Skip to main content

Mitotic Oscillators as MP Graphs

  • Conference paper
Membrane Computing (WMC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4361))

Included in the following conference series:

Abstract

This paper proposes a model in terms of metabolic P graphs of a few important processes occurring during the biological phase where the choice is made to begin again mitosis or to arrest it. The cellular processes during this phase turn out to be especially interesting in the case of DNA damage, which triggers a specific destruction of Cdc25A phosphatase. It has important implications to understand the role of cell cycle checkpoints and the mechanism(s) guiding the proliferation of UV-resistant tumored cells. The formalism of metabolic P graphs highlights the relevant information of the biological network dynamics, and the individuation of few parameters rules the basic mechanisms of Cdc25A degradation, involving a couple of important mitotic oscillators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Barbacari, N., Profir, A., Zelinschi, C.: Gene regulatory network modelling by means of membrane systems. In: Freund, R., Lojka, G., Oswald, M., Păun, G. (eds.) Pre-proceedings of the 6th International Workshop on Membrane Computing, Vienna, Austria, July 18-21, 2005, pp. 162–178 (2005)

    Google Scholar 

  2. Bartek, J., Lukas, J.: Pathways governing g1/s transition and their response to DNA damage. FEBS Lett. 3(490), 117–122 (2001)

    Article  Google Scholar 

  3. Bernardini, F., Gheorghe, M., Krasnogor, N., Muniyandi, R.C., Jesús Pérez-Jímenez, M., Romero-Campero, F.J.: On P systems as a modelling tool for biological systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 114–133. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  4. Bianco, L., Fontana, F., Franco, G., Manca, V.: P systems for biological dynamics. In: Ciobanu, G., Păun, G., Perez-Jimenez, M.J. (eds.) Applications of Membrane Computing, Ch. 3, pp. 81–126. Springer, Heidelberg (2006)

    Google Scholar 

  5. Bianco, L., Fontana, F., Manca, V.: Metabolic algorithm with time-varying reaction maps. In: Proceedings of the Third Brainstorming Week on Membrane Computing, Sevilla, Spain, pp. 43–61 (February 2005)

    Google Scholar 

  6. Fontana, F., Bianco, L., Manca, V.: P systems and the modeling of biochemical oscillations. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 199–208. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  7. Bianco, L., Fontana, F., Manca, V.: P systems with reaction maps. International Journal of Foundations of Computer Science (to appear, 2006)

    Google Scholar 

  8. Bianco, L., Manca, V.: Symbolic generation and representation of complex oscillations. International Journal of Computer Mathematics 17(1), 27–48 (2006)

    MATH  MathSciNet  Google Scholar 

  9. Chopin, V., Toillon, R.A., Jouy, N.: P21(waf1/cip1) is dispensable for g1 arrest, but indispensable for apoptosis induced by sodium butyrate in mcf-7 breast cancer cells. Oncogene 23(1), 21–29 (2004)

    Article  Google Scholar 

  10. Clark, B.L.: Stability of complex reaction networks. Adv. Chem. Phys. 43, 1–216 (1983)

    Article  Google Scholar 

  11. D’Anna, J., Valdez, J.G., Habbersett, R.C., Crissman, H.A.: Association of g1/s-phase and late s-phase checkpoints with regulation of cyclin-dependent kinases in chinese hamster ovary cells. Radiat. Res. 148, 260–271 (1997)

    Article  Google Scholar 

  12. Nakayama, K.I., et al.: Regulation of the cell cycle at the g1-s transition by proteolysis of cyclin e and p27kip1. Biochem. Biophys. Res. Commun. 4(282), 853–860 (2001)

    Article  Google Scholar 

  13. Falck, J., Mailand, N., Syljuåsen, R.G., Bartek, J., Lukas, J.: The atm-chk2-cdc25a checkpoint pathway guards against radioresistant DNA synthesis. Nature 410(6830), 842–847 (2001)

    Article  Google Scholar 

  14. Jinno, S., Suto, K., Nagata, A., Igarashi, M., Kanaoka, Y., Nojima, H., Okayama, H.: Cdc25a is a novel phosphatase functioning early in the cell cycle. EMBO J. 13, 1549–1556 (1994)

    Google Scholar 

  15. Mailand, N., Falck, J., Lukas, C., Syljuåsen, R.G., Welcker, M., Bartek, J., Lukas, J.: Rapid destruction of human cdc25a in response to DNA damage. Science 288(5470), 1425–1429 (2000)

    Article  Google Scholar 

  16. Manca, V.: Topics and problems in metabolic p systems. In: Fourth Brainstorming on Membrane Computing, Sevilla, Spain (2006)

    Google Scholar 

  17. Manca, V., Bianco, L.: Biological networks in metabolic p system (submitted)

    Google Scholar 

  18. Manca, V., Bianco, L., Fontana, F.: Evolution and oscillation in P systems: Applications to biological phenomena. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 63–84. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  19. Nilssen, E.A., Synnes, M., Kleckner, N., Grallert, B., Boye, E.: Intra-g1 arrest in response to uv irradiation in fission yeast. Proc. Natl. Acad. Sci. 100(19), 10758–10763 (2003)

    Article  Google Scholar 

  20. Păun, G.: Membrane Computing. An Introduction. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  21. Segel, L.A., Cohen, I.R.: Design Principles for the Immune System and Other Distributed Autonomous Systems. Santa Fe Institute Studies in the Sciences of Complexity. Oxford University Press, Oxford (2001)

    Google Scholar 

  22. Suzuki, Y., Tanaka, H.: Modelling p53 signaling pathways by using multiset processing. In: Ciobanu, G., Pérez-Jiménez, M.J., Păun, G. (eds.) Applications of Membrane Computing. Natural Computing Series, pp. 203–214. Springer, Berlin (2006)

    Google Scholar 

  23. Waldman, T., Kinzler, K.W., Vogelstein, B.: p21 is necessary for the p53-mediated g1 arrest in human cancer cells. Cancer Research 55(22), 5187–5190 (1995)

    Google Scholar 

  24. Zhao, H., Watkins, J.L., Piwnica-Worms, H.: Disruption of the checkpoint kinase 1/cell division cycle 25a pathway abrogates ionizing radiation-induced s and g2 checkpoints. Proc. Natl. Acad. Sci. 99, 14795–14800 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Franco, G., Guzzi, P.H., Manca, V., Mazza, T. (2006). Mitotic Oscillators as MP Graphs. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds) Membrane Computing. WMC 2006. Lecture Notes in Computer Science, vol 4361. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11963516_24

Download citation

  • DOI: https://doi.org/10.1007/11963516_24

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69088-7

  • Online ISBN: 978-3-540-69090-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics