Skip to main content

Quorum Sensing: A Cell-Cell Signalling Mechanism Used to Coordinate Behavioral Changes in Bacterial Populations

  • Conference paper
Membrane Computing (WMC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4361))

Included in the following conference series:

Abstract

One of the most important mechanisms for bacterial cell-to-cell communication and behavior coordination under changing environments is often referred to as “quorum sensing” (QS). QS relies on the activation of a sensor kinase or response regulator protein by, in many cases, a diffusible, low molecular weight signal molecule (a “pheromone” or “autoinducer”) (Cámara et al., 2002). Consequently, in QS, the concentration of the signal molecule reflects the number of bacterial cells in a particular niche and perception of a threshold concentration of that signal molecule indicates that the population is “quorated”, i.e. ready to make a behavioral decision. Bacteria cell-to-cell communication is perhaps the most important tool in the battle for survival; they employ communication to trigger transcriptional regulation resulting in sexual exchange and niche protection in some cases, to battle host’ defences and coordinate population migration. Ultimately, bacteria cell-to-cell communication is used to effect phenotypic change. The importance of coordinated gene-expression (and hence phenotypic change) in bacteria can be understood if one realizes that only by pooling together the activity of a quorum of cells can a bacterium be successful. It is increasingly apparent that, in nature, bacteria function less as individuals and more as coherent groups that are able to inhabit multiple ecological niches (Lazdunski et al., 2004). Within quorum sensing process several key elements must be considered: (i) the gene(s) involved in signal synthesis, (ii) the gene(s) involved in signal transduction, and (iii) the QS signal molecule(s).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Cámara, M., Williams, P., Hardman, A.: Controlling infection by tuning in and turning down the volume of bacterial small-talk. Lancet Infectious Diseases 2, 667–676 (2002)

    Article  Google Scholar 

  2. Diggle, S.P., Winzer, K., Lazdunski, A., Williams, P., Cámara, M.: Advancing the quorum in Pseudomonas aeruginosa: MvaT and the regulation of N-acylhomoserine lactone production and virulence gene expression. Journal of Bacteriology 184, 2576–2586 (2002)

    Article  Google Scholar 

  3. Eberhard, A., Burlingame, A.L., Eberhard, C., Kenyon, G.L., Nealson, K.H., Oppenheimer, N.J.: Structural identification of autoinducer of Photobacterium-Fischeri luciferase. Biochemistry 20, 2444–2449 (1981)

    Article  Google Scholar 

  4. Gambello, M.J., Iglewski, B.H.: Cloning and characterization of the Pseudomonas aeruginosa LasR gene, a transcriptional activator of elastase expression. Journal of Bacteriology 173, 3000–3009 (1991)

    Google Scholar 

  5. Latifi, A., Foglino, M., Tanaka, K., Williams, P., Lazdunski, A.: A hierarchical quorum sensing cascade in Pseudomonas aeruginosa links the transcriptional activators LasR and RhIR (VsmR) to expression of the stationary-phase sigma factor RpoS. Molecular Microbiology 21, 1137–1146 (1996)

    Article  Google Scholar 

  6. Latifi, A., Winson, M.K., Foglino, M., Bycroft, B.W., Stewart, G., Lazdunski, A., Williams, P.: Multiple homologs of LuxR and Luxl control expression of virulence determinants and secondary metabolites through quorum sensing in Pseudomonas aeruginosa PAO1. Molecular Microbiology 17, 333–343 (1995)

    Article  Google Scholar 

  7. Lazdunski, A.M., Ventre, I., Sturgis, J.N.: Regulatory circuits and communication in gram-negative bacteria. Nature Reviews Microbiology 2, 581–592 (2004)

    Article  Google Scholar 

  8. McKnight, S.L., Iglewski, B.H., Pesci, E.C.: The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. Journal of Bacteriology 182, 2702–2708 (2000)

    Article  Google Scholar 

  9. Ochsner, U.A., Reiser, J.: Autoinducer-mediated regulation of rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America 92, 6424–6428 (1995)

    Article  Google Scholar 

  10. Passador, L., Cook, J.M., Gambello, M.J., Rust, L., Iglewski, B.H.: Expression of Pseudomonas aeruginosa virulence genes requires cell-to-cell communication. Science 260, 1127–1130 (1993)

    Article  Google Scholar 

  11. Pearson, J.P.: Early activation of quorum sensing. Journal of Bacteriology 184, 2569–2571 (2002)

    Article  Google Scholar 

  12. Pearson, J.P., Gray, K.M., Passador, L., Tucker, K.D., Eberhard, A., Iglewski, B.H., Greenberg, E.P.: Structure of the autoinducer required for expression of Pseudomonas aeruginosa virulence genes. Proceedings of the National Academy of Sciences of the United States of America 91, 197–201 (1994)

    Article  Google Scholar 

  13. Pesci, E.C., Milbank, J.B.J., Pearson, J.P., McKnight, S., Kende, A.S., Greenberg, E.P., Iglewski, B.H.: Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America 96, 11229–11234 (1999)

    Article  Google Scholar 

  14. Pesci, E.C., Pearson, J.P., Seed, P.C., Iglewski, B.H.: Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. Journal of Bacteriology 179, 3127–3132 (1997)

    Google Scholar 

  15. Rahme, L.G., Stevens, E.J., Wolfort, S.F., Shao, J., Tompkins, R.G., Ausubel, F.M.: Common virulence factors for bacterial pathogenicity in plants and animals. Science 268, 1899–1902 (1995)

    Article  Google Scholar 

  16. Schuster, M., Lostroh, C.P., Ogi, T., Greenberg, E.P.: Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. Journal of Bacteriology 185, 2066–2079 (2003)

    Article  Google Scholar 

  17. Stover, C.K., Pham, X.Q., Erwin, A.L., Mizoguchi, S.D., Warrener, P., Hickey, M.J., Brinkman, F.S.L., Hufnagle, W.O., Kowalik, D.J., Lagrou, M., Garber, R.L., Goltry, L., Tolentino, E., Westbrock-Wadman, S., Yuan, Y., Brody, L.L., Coulter, S.N., Folger, K.R., Kas, A., Larbig, K., Lim, R., Smith, K., Spencer, D., Wong, G.K.S., Wu, Z., Paulsen, I.T., Reizer, J., Saier, M.H., Hancock, R.E.W., Lory, S., Olson, M.V.: Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406, 959–964 (2000)

    Article  Google Scholar 

  18. Whiteley, M., Lee, K.M., Greenberg, E.P.: Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America 96, 13904–13909 (1999)

    Article  Google Scholar 

  19. Williams, P., Bainton, N.J., Swift, S., Chhabra, S.R., Winson, M.K., Stewart, G., Salmond, G.P.C., Bycroft, B.W.: Small molecule-mediated density-dependent control of gene-expression in prokaryotes - Bioluminescence and the biosynthesis of carbapenem antibiotics. Fems Microbiology Letters 100, 161–167 (1992)

    Article  Google Scholar 

  20. Winson, M.K., Cámara, M., Latifi, A., Foglino, M., Chhabra, S.R., Daykin, M., Bally, M., Chapon, V., Salmond, G.P.C., Bycroft, B.W., Lazdunski, A., Stewart, G., Williams, P.: Multiple N-acyl-L-homoserine lactone signal molecules regulate production of virulence determinants and secondary metabolites in Pseudomonas aeruginosa. Proceedings of the National Academy of Sciences of the United States of America 92, 9427–9431 (1995)

    Article  Google Scholar 

  21. Winzer, K., Hardie, K.R., Williams, P.: Bacterial cell-to-cell communication: Sorry, can’t talk now - gone to lunch! Current Opinion in Microbiology 5, 216–222 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Cámara, M. (2006). Quorum Sensing: A Cell-Cell Signalling Mechanism Used to Coordinate Behavioral Changes in Bacterial Populations. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds) Membrane Computing. WMC 2006. Lecture Notes in Computer Science, vol 4361. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11963516_3

Download citation

  • DOI: https://doi.org/10.1007/11963516_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69088-7

  • Online ISBN: 978-3-540-69090-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics