Skip to main content

The AMI Meeting Transcription System: Progress and Performance

  • Conference paper
Machine Learning for Multimodal Interaction (MLMI 2006)

Abstract

We present the AMI 2006 system for the transcription of speech in meetings. The system was jointly developed by multiple sites on the basis of the 2005 system for participation in the NIST RT’05 evaluations. The paper describes major developments such as improvements in automatic segmentation, cross-domain model adaptation, inclusion of MLP based features, improvements in decoding, language modelling and vocal tract length normalisation, the use of a new decoder, and a new system architecture. This is followed by a comprehensive description of the final system and its performance in the NIST RT’06s evaluations. In comparison to the previous year word error rate results on the individual headset microphone task were reduced by 20% relative.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Hain, T., Burget, L., Dines, J., Garau, G., Karafiat, M., Lincoln, M., McCowan, I., Moore, D., Wan, V., Ordelman, R., Renals, S.: The development of the AMI system for the transcription of speech in meetings. In: Renals, S., Bengio, S. (eds.) MLMI 2005. LNCS, vol. 3869, pp. 344–356. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  2. Hain, T., Dines, J., Garau, G., Karafiat, M., Moore, D., Wan, V., Ordelman, R., Renals, S.: Transcription of conference room meetings: an investigation. In: Proc. Interspeech 2005 (2005)

    Google Scholar 

  3. Stolcke, A., Anguera, X., Boakye, K., Cetin, O., Grezl, F., Janin, A., Manda, A., Peskin, B., Wooters, C., Zheng, J.: Further progress in meeting recognition: The icsi-sri spring 2005 speech-to-text evaluation system. In: Proc. NIST RT 2005 Workshop (2005)

    Google Scholar 

  4. Hain, T., Burget, L., Dines, J., Garau, G., Karafiat, M., Lincoln, M., McCowan, I., Moore, D., Wan, V., Ordelman, R., Renals, S.: The 2005 AMI system for the transcription of speech in meetings. In: Proc. NIST RT 2005 Workshop, Edinburgh (2005)

    Google Scholar 

  5. Schwarz, P., Matìjka, P., Cernocký, J.: Towards lower error rates in phoneme recognition. In: Proc. of 7th Intl. Conf. on Text, Speech and Dialogue, p. 8. Springer, Brno (2004)

    Google Scholar 

  6. Gales, M.J.F.: Linear transformations for hmm-based speech recognition. Technical Report CUED/F-INFENG/TR-291, Cambridge University Engineering Department (1997)

    Google Scholar 

  7. Messerschmitt, D., Hedberg, D., Cole, C., Haoui, A.: P.Winship: Digital voice echo canceller with a tms32020. Application report SPRA129, Texas Instruments (1989)

    Google Scholar 

  8. Wrigley, S., Brown, G., Wan, V., Renals, S.: Speech and crosstalk detection in multichannel audio. IEEE Trans.Speech and Audio Processing 13(1), 84–91 (2005)

    Article  Google Scholar 

  9. Zhu, Q., Chen, A.S.B., Morgan, N.: Using MLP features in sri’s conversationl speech recognition system. In: Proc. Interspeech 2005 (2005)

    Google Scholar 

  10. Povey, D.: Discriminative Training for Large Vocabulary Speech, Recognition. PhD thesis, Cambridge University (2004)

    Google Scholar 

  11. Povey, D., Gales, M.J.F., Kim, D.Y., Woodland, P.C.: MMI-MAP and MPE-MAP for acoustic model adaptation. In: Proc. Eurospeech 2003 (2003)

    Google Scholar 

  12. Bulyko, I., Ostendorf, M., Stolcke, A.: Getting more mileage from web text sources for conversational speech language modeling using class-dependent mixtures. In: Proc. Human Language Technology Conference 2003 (2003)

    Google Scholar 

  13. Wan, V., Hain, T.: Strategies for language model web-data collection. In: Proc. ICASSP 2006. Number SLP-P17.11 (2006)

    Google Scholar 

  14. Moore, D., Dines, J., Doss, M.M., Vepa, J., Cheng, O., Hain, T.: Juicer: A weighted finite state transducer speech decoder. In: Renals, S., Bengio, S., Fiscus, J.G. (eds.) MLMI 2006. LNCS, vol. 4299, pp. 285–296. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  15. Mohri, M., Pereira, F., Riley, M.: General-purpose finite-state machine software tools. Technical report, AT&T Labs -Research (1997)

    Google Scholar 

  16. Hetherington, L.: The mit fst toolkit. Technical report, L. Hetherington, The MIT FST toolkit, MIT Computer Science and Artificial Intelligence Laboratory (2005) (May 2005), http://people.csail.mit.edu/ilh/fst

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Hain, T. et al. (2006). The AMI Meeting Transcription System: Progress and Performance. In: Renals, S., Bengio, S., Fiscus, J.G. (eds) Machine Learning for Multimodal Interaction. MLMI 2006. Lecture Notes in Computer Science, vol 4299. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11965152_37

Download citation

  • DOI: https://doi.org/10.1007/11965152_37

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69267-6

  • Online ISBN: 978-3-540-69268-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics