Skip to main content

A Modeling Approach Based on P Systems with Bounded Parallelism

  • Conference paper
Membrane Computing (WMC 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4361))

Included in the following conference series:

  • 427 Accesses

Abstract

This paper presents a general framework for modelling with membrane systems that is based on a computational paradigm where rules have associated a finite set of attributes and a corresponding function. Attributes and functions are meant to provide those extra features that allow to define different strategies to run a P system. Such a strategy relying on a bounded parallelism is presented using an operational approach and applying it for a case study presenting the basic model of quorum sensing for Vibrio fischeri bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bernardini, F., Gheorghe, M.: Population P Systems. J. UCS 10(5), 509–539 (2004)

    MathSciNet  Google Scholar 

  2. Bianco, L., Fontana, F., Manca, V.: P Systems with Reaction Maps. International Journal of Foundations of Computer Science 17(1), 27–48 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  3. Calder, M., Vyshemirsky, V., Gilbert, D., Orton, R.: Analysis of Signalling Pathways using Continuous Time Markov Chains. Transactions on Computational Systems Biology (to appear, 2006)

    Google Scholar 

  4. Cardelli, L., Philips, A.: A Correct Abstract Machine for the Stochastic Pi-calculus. Electronical Notes in Theoretical Computer Science (to appear, 2004)

    Google Scholar 

  5. Andrei, O., Ciobanu, G., Lucanu, D.: Structural Operational Semantics of P Systems. In: Freund, R., Păun, G., Rozenberg, G., Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 31–48. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  6. Collado-Vides, J.: Grammatical Models of the Regulation of Gene Expression. Proc. of National Academy of Science 89, 9405–9409 (1992)

    Article  Google Scholar 

  7. Dang, Z., Ibarra, O.H., Li, C., Gaoyan, X.: Decidability of Model-Checking P Systems. Journal of Automata, Languages and Combinatorics (to appear, 2006)

    Google Scholar 

  8. Dang, Z., Ibarra, O.H.: On One-membrane P systems Operating in Sequential Mode. Int. J. Found. Comput. Sci. 16(5), 867–881 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  9. Duan, Z., Holcombe, M., Bell, A.: A Logic for Biological System. Biosystems 53, 93–155 (2000)

    Article  Google Scholar 

  10. Freund, R.: Asynchronous P Systems and P Systems Working in the Sequential Mode. In: Mauri, G., Păun, G., Jesús Pérez-Jímenez, M., Rozenberg, G., Salomaa, A. (eds.) WMC 2004. LNCS, vol. 3365, pp. 36–62. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  11. Gillespie, D.T.: A General Method for Numerically Simulating the Stochastic Time Evolution of Coupled Chemical Reactions. J. Comput. Physics 22, 403–434 (1976)

    Article  MathSciNet  Google Scholar 

  12. Gillespie, D.T.: Exact Stochastic Simulation of Coupled Chemical Reactions. The Journal of Physical Chemistry 81(25), 2340–2361 (1977)

    Article  Google Scholar 

  13. Hardie, K.R., Williams, P., Winzer, K.: Bacterial cell-to-cell communication: sorry, can’t talk now, gone to lunch. Current Opinion in Microbiology 5, 216–222 (2002)

    Article  Google Scholar 

  14. Fargerströn, T., James, G., James, S., Kjelleberg, S., Nilsson, P.: Luminescence Control in the Marine Bacterium Vibrio fischeri: An Analysis of the Dynamics of lux Regulation. J. Mol. Biol. 296, 1127–1137 (2000)

    Article  Google Scholar 

  15. Kam, N., Cohen, I.R., Harel, D.: The Immune System as a Reactive Systems: Modelling T Cell Activation with Statecharts, The Weizmann Institute of Science, Israel (2001)

    Google Scholar 

  16. Matsuno, H., Doi, A., Nagasaki, M., Miyano, S., Hybrid: Petri Net Representation of Gene Regulatory Network. In: Pacific Symposium on Biocompting, pp. 338–349. World Scientific, Singapore (2000)

    Google Scholar 

  17. Meng, T.C., Somani, S., Dhar, P.: Modelling and Simulation of Biological Systems with Stochasticity. Silico Biology 4(0024), 137–158 (2004)

    Google Scholar 

  18. Nealson, K.H., Hastings, J.W.: Bacterial Bioluminescence: Its Control and Ecological Significance. Microbiology Review 43, 496–518 (1979)

    Google Scholar 

  19. Păun, G.: Computing with Membranes. Journal of Computer and System Sciences 61(1), 108–143 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  20. Păun, G.: Membrane Computing. An Introduction. Springer, Berlin (2002)

    MATH  Google Scholar 

  21. Jesús Pérez-Jímenez, M., Romero-Campero, F.J.: P Systems, a New Computational Modelling Tool for Systems Biology. In: Priami, C., Plotkin, G. (eds.) Transactions on Computational Systems Biology VI. LNCS (LNBI), vol. 4220, pp. 176–197. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  22. Pescini, D., Besozzi, D., Mauri, G., Zandron, C.: Dynamical probabilistic P systems. International Journal of Foundations of Computer Science 17(1), 183–195 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  23. Priami, C., Regev, A., Shapiro, E., Silverman, W.: Application of a Stochastic Name-Passing Calculus to Representation and Simulation of Molecular Processes. Information Processing Letters 80, 25–31 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  24. Regev, A., Shapiro, E.: The π-calculus as an abstraction for biomolecular systems. In: Ciobanu, G., Rozenberg, G. (eds.) Modelling in Molecular Biology, pp. 219–266. Springer, Heidelberg (2004)

    Google Scholar 

  25. Segel, I.H.: Biochemical Calculations: How to Solve Mathematical Problems in General Biochemistry, 2nd edn. John Wiley and Sons, Chichester (1976)

    Google Scholar 

  26. Till, J.E., McCulloch, F., Siminovitch, L.: A Stochastic Model of Stem Cell Proliferation based on the Growth of Spleen Colony-Forming Cells. Proc. National Academy of Science USA 51, 117–128 (1964)

    Google Scholar 

  27. Walker, D., Holcombe, M., Southgate, J., McNeil, S., Smalwood, R.: The Epitheliome: Agent-Based Modelling of The Social Behaviour of Cells. Biosystems 76(1-3), 89–100 (2004)

    Article  Google Scholar 

  28. Waters, C.M., Bassler, B.L.: Quorum Sensing: Cell-to-Cell Communication in Bacteria. Annu. Rev. Cell. Dev. Biol. 21, 319–346 (2005)

    Article  Google Scholar 

  29. The P Systems: http://psystems.disco.unimib.it

  30. Nottingham Quorum Sensing Web Site, http://www.nottingham.ac.uk/quorum/

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bernardini, F., Romero-Campero, F.J., Gheorghe, M., Pérez-Jiménez, M.J. (2006). A Modeling Approach Based on P Systems with Bounded Parallelism. In: Hoogeboom, H.J., Păun, G., Rozenberg, G., Salomaa, A. (eds) Membrane Computing. WMC 2006. Lecture Notes in Computer Science, vol 4361. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11963516_4

Download citation

  • DOI: https://doi.org/10.1007/11963516_4

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69088-7

  • Online ISBN: 978-3-540-69090-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics