Skip to main content

Formalizing Spherical Membrane Structures and Membrane Proteins Populations

  • Conference paper
Membrane Computing (WMC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4361))

Included in the following conference series:

Abstract

We present a formalization of membrane structure by using a parametric 2-dimensional spherical surface, where membrane proteins reside and can move, according to prescribed operations. A more detailed formalization of membrane proteins acting as transporters is also given, thus possibly allowing a global scale analysis of ion flows across a membrane. Several other applications, both biology and computation oriented, are proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Aguzzoli, S., Ardelean, I.I., Besozzi, D., Gerla, B., Manara, C.: P systems under uncertainty: the case of transmembrane proteins. In: Proceedings of Brainstorming Workshop on Uncertainty in Membrane Computing, Palma de Mallorca, November 8-10, pp. 107–117 (2004)

    Google Scholar 

  2. Aguzzoli, S., Besozzi, D., Gerla, B., Manara, C.: P systems with vague boundaries: the t-norm approach. In: Proceedings of Brainstorming Workshop on Uncertainty in Membrane Computing, Palma de Mallorca, November 8-10, pp. 97–105 (2004)

    Google Scholar 

  3. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell, 4th edn. Garland Science, New York (2002)

    Google Scholar 

  4. Ardelean, I.I., Besozzi, D.: On modeling ion fluxes across biological membranes with P systems. In: Gutiérrez-Naranjo, M.A., Riscos-Núñez, A., Romero-Campero, F.J., Sburlan, D. (eds.) Proceedings of the Third Brainstorming Week on Membrane Computing, RGNC Report 01/2005, Sevilla, January 31–February 4, pp. 35–42 (2005)

    Google Scholar 

  5. Ardelean, I.I., Besozzi, D.: Some notes on the interplay between P systems and chemotaxis in Bacteria. In: Gutiérrez-Naranjo, M.A., Păun, G., Riscos-Núñez, A., Romero-Campero, F.J. (eds.) Fourth Brainstorming Week on Membrane Computing, RGNC REPORT 02/2006, Fénix Editora, Sevilla, January 30 - February 3, vol. I, pp. 41–48 (2006)

    Google Scholar 

  6. Ardelean, I.I., Besozzi, D., Garzon, M.H., Mauri, G., Roy, S.: P system models for mechanosensitive channels. In: Ciobanu, G., Păun, G., Pérez-Jiménez, M.J. (eds.) Applications of Membrane Computing. Springer, Berlin (2005)

    Google Scholar 

  7. Atkins, P.W., Jones, L.L.: Chemistry: molecules, matter, and change, 3rd edn. W.H. Freeman and Co., New York (1997)

    Google Scholar 

  8. Besozzi, D., Busi, N., Franco, G., Freund, R., Păun, G.: Two universality results for (mem)brane systems. In: Gutiérrez-Naranjo, M.A., Păun, G., Riscos-Núñez, A., Romero-Campero, F.J. (eds.) Fourth Brainstorming Week on Membrane Computing, RGNC REPORT 02/2006, Fénix Editora, Sevilla, January 30–February 3, vol. I, pp. 49–62 (2006)

    Google Scholar 

  9. Besozzi, D., Ciobanu, G.: A P system description of the sodium-potassium pump. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 210–223. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Brown, D.A., London, E.: Functions of lipid rafts in biological membranes. Annu. Rev. Cell Dev. Biol. 14, 111–136 (1998)

    Article  Google Scholar 

  11. Cardelli, L.: Brane calculi. Interactions of biological membranes. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 257–280. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  12. Cardelli, L., Păun, G.: An universality result for (mem)brane calculus based on mate/drip operations. International Journal of Foundations of Computer Science 17(1), 49–68 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cho, W., Stahelin, R.V.: Membrane-protein interactions in cell signaling and membrane trafficking. Annu. Rev. Biophys. Biomol. Struct. 34, 119–151 (2005)

    Article  Google Scholar 

  14. Cossu, F.: Modelli discreti per il trasporto del calcio attraverso la membrana plasmatica, Graduation Thesis, University of Milano, Italy (2005)

    Google Scholar 

  15. Danos, V., Pradalier, S.: Projective brane calculus. In: Danos, V., Schachter, V. (eds.) CMSB 2004. LNCS (LNBI), vol. 3082, pp. 134–148. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  16. Dean, M.: The Human ATP-Binding Cassette (ABC) Transporter Superfamily, National Library of Medicine (US), NCBI (2002), http://www.ncbi.nlm.nih.gov/

  17. Engelman, D.M.: Membranes are more mosaic than fluid. Nature 438, 578–580 (2005)

    Article  Google Scholar 

  18. Fill, M., Copello, J.A.: Ryanodine receptors calcium release channels. Physiol. Rev. 82, 893–922 (2002)

    Google Scholar 

  19. Gouaux, E., MacKinnon, R.: Principles of selective ion transport in channels and pumps. Science 310, 1461–1465 (2005)

    Article  Google Scholar 

  20. Jurica, M.S., Stoddard, B.L.: Mind your B’s and R’s: bacterial chemotaxis, signal transduction and protein recognition. Current Biology 6, 809–813 (1998)

    Google Scholar 

  21. Kosniowski, C.: A First Course in Algebraic Topology. Cambridge University Press, Cambridge (1980)

    Book  MATH  Google Scholar 

  22. Kusumi, A., Nakada, C., Ritchie, K., Murase, K., Suzuki, K., Murakoshi, H., Kasai, R.S., Kondo, J., Fujiwara, T.: Paradigm shift of the plasma membrane concept from the two-dimensional continuum fluid to the partitioned fluid: high-speed single-molecule tracking of membrane molecules. Annu. Rev. Biophys. Biomol. Struct. 34, 351–378 (2005)

    Article  Google Scholar 

  23. Lodish, H., Berk, A., Zipursky, S.L., Matsudaira, P., Baltimore, D., Darnell, J.E.: Molecular Cell Biology, 4th edn. W.H. Freeman and Co., New York (2000)

    Google Scholar 

  24. Marguet, D., Lenne, P.F., Rigneault, H., He, H.T.: Dynamics in the plasma membrane: how to combine fluidity and order. The EMBO Journal 25, 3446–3457 (2006)

    Article  Google Scholar 

  25. McMahon, H.T., Gallop, J.L.: Membrane curvature and mechanisms of dynamic cell membrane remodelling. Nature 438, 590–596 (2005)

    Article  Google Scholar 

  26. Palmieri, N.: Un approccio stocastico alla modellazione del canale RyR, Graduation Thesis, University of Milano, Italy (2006)

    Google Scholar 

  27. Pérez-Jiménez, M.J., Romero-Campero, F.J.: Modelling EGFR signalling cascade using continuous membrane systems. In: Plotkin, G. (ed.) Proceedings of CMSB 2005, Edinburgh, April 3-5, pp. 118–129 (2005)

    Google Scholar 

  28. Păun, G.: Computing with membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  29. Păun, G.: Computing with membranes – A variant: P systems with polarized membranes. International Journal of Foundations of Computer Science 11(1), 167–182 (2000)

    Article  MathSciNet  Google Scholar 

  30. Păun, G.: Membrane Computing. An introduction. Springer, Berlin (2002)

    MATH  Google Scholar 

  31. Petsko, G.A., Ringe, D.: Protein Structure and Function. New Science Press Ltd. (2004)

    Google Scholar 

  32. Philipson, K.D., Nicoll, D.A.: Sodium-calcium exchange: a molecular perspective. Annual Review of Physiology 62, 111–133 (2000)

    Article  Google Scholar 

  33. Serysheva, I.I.: Structural insights into excitation-contraction coupling by electron cryomicroscopy. Biochemistry (Moscow) 69(11), 1226–1232 (2004)

    Article  Google Scholar 

  34. Singer, S.J.: Some early history of membrane molecular biology. Annual Review of Physiology 66, 1–27 (2004)

    Article  Google Scholar 

  35. Singer, S.J., Nicolson, G.L.: The fluid mosaic model of the structure of cell membranes. Science 175, 720–731 (1972)

    Article  Google Scholar 

  36. Ward, J.M.: Patch-clamping and other molecular approaches for the study of plasma membrane transporters demystified. Plant Physiology 114, 1151–1159 (1997)

    Article  Google Scholar 

  37. Wickner, W., Schekman, R.: Protein translocation across biological membranes. Science 310, 1452–1456 (2005)

    Article  Google Scholar 

  38. Zimmerberg, J., Kozlov, M.M.: How proteins produce cellular membrane curvature. Nature Reviews Molecular Cell Biology 7, 9–19 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Besozzi, D., Rozenberg, G. (2006). Formalizing Spherical Membrane Structures and Membrane Proteins Populations. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds) Membrane Computing. WMC 2006. Lecture Notes in Computer Science, vol 4361. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11963516_2

Download citation

  • DOI: https://doi.org/10.1007/11963516_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69088-7

  • Online ISBN: 978-3-540-69090-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics