
Characterizations of Some Restricted Spiking
Neural P Systems ?

(Extended Abstract)

Oscar H. Ibarra and Sara Woodworth
Department of Computer Science

University of California, Santa Barbara, CA 93106, USA

Abstract. A k-output spiking neural P system (SNP) with output neu-
rons, O1, ..., Ok, generates a tuple (n1, ..., nk) of positive integers if, start-
ing from the initial configuration, there is a sequence of steps such that
during the computation, each Oi generates exactly two spikes a a (the
times the pair a a are generated may be different for different output
neurons) and the time interval between the first a and the second a is
ni. After the output neurons have generated their pairs of spikes, the
system eventually halts. Another model, called k-train SNP, has only
one output neuron. It generates a k-tuple (n1, ..., nk) if, starting from
the initial configuration, the output neuron O generates the spike train
aa...a with exactly k +1 a’s such that the interval between the ith a and
the i + 1st a is ni, and the system eventually halts. We assume, without
loss of generality, that each neuron in the SNP is either bounded or un-
bounded. (Bounded here means that there is a fixed constant c such that
at any time during the computation, the number of spikes in the neuron
is at most c. Otherwise, the neuron is unbounded.) It is known that 1-
output SNPs (= 1-train SNPs) are universal, i.e., they generate exactly
the recursively enumerable sets over N . Here, we show the following:
1. For k ≥ 1, a set Q ⊆ Nk is semilinear if and only if it can be gen-

erated by a k-output SNP, where every unbounded neuron satisfies
the property that once it starts “spiking” it will no longer receive
future spikes (but can continue spiking). This result also holds for
k-train SNP.

2. The set Q = {(m, 2m) | m ≥ 1} (which is semilinear) cannot be
generated by any 2-output bounded SNP (i.e., SNP all of whose
neurons are bounded). Thus, for k ≥ 2, there are semilinear sets
over Nk that cannot be generated by k-output bounded SNPs. This
contrasts a known result that 1-output bounded SNPs generate all
semilinear sets over N .

3. For k ≥ 2, k-output bounded SNPs are computationally more pow-
erful than k-train bounded SNPs. (They are identical when k = 1.)

4. For k ≥ 1, k-output bounded SNPs and k-train bounded SNPs
can be characterized by certain classes of nondeterministic finite au-
tomata with monotonic counters.

Keywords: Spiking neural P system, k-output SNP, k-train SNP, bounded neu-
ron, unbounded neuron, semilinear set, counter machine.
? This research was supported in part by NSF Grants CCF-0430945 and CCF-0524126.

388 O.H. Ibarra and S. Woodworth

1 Introduction

Spiking neural P systems (SNPs) were recently introduced in [6], and investigated
in a series of papers: [11], [12], [5]. The model of an SNP incorporates into
membrane computing [10] ideas from spiking neurons, see, e.g., [1], [7], [8].

An SNP consists of a set of neurons placed in the nodes of a graph. The
neurons send signals (spikes) along synapses (directed edges of the graph). This
is done by means of firing rules, which are of the form E/ac → a; t, where E is a
regular expression, c is the number of spikes consumed by the rule, and t is the
delay from firing the rule and emitting the spike. The rule can be used only if the
number of spikes in the neuron is “covered” by expression E, in the sense that
the current number of spikes in the neuron, n, is such that an is contained in the
set L(E) denoted by the expression E. In the time interval between firing a rule
and emitting the spike, the neuron is closed/blocked – it does not receive other
spikes and cannot fire. After the time interval, the neuron is again open and can
again fire and receive other spikes. There also are rules for forgetting spikes, of
the form as → λ (s spikes are just removed from the neuron). We require that if
as → λ is a rule in a neuron, then as is not in E for any firing rule of the form
E/ac → a; t in the neuron. (Thus, forgetting rules and the firing rules must be
disjoint within each neuron.) Starting from a fixed initial distribution of spikes in
the neurons (initial configuration) and using the rules in a synchronized manner
(a global clock is assumed), the system evolves. A computation is a sequence
of transitions starting from the initial configuration. A transition is maximally
parallel in the sense that all neurons that are fireable must fire. However, in any
neuron, at most one rule is allowed to fire. Details can be found in [6].

An SNP can be used as a computing device in various ways. Here, as in
previous papers, we will use them as generators of numbers. We will only consider
SNPs with two types of neurons:

1. A neuron is bounded if every rule in the neuron is of the form ai/aj → a; t ,
where j ≤ i, or of the form ak → λ, provided there is no rule of the form
ak/aj → a; t in the neuron. Note that there can be several such rules in the
neuron. These rules are called bounded rules. (For notational convenience,
we will write ai/ai → a; t simply as ai → a; t.)

2. A neuron is unbounded if every rule in the neuron is of the form E/ac → a; t,
where E denotes an infinite (unary) regular set. Examples of such rules are:
a3(a2)∗/a2 → a; t , a3(a2)∗/a3 → a; t , a(a)∗/a → a; t. (Again, there can be
several such rules in the neuron.) These rules are called unbounded rules.

An SNP is bounded if all the neurons in the system are bounded. If, in addition,
there are unbounded neurons then the SNP is said to be unbounded.

We generalize the SNP by allowing it to produce k outputs. A k-output
SNP Π has k output neurons, O1, ..., Ok. We say that Π generates a k-tuple
(n1, ..., nk) ∈ Nk if, starting from the initial configuration, there is a sequence
of steps such that each output neuron Oi generates exactly two spikes a a (the
times the pairs a a are generated may be different for different output neurons)

Restricted Spiking Neural P Systems 389

and the time interval between the first a and the second a is ni. Moreover, after
all the output neurons have generated their pair of spikes, the system eventually
halts in the sense that it reaches a configuration where all neurons are open but
no neurons are fireable. The set of all k-tuples generated is denoted by Q(Π).

It was recently shown in [5] that a set Q(Π) ⊆ N1 is recursively enumerable
if and only if it can be generated by a 1-output unbounded SNP Π all of whose
unbounded neurons have only one rule, and it is either a(a)∗/a → a; 0 or
a(a)∗/a → a; 2.

It was also shown in [6] that semilinear subsets of N1 can be characterized
by bounded SNPs. However, it turns out that bounded k-output SNPs cannot
generate all semilinear subsets of Nk, when k ≥ 2. For example, we show in this
paper that the set of tuples {(n, 2n) | n ≥ 1} cannot be generated by a 2-output
SNP. We then give a characterization of subsets of Nk generated by k-output
bounded SNPs.

For semilinear subsets of Nk (for any k), we show that they can be charac-
terized by k-output unbounded SNPs where every unbounded neuron satisfies
the property that that once it starts “spiking” it will no longer receive future
spikes (but can continue spiking). Such SNPs are called 1-reversal-bounded.

We then look at another restricted model called k-train SNP. Such a system
has only one output neuron. Again, there are two types of neurons: bounded and
unbounded but 1-reversal-bounded, as defined before. We say that Π generates
the k-tuple (n1, ..., nk) if, starting from the initial configuration, the output
neuron O generates the spike train aa...a with exactly k + 1 outputted a’s such
that the interval between the ith a and the i + 1st a is ni, and the system
eventually halts. We show that 1 reversal-bounded k-train unbounded SNPs
also characterize the semilinear sets over Nk. We also give a characterization of
k-train bounded SNPs and show that they cannot generate all semilinear sets.
In fact, they are weaker than k-output bounded SNPs.

We note that in this extended abstract, all results with the exception of
Theorem 1, are stated without proofs. The proofs will appear in the full paper.

2 Characterization of k-Output Bounded SNPs

We first recall the definition of a semilinear set. A set Q ⊆ Nk is a linear set if
there exist vectors v0, v1, . . . , vt in Nk such that

Q = {v | v = v0 + m1v1 + · · ·+ mtvt, mi ∈ N}.

The vectors v0 (referred to as the constant vector) and v1, v2, . . . , vt (referred
to as the periods) are called the generators of the linear set Q. A set Q ⊆ Nk

is semilinear if it is a finite union of linear sets. The empty set is a trivial
(semi)linear set, where the set of generators is empty. Every finite subset of Nk

is semilinear – it is a finite union of linear sets whose generators are constant
vectors. It is also clear that the semilinear sets are closed under (finite) union. It
is also known that they are closed under union, complementation, intersection,

390 O.H. Ibarra and S. Woodworth

and projection. A semilinear subset of N1 (i.e., 1-tuples) is sometimes referred
to as regular.

It is known that 1-output SNPs with only bounded neurons generate exactly
the semilinear sets over N1 [6]. However, as we shall see in Theorem 1, when
k ≥ 2, k-output SNPs with only bounded neurons cannot generate all semi-
linear sets over Nk. But these SNPs can generate some simple semilinear sets.
For example Figure 1 is an SNP with only bounded neurons generating the set
{(m,n,m + n) | m,n ≥ 2}.

a2

a2/a→a;0
a→λ

a
a→a;0
a→a;1

a3

a3→a;0
a→a;1
a2→λ

a3

a4→a;0
a→a;1
a2→λ

a3

a3→a;4
a→a;0

a2/a→a;0
a→λ

a→a;0
a→a;1a2→a;0

a2→a;0

a2→a;0

OUT1 OUT2 OUT3

Fig. 1. Bounded SNP Generating Q = {(m, n, m + n) | m, n ≥ 2}.

Theorem 1. The set Q = {(m, 2m) | m ≥ 1} cannot be generated by any 2-
output bounded SNP.

Proof. Let Π be an SNP with m neurons that are all bounded. The distribution
of the spikes in the neurons and states of the neurons corresponding to the spiking
intervals specified by the last rules used in each neuron (the open-close status
and the time since the neurons were closed, depending on the rule used) and
the rule to be used next define the configuration of the system. It is important
to note that our definition of configuration includes the next rule that can be
applied in the neuron. Clearly there are at most n configurations that the system
can be in, for some n. Let O1 and O2 be the output neurons.

Suppose Π generates the set Q = {(m, 2m) | m ≥ 1}. Let s = n+1. Then Π
generates (s, 2s). Let t1 and t2 be the times the output membrane O1 generates
the first and second spikes, respectively. Hence, t2 − t1 = s. Similarly, let t3 and
t4 be the times O2 spikes; hence t4 − t3 = 2s. We consider two cases:

Case 1. Suppose t1 ≤ t3. Then we claim that t3− t1 ≤ n. Otherwise, in the time
interval between t1 and t3, the system will enter some configuration C twice at
times t′1 and t′3, where t1 ≤ t′1 < t′3 ≤ t3. Let t′3 − t′1 = r. (Note that r ≤ n.)
Then, clearly the tuple (s + kr, 2s) is also generated by Π for each k ≥ 1. This
is a contradiction.

Restricted Spiking Neural P Systems 391

Case 2. Now suppose t3 ≤ t1. Then, again, t1−t3 ≤ n; otherwise (by an argument
similar to Case 1), for some r ≤ n, (s, 2s + kr) will also be generated by Π for
each k ≥ 1, a contradiction.

Thus we may assume that |t3−t1| ≤ n. But this would imply that t4−t2 ≥ n.
Then for some r ≤ n, (s, 2s + kr) will also be generated by Π for each k ≥ 1,
which is again a contradiction. ut

Next, we give a characterization of subsets of Nk generated by k-output
bounded SNPs. Consider a nondeterministic finite automaton M with k coun-
ters, all of which are output counters.

1. Initially all counters are zero.
2. No counter is decremented during the computation.
3. In one step, zero or more counters can be incremented (by 1).
4. When a counter is incremented, it gets incremented at every step until such

time when it stops incrementing. Thereafter, the counter no longer incre-
ments.

5. Each counter gets incremented at some point.
6. When all the counters have stopped incrementing, the machine may continue

computing but eventually halts in an accepting state. The values in the k
counters is then said to be generated by M.

Note that item 4 is an important restriction on the operation of the machine. Call
the counter machine (CM) described above a monotonic k-output CM. Clearly,
the set {(m,n,m + n) | m,n ≥ 1} can be generated by a monotonic 3-output
CM. Other examples are: {(n, n) | n ≥ 1}, {(k, n) | k, n ≥ 1, k < n}, and
{(m, k, n,) | m, k, n ≥ 1,m < k < n}. The first two can be generated by mono-
tonic 2-output CMs, and the last can be generated by a monotonic 3-output
CM.

Formally we can define a monotonic k-output CM as M =< k,B, l1, lh, R >
where k is the number of counters in the system, B is the set of instruction
labels, l1 is the starting instruction, lh is the halting instruction, and R is the
set of instructions. The instructions in R are of the form

li : (BEGIN(r1, · · · , rp), END(s1, · · · , sq), li1 , · · · , lit
)

li : (DELAY, li1 , · · · , lit)
li : (HALT)

The counters are indexed 1, ..., k. The instruction li : (BEGIN(r1, · · · , rp),
END(s1, · · · , sq), li1 , · · · , lit

) starts incrementing counters r1, ..., rp (this assumes
these counters were zero) and stops incrementing counters s1, ..., sq (this assumes
these counters have been incrementing at every step, since they started incre-
menting earlier). The set {r1, ..., rp} (respectively, {s1, ..., sq}) is called the incre-
menting set (respectively, end-incrementing set) of the instruction. The counters
in the incrementing set begin incrementing during the current step, but the
counters in the end-incrementing step are stopped before they are incremented
during the current step. If p = 0 or q = 0, we do not write BEGIN or END. In
particular, if p = q = 0, then the instruction reduces to li : (li1 , ..., lit), which

392 O.H. Ibarra and S. Woodworth

we denote by the instruction li : (DELAY, li1 , ..., lit
) for clarity. During this in-

struction no counter changes state but all previously incrementing counters are
incremented by one and then the system changes state. We emphasize that once
a counter r has begun incrementing, it is incremented at each proceeding step
until r is in the end-incrementing set of the current instruction. If r is ever incre-
mented again, the computation is invalid. The incrementing set must be disjoint
of the end-incrementing set (since we cannot begin and end a counter in a single
step). The instruction li : (HALT) halts the execution. We can assume without
loss of generality that no instruction loops back to itself. Note that if li1 , · · · , lit

are identical (i.e., the next instruction is unique), we need only put one such
label.

To better understand how monotonic CMs operate we give the following
examples.

Example 1. The set Q = {(n, n) | n ≥ 1} can be generated by the monotonic
CM M =< 2, {l1, · · · , l5}, l1, l5, R > where

R = { l1 : (BEGIN(1, 2), l2, l4),
l2 : (DELAY, l3, l4),
l3 : (DELAY, l2, l4),
l4 : (END(1, 2), l5),
l5 : (HALT)}

This program begins incrementing the counters at time 1. The (possibly exe-
cuted) delay instructions allow some nondeterministic amount of time to elapse.
Then we end the incrementing of both counters at time n + 1. This gives us the
tuple (n, n) where n ≥ 1. (Note that the counters increment during the time
step they are begun guaranteeing that each counter contains an output which is
≥ 1.)

Example 2. The set Q = {(m, k, n) | m ≤ k ≤ n, m ≥ 1} can be generated by
the monotonic CM M =< 3, {l1, · · · l14}, l1, l14, R > where

R = { l1 : (BEGIN(1, 2, 3), l2, l4, l5, l6),
l2 : (DELAY, l3, l4.l5, l6),
l3 : (DELAY, l2, l4, l5, l6),
l4 : (END(1), l7, l9, l10),
l5 : (END(1, 2), l11, l13),
l6 : (END(1, 2, 3), l14),
l7 : (DELAY, l8, l9, l10),
l8 : (DELAY, l7, l9, l10),
l9 : (END(2), l11, l13),
l10 : (END(2, 3), l14),
l11 : (DELAY, l12, l13),
l12 : (DELAY, l11, l13),
l13 : (END(3), l14),
l14 : (HALT)}

Restricted Spiking Neural P Systems 393

The following characterizes k-output bounded SNPs.

Theorem 2. A set Q ⊆ Nk is generated by a k-output bounded SNP if and only
if Q is generated by a monotonic k-ouput CM.

The characterization allows us to easily show that a set is generated by a k-output
bounded SNP by simply showing that it can be generated by a monotonic k-
output CM. So, e.g., the sets in Examples 1 and 2 can be generated by 2-output
and 3-output bounded SNPs, respectively.

Suppose we relax the operation of a monotonic k-output CM so that we no
longer require that when a counter is incremented, it gets incremented at every
step until such time when it stops incrementing. Thus, each counter need not
be incremented at each step, but eventually, the machine halts in an accepting
state when each counter has value at least 1. This type of machine (called 0-
reversal CM in the next section) is more powerful than a monotonic k-output
CM, since such CMs generate exactly the semilinear sets. In the next section,
we characterize them in terms of restricted k-output unbounded SNPs.

3 Reversal-Bounded k-Output Unbounded SNPs

In order to characterize all the semilinear sets over Nk, we need unbounded
neurons that operate in a restricted manner. A k-output SNP is reversal-bounded
if there is an integer r ≥ 0 such that for each unbounded neuron, the number
of times the spike size changes values from nonincreasing to nondecreasing and
vice-versa during any computation is at most r. The system is 1-reversal when
r = 1. A k-output SNP where each unbounded neuron operates with the property
that it can receive spikes, but once it starts spiking it will no longer receive
future spikes (but can continue spiking) would be considered a 1-reversal SNP.
Moreover, as we shall see, for the results of this section, we can assume there
is only one rule in each unbounded neuron, and it is a3(a2)∗/a2 → a; 0. Note
that when r = 0, i.e., the system is 0-reversal, then the unbounded neurons can
be deleted from the system without affecting the computation. Hence, such a
system is equivalent to a k-output bounded SNP.

We need a counter machine characterization of semilinear sets. A nondeter-
ministic multicounter machine (CM) M is a nondeterministic finite automaton
with a finite number of counters (it has no input tape). Each counter can only
hold a nonnegative integer. The machine starts in a fixed initial state with all
counters zero. During the computation, each counter can be incremented by
1, decremented by 1, or tested for zero. A distinguished set of k counters (for
some k ≥ 1) is designated as the output counters. The output counters are
non-decreasing (i.e., cannot be decremented). A k-tuple (n1, ..., nk) ∈ Nk is gen-
erated if M eventually halts in an accepting state, all non-output counters zero,
and the contents of the output counters are n1, ..., nk, respectively. We will refer
to a CM with k output counters (the other counters are auxiliary counters) as a
k-output CM.

394 O.H. Ibarra and S. Woodworth

A CM is reversal-bounded if there exists an r ≥ 0 such that during any
computation, each non-output counter is r-reversal in the sense that it alternates
between nondecreasing mode and nonincreasing mode and vice-versa at most r
times. Note that when r = 0, the counter is nondecreasing. (By definition, the
output counters are 0-reversal.)

The following theorem is known [4] (see also [3]):

Theorem 3. The following statements are equivalent for any set Q ⊆ Nk:

1. Q is a semilinear set.
2. Q can be generated by a reversal-bounded k-output CM.
3. Q can be generated by a CM with exactly k counters, all of which are output

counters (hence, 0-reversal counters).

Using the above result, we can prove:

Theorem 4. The following statements are equivalent for any Q ⊆ Nk:

1. Q is semilinear.
2. Q can be generated by a reversal-bounded k-output unbounded SNP.
3. Q can be generated by a 1-reversal k-output unbounded SNP.

Remark 1. We note that the theorem above holds even if we restrict the un-
bounded neurons in the SNP to have only the rule a3(a2)∗/a2 → a; 0.

4 Reversal-Bounded k-Train Unbounded SNPs

Now consider another restricted model called reversal-bounded k-train SNP. Such
a system has only one output neuron. Again, there are two types of neurons:
bounded and unbounded but reversal-bounded, as defined before. We say that
Π generates the k-tuple (n1, ..., nk) if, starting from the initial configuration, the
output neuron O generates the spike train aa...a with exactly k+1 outputted a’s
such that the interval between the ith a and the i + 1st a is ni, and the system
eventually halts.

Theorem 5. The following statements are equivalent for any Q ⊆ Nk:

1. Q is semilinear.
2. Q can be generated by a reversal-bounded k-train unbounded SNP.
3. Q can be generated by a 1-reversal k-train unbounded SNP.

Remark 2. Again, we note that the theorem above holds even if we restrict the
unbounded neurons in the SNP to have only the rule a3(a2)∗/a2 → a; 0.

Restricted Spiking Neural P Systems 395

5 k-Train Bounded SNPs

We will give a characterization of k-train SNPs all of whose neurons are bounded.
A monotonic k-output CM is sequential if for 1 ≤ r < k, counter r + 1 can
(and must) only start incrementing when counter r has stopped incrementing
after having been incremented. Hence, a sequential monotonic k-output CM has
simplified rules of the forms

li : (BEGIN(1), li1 , · · · , lit
)

li : (BEGIN(r + 1), END(r), li1 , · · · , lit) for 1 ≤ r < k
li : (END(k), li1 , · · · , lit

)
li : (DELAY, li1 , · · · , lit)
li : (HALT)

For a set Q ⊆ Nk, define the language (over k symbols a1, ..., ak), LQ =
{an1

1 ...ank

k | (n1, ..., nk) ∈ Q}. Clearly, Q is generated by a sequential k-output
CM if and only if LQ is a regular set, i.e., accepted by a nondeterministic finite
automaton (NFA).

Theorem 6. A set Q ⊆ Nk is generated by a k-train bounded SNP if and only
if it is generated by a sequential monotonic k-ouput CM.

Corollary 1. For k ≥ 2, k-train bounded SNPs are strictly weaker than k-output
bounded SNPs.

6 Conclusion

The results in this paper can be summarized as follow. For k ≥ 2:

sequential monotonic k-output CMs
= k-train bounded SNPs
< k-output bounded SNPs
= monotonic k-output CMs
< reversal-bounded k-output CMs
= reversal-bounded k-output unbounded SNPs
= reversal-bounded k-train unbounded SNPs
= semilinear sets over Nk.

In the above ‘=’ means equivalent, and ‘<’ means weaker.
Suppose we augment a reversal-bounded k-output unbounded SNP with one

unbounded free neuron. Thus, one neuron is unbounded with no reversal bound
and all the other neurons are reversal-bounded. Call such a system reversal-
bounded + 1-free k-output unbounded SNP. This model of SNP can be simulated
by a reversal-bounded k-ouput CMs augmented with one free (i.e., unrestricted
counter). It is known that this model is equivalent to one with only reversal-
bounded counters [4]. Hence such CMs generate only semilinear sets. Thus, we
can add “= reversal-bounded k-ouput CMs + 1 free counter” at the end of the

396 O.H. Ibarra and S. Woodworth

above results. For the case k = 1, all the models above are equivalent, and they
generate exactly the semilinear sets over N1 (i.e., regular sets over a∗).

It follows that many closure properties (e.g., union, intersection, and comple-
mentation) hold for sets generated by the SNP models above. Similarly, many
standard decision problems (e.g., membership, containment, and equivalence
problems) are decidable.

References

1. W. Gerstner, W Kistler: Spiking Neuron Models. Single Neurons, Populations, Plas-
ticity. Cambridge Univ. Press, 2002.

2. S. Greibach: Remarks on blind and partially blind one-way multicounter machines.
Theoretical Computer Science, 7, 3 (1978), 311–324.

3. T. Harju, O. Ibarra, J. Karhumaki, and A. Salomaa: Some decision problems con-
cerning semilinearity and commutation. Journal of Computer and System Sciences,
65 (2002), 278–294.

4. O. Ibarra: Reversal-bounded multicounter machines and their decision problems.
Journal of the ACM, 25 (1978), 116–133.

5. O. Ibarra, A. Păun, Gh. Păun, A. Rodriguez-Paton, P. Sosik, and S. Woodworth:
Normal forms for spiking neural P systems, submitted, 2006.

6. M. Ionescu, Gh. Păun, T. Yokomori: Spiking neural P systems. Fundamenta Infor-
maticae, 71, 2-3 (2006), 279–308 (also available at [13]).

7. W. Maass: Computing with spikes. Special Issue on Foundations of Information
Processing of TELEMATIK, 8, 1 (2002), 32–36.

8. W. Maass, C. Bishop, eds.: Pulsed Neural Networks, MIT Press, Cambridge, 1999.
9. M. Minsky: Computation – Finite and Infinite Machines. Prentice Hall, Englewood

Cliffs, NJ, 1967.
10. Gh. Păun: Membrane Computing – An Introduction. Springer-Verlag, Berlin, 2002.
11. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Spike trains in spiking neural P

systems. Intern. J. Found. Computer Sci., to appear (also available at [13]).
12. Gh. Păun, M.J. Pérez-Jiménez, G. Rozenberg: Infinite spike trains in spiking neural

P systems. Submitted, 2006.
13. The P Systems Web Page: http://psystems.disco.unimib.it.

