Fedoroff, N., Fontana, W.: Small numbers of big molecules. Science 297, 1129–1131 (2002)
Garcia-Ojalvo, J., Elowitz, M.B., Strogatz, S.H.: Modeling a synthetic multicellular clock: Repressilators coupled by quorum sensing. PNAS 101, 10955–10960 (2004)
Gibbons, M., Bruck, J.: Chemical systems with many species and many channels. Journ. Phys. Chem. 104, 1876–1889 (2000)
Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. Journ. Phys. Chem. 81, 2340–2361 (1977)
Gillespie, D.T., Petzold, L.R.: Approximate accelerated stochastic simulation of chemically reacting systems. Journ. Chem. Phys. 115, 1716–1733 (2001)
Gillespie, D.T., Petzold, L.R.: Improved leap-size selection for accelerated stochastic simulation. Journ. Chem. Phys. 119, 8229–8234 (2003)
Martegani, E., Tisi, R., Belotti, F., Colombo, S., Paiardi, C., Winderickx, J., Cazzaniga, P., Besozzi, D., Mauri, G.: Identification of an intracellular signalling complex for RAS/cAMP pathway in yeast: experimntal evidences and modelling. In: International Specialised Symposium on Yeasts, Hanasaari - Espoo, Finland (June 18-21, 2006)
Martegani, E., Cazzaniga, P., Besozzi, D., Colombo, S., Mauri, G.: Stochastic modeling of the Ras/cAMP signal transduction pathway in yeast. In: Computational Methods in Systems Biology, Trento, Italy (October 18-19, 2006)
Meng, T.C., Somani, S., Dhar, P.: Modeling and simulation of biological systems with stochasticity. In: Silico Biology, vol. 4, 0024 (2004)
Morton-Firth, C.J.: Stochastic simulation of cell signaling pathways. PhD thesis, University of Cambridge, Cambridge, UK (1998)
Müller, D., Exler, S., Aguilera-Vázquez, L., Guerrero-Martín, E., Reuss, M.: Cyclic AMP mediates the cell cycle dynamics of energy metabolism in Saccharomyces cerevisiae. Yeast 20, 351–367 (2003)
Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61, 108–143 (2000)
Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)
Pescini, D., Besozzi, D., Mauri, G.: Investigating local evolutions in dynamical probabilistic P systems. In: Proceedings of Seventh International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC 2005), pp. 440–447. IEEE Computer Press, Los Alamitos (2005)
Pescini, D., Besozzi, D., Zandron, C., Mauri, G.: Analysis and simulation of dynamics in probabilistic P systems. In: Carbone, A., Pierce, N.A. (eds.) DNA 2005. LNCS, vol. 3892, pp. 236–247. Springer, Heidelberg (2006)
Pescini, D., Besozzi, D., Mauri, G., Zandron, C.: Dynamical probabilistic P systems. International Journal of Foundations of Computer Science 17, 183–204 (2006)
Tian, T., Burrage, K.: Binomial leap methods for simulating stochastic chemical kinetics. Journ. Chem. Phys. 121, 10356–10364 (2004)
Turner, T.E., Schnell, S., Burrage, K.: Stochastic approaches for modelling in vivo reactions. Computational Biology and Chemistry 28, 165–178 (2004)
Author information
Authors and Affiliations
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2006 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Cazzaniga, P., Pescini, D., Besozzi, D., Mauri, G. (2006). Tau Leaping Stochastic Simulation Method in P Systems. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds) Membrane Computing. WMC 2006. Lecture Notes in Computer Science, vol 4361. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11963516_19
Download citation
DOI: https://doi.org/10.1007/11963516_19
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-69088-7
Online ISBN: 978-3-540-69090-0
eBook Packages: Computer ScienceComputer Science (R0)