Skip to main content

Computational Completeness of Tissue P Systems with Conditional Uniport

  • Conference paper
Membrane Computing (WMC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4361))

Included in the following conference series:

Abstract

The paper introduces (purely communicative) tissue P systems with conditional uniport. Conditional uniport means that rules move only one object at a time, but this may be with the help of another one acting as an activator which is left untouched in the place where it is. Tissue P systems with conditional uniport are shown to be computationally complete in the sense that they can recognize all recursively enumerable sets of natural numbers. This is achieved by simulating deterministic register machines.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: The Molecular Biology of the Cell, 4th edn. Garland Publ. Inc., London (2002)

    Google Scholar 

  2. Alhazov, A., Rogozhin, Y., Verlan, S.: Symport/Antiport Tissue P Systems with Minimal Cooperation. In: Proceedings of the ESF Exploratory Workshop on Cellular Computing (Complexity Aspects), Sevilla, Spain, pp. 37–52 (2005)

    Google Scholar 

  3. Bernardini, F., Gheorghe, M.: Cell Communication in Tissue P Systems: Universality Results. Soft Computing 9, 640–649 (2005)

    Article  MATH  Google Scholar 

  4. Bernardini, F., Gheorghe, M., Krasnogor, N., Giavitto, J.-L.: On Self-assembly in Population P Systems. In: Calude, C.S., Dinneen, M.J., Păun, G., Pérez-Jímenez, M.J., Rozenberg, G. (eds.) UC 2005. LNCS, vol. 3699, pp. 46–57. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  5. Csuhaj-Varjú, E., Vaszil, G.: P Automata or Purely Communicating Accepting P Systems. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 219–233. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  6. Freund, R., Oswald, M.: P Systems with Activated/Prohibited Membrane Channels. In: Păun, G., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) WMC 2002. LNCS, vol. 2597, pp. 261–269. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  7. Gheorghe, M., Păun, G.: Computing by Self-Assembly: DNA Molecules, Polynominoes, Cells. In: Krasnogor, N., Gustafson, S., Pelta, D., Verdegay, J.L. (eds.) Systems Self-Assembly: Multidisciplinary Snapshots. Studies in Multidisciplinarity. Elsevier, Amsterdam (in press, 2006)

    Google Scholar 

  8. Goles, E., Margenstern, M.: Universality of the Chip-Firing Game. Theoretical Computer Science 172, 91–120 (1997)

    Article  MathSciNet  Google Scholar 

  9. Margenstern, M.: Two Railway Circuits: a Universal Circuit and an NP-difficult one. Computer Science Journal of Moldova 9, 3–33 (2001)

    MATH  MathSciNet  Google Scholar 

  10. Martín-Vide, C., Păun, G., Rozenberg, G.: Membrane Systems with Carriers. Theoretical Computer Science 270, 779–796 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  11. Minsky, M.: Finite and Infinite Machines. Prentice-Hall, Englewood Cliffs (1967)

    MATH  Google Scholar 

  12. Păun, A., Păun, G.: The Power of Communication: P Systems with Symport/Antiport. New Generation Computing 20, 295–305 (2002)

    Article  MATH  Google Scholar 

  13. Păun, G.: Computing with Membranes. Journal of Computer and System Sciences 61, 108–143 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  14. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)

    MATH  Google Scholar 

  15. Reisig, W.: Petri Nets. An Introduction. Springer, Berlin (1985)

    MATH  Google Scholar 

  16. Alhazov, A., Freund, R., Rogozhin, Y.: Computational Power of Symport/Antiport: History, Advances, and Open Problems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 1–30. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  17. Rozenberg, G., Salomaa, A. (eds.): Handbook of Formal Languages, vol. 1-3. Springer, Heidelberg (1997)

    MATH  Google Scholar 

  18. Toffoli, T., Margolus, N.: Cellular Automata Machines. The MIT Press, Cambridge (1987)

    Google Scholar 

  19. The P Systems Web Page: http://psystems.disco.unimib.it

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Verlan, S., Bernardini, F., Gheorghe, M., Margenstern, M. (2006). Computational Completeness of Tissue P Systems with Conditional Uniport. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds) Membrane Computing. WMC 2006. Lecture Notes in Computer Science, vol 4361. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11963516_33

Download citation

  • DOI: https://doi.org/10.1007/11963516_33

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69088-7

  • Online ISBN: 978-3-540-69090-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics