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Abstract. Architecture Description Languages (ADLs) have emerged in recent 

years as a tool for providing high-level descriptions of software systems in 

terms of their architectural elements and the relationships among them. Most of 

the current ADLs exhibit limitations which prevent their widespread use in 

industrial applications. In this paper, we discuss these limitations and introduce 

ALI, an ADL that has been developed to address such limitations. The ALI 

language provides a rich and flexible syntax for describing component 

interfaces, architectural patterns, and meta-information. Multiple graphical 

architectural views can then be derived from ALI’s textual notation. 

Keywords: Software Architecture, Architecture Description Languages, 

Architectural Patterns. 

1   Introduction 

Architecture Description Languages (ADLs) have emerged as viable tools for 

formally representing the architectures of systems at a reasonably high level of 

abstraction to enable better intellectual control over the systems [1]. ADLs usually 

help in architectural analysis with issues such as consistency, modifiability, 

performance, etc. However, there is no general agreement on what ADLs are expected 

to capture/represent about an architecture (behavior, structure, interfaces, etc.). Most 

work on ADLs today has been undertaken with academic rather than commercial 

goals in mind and they tend to be very vertically optimized towards a particular kind 

of analysis [2]. 

The ADL community generally agrees that a Software Architecture is a set of 

components and the connections among them conforming to a set of constraints. 

Component interfaces usually comprise a set of provided and required services (a 

service could be a function call, a message type, etc.). 

Although some ADLs have been put to industrial use [3], the majority of ADLs 

have not scaled up well, and their use remains confined to small-scale case studies. 

In this paper we discuss a number of limitations evident in most current ADLs 

which might have constrained their use to small-scale academic applications. We then 

present the major concepts behind the ALI ADL which has been designed with the 

identified limitations in mind. ALI also built upon our experience with the ADLARS 



[4] ADL and adopted much of the solution space provided by ADLARS such as its 

support for Software Product Lines. 

In the following, we begin in Section 2 by discussing the limitations within current 

ADLs. Section 3 then highlights the rationale behind the ALI language. Finally, 

discussion and future work is presented in Section 4. 

2   Limitations within Existing ADLs 

In this section we discuss the potential limitations identified by examining a number 

of existing and mature ADLs selected from across the literature to reflect the state-of-

the-art in the domain. Among these ADLs are: ACME [7], Koala [3], Rapide [8], and 

Wright [9]. 

It is worth mentioning here that the Unified Modeling Language (UML) [5],  even 

though it is used within different stages of the development process (and without 

doubt a de facto modeling language), is not considered a strong candidate as an ADL 

due to many issues including it being a pure graphical notation and the fact that it 

does not treat connectors as first class citizens (even though UML 2.0 [6] took one 

step further in the ADLs' direction with the introduction of ports and interfaces). 

Furthermore, UML initially was geared more towards code description rather than 

architecture description. 

We have examined and experimented with these ADLs to identify the novelty and 

the strengths of each. We have also identified a number of shared limitations, 

particularly in the context of real-life applications. These are summarized below. 

 

2.1   ADLs are Over-constraining 

Current ADLs force architects to use specific styles/interface types throughout their 

architecture by providing a single component interface type model. For example, 

while interfaces are described in terms of input and output ports in Wright, interfaces 

are described in terms of services provided/required in Koala, and messages 

sent/received in ADLARS [4]. With current advances in different domains including 

Service Oriented Architectures (SOA) and adaptive systems, within a single system 

we could have a number of different interface types used (which is often the case). 

Capturing such architectures with most current ADLs entails abstracting a number of 

interface types to the single interface type supported by the ADL. This could be 

problematic especially when the interface types form a crucial part of the architecture 

description (e.g. in SOAs). Also, by requiring that components have specific types of 

interfaces (hardware-like input/output ports, e.g. ACME; message based 

communication, e.g. ADLARS; etc.), ADLs may be indirectly enforcing the style of 

communication to be used in the system on the architect. 



2.2   ADLs Provide a Single View of the System 

It has become widely recognized in the software architecture community that software 

architectures contain too much information to be adequately captured and displayed in 

one view. Multiple views are needed to describe an architecture where each view can 

encompass a set of related concerns. This has been recognised in a number of 

industrial approaches [10, 11] and standards [ANSI/IEEE 1471-2000] (while others 

went one step further to consider also perspectives [12]). When this is the trend in 

industry, there is no reason why ADLs should not support multiple views. The reason 

why most ADLs are restricted to one view of a system may be attributed to the fact 

that ADLs inherently focus on the structural aspects of the architecture which has 

traditionally been the central issue. Hence, ADLs provide only the structural view of 

the system. Today’s concerns have gone beyond purely structural factors, and issues 

such as quality attributes, design decisions, etc. are now  considered an intrinsic part 

of architecture description [13]. 

2.3   ADLs Lack Proper CASE Tool Support 

CASE tool support availability varies from one ADL to another. Some ADLs have 

parser/syntax validation tool support, others have basic simulation tools, while others 

have no tool support at all. For an industrial buy-in, tool support is a major selling 

point for any ADL due to the size and complexity involved in real-life systems. Even 

for those ADLs with tool support, most of the tools developed do not scale up to work 

with large system descriptions (e.g. hundreds of components and connectors). While 

some simulators are unable to cope with systems comprising over 100 components, 

most graphical tools have no mechanism to properly display systems with 30-40 

components or more. This problem, however, differs from the previous two in the 

sense that for a commercial level tool support to be developed for an ADL, the ADL 

should be adopted by a tool vendor. For a tool vendor to adopt an ADL, the ADL 

should demonstrate a commercial potential (which is best done using proper tools!). A 

potential solution to this problem would be to make use of existing tool support for 

other notations such as UML in the first stage. This could perhaps be done by 

transforming back and forth between the ADL notation and UML (e.g. using meta 

ADLs like in [14]). 

In the following section, we will introduce the rationale behind the ALI language 

which was designed with the aforementioned limitations in mind. 

3   ALI Rationale 

ALI has been designed on the basis of our previous work on ADLs, including the 

ADLARS notation [4]. It seeks to address a number of the issues discussed above.  

While adopting successful concepts from ADLARS, such as the relationship 

between the feature model [15] and the architectural structure [16], ALI introduces, 

among other things, a high level of flexibility for interface description. Major 

concepts behind the ALI ADL are discussed in this section.   



3.1   Flexible Interface Description  

Revisiting the first limitation discussed in the previous section, current ADLs allow 

only for fixed interface types. Providing a specific interface type restricts the usage of 

an ADL to domains where most components would only have that particular type of 

interface. This is in addition to restricting the architect to use a specific style of 

communication among components (e.g. message-based, method invocation, 

hardware-like ports, etc.). 

The ALI ADL attempts to address this limitation by providing no pre-defined 

interface types. Instead, ALI introduces a sub-language (which is a sub-set of the 

JavaCC [17] notation) that gives users the flexibility to define their own interface 

types. 

For example, consider a simple web service having a WSDL (Web Services 

Description Language) interface and containing a number of components which are 

described with input/output ports as interfaces. Assume also, that each component  

contains a number of objects/classes that have interfaces defined in terms of functions 

provided/required (summarized in Fig. 1). This is a fairly standard level of 

nesting/abstraction within today’s service oriented architectures. 

If we were to model this using any of the existing ADLs, we would have to 

abstract the different interface types with the single interface type supported by the 

ADL used. By doing so, we would be unnecessarily abstracting away useful and 

important architectural information - especially in domains such as SOA where 

interface descriptions/types are of important architectural value. 

It would also be difficult to identify a comprehensive set of interface types 

beforehand to be provided by an ADL due to the large number of interface types that 

already exist in the literature. In addition, new interface types emerge with the 

advancement of different technologies (e.g. GWSDL emerging from the work on grid 

computing, etc.). So, an ADL may benefit from a flexible mechanism that allows the 

architect to define his/her own interface types along with the binding constraints. This 

is the model that is adopted by ALI. 
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Fig. 1. An example architecture of a simple web service. 

 



3.2   Architectural Pattern Description 

Architectural patterns (or architectural styles) express a fundamental structural 

organization or schema for software systems and sub-systems. As these patterns are 

often reused within the same system (and sub-systems) or across multiple systems, 

providing syntax for capturing/describing these patterns to enable better pattern reuse 

is important. This is another major aspect of the ALI notation. ALI envisages 

architectural patterns as the architectural level equivalent of functions (methods) in 

programming languages. 

Within ALI, patterns are defined and reused as functions. Pattern templates are 

first defined by specifying the way components are connected to form the 

architectural pattern. Then, these pattern templates are instantiated throughout the 

architecture definition to connect sets of components (whose interfaces are passed as 

arguments to the pattern template) according to the pattern template definition (e.g. 

Fig 2).   

As shown in Fig. 2, simple architectures can be constructed through the usage of a 

number of patterns.  
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PipesAndFilters(       )
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Comp A
i.A1 i.A2
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i.B1 i.B2

Comp D
i.D1

Comp E
i.E1

Comp C
i.C1 i.C2

 

Fig. 2. A simple architecture assembled from a number of components using two pattern 

templates: PipesAndFilters and ClientServer  

3.3   Formal Syntax for Capturing Meta-information 

As discussed in section 2, there is more to architecture than the structural aspects of 

the system.  Issues such as component implementation cost/benefit, design decisions, 



versions, quality attributes, etc. have not been the focus of most existing ADLs.  

ADLs such as ADLARS [4] and few others allow the addition of free textual 

comments to the architecture description using standard commenting syntax similar to 

that used in programming languages (e.g. through the usage of “/*”, “//”, etc.). This, 

however, proves to be problematic if CASE tools are to be used to analyze or produce 

useful documentation from the free textual comments. 

One of the challenges with formalizing the syntax for capturing the meta-

information is in deciding on the information to be captured in the architecture 

description. Although there is some information that is usually captured in most 

architecture documentations (e.g. design decisions, quality attributes, etc.) some other 

information may vary from one domain to the other and from one enterprise to 

another (depending on the nature of the domain, the structure of the enterprise, etc.). 

In ALI, a special syntax has been introduced to allow for creating meta types. 

Different meta types can be created within a system to act as packages of information 

(quality attributes, versions, design decisions) which could be attached to different 

architectural structures throughout the system description. 

3.4   Linking the Feature and Architecture Spaces 

As Feature Models [18] are built to capture end-users' and stake-holders' concerns and 

architectures are designed from technical and business perspectives, a gap exists 

between the two spaces. This gap introduces a number of challenges including:  

feature (requirements) traceability into the architecture; the ability to verify variability 

implementation (in Software Product Lines), etc. 

ALI attempts at bridging this gap by allowing the architect to link directly the 

architectural structures to the feature model. Within ALI, it is possible to relate 

components, connectors, patterns etc. in an architecture description to features in the 

feature model using first order logic. This permits the capture of complex 

relationships that might arise between the two spaces in real-life systems.  

ALI has adopted and enhanced this concept from ADLARS [4] which was the first 

ADL to introduce support for linking the feature space to architectural components. 

4   Discussion and Future Work  

In this paper we have discussed the main issues that might be restricting most current 

ADLs to small-scale case-studies rather than real-life industrial applications. 

Restrictive syntax/structure, lack of tool support, and single view presentation are 

among the limitations discussed. 

ALI was created with these limitations in mind and was designed to provide a 

blend between flexibility and formalism. While flexibility gives freedom for the 

architect during the design process, formalism allows for architecture analysis and 

potential automation using proper CASE tool support (e.g. on-the-fly architecture 

documentation, code generation, etc.). 

This paper has focused on the concepts behind ALI. Further information about the 

ALI notation can be found in [19].  



ALI adopts a flexible model for its graphical notation. The textual notation serves 

as a central database of the architecture description. CASE tools use this information 

as the source to derive the different relevant architectural views (which can be 

customized using CASE tools). This model will help alleviate the problem of 

mismatches among multiple views of the system when maintained separately. 

As different architects in different domains (e.g. IS, Telecom, Grid, etc.) would be 

more comfortable drawing or representing architectures using their own set of 

symbols/figures (e.g. a cylinder to show a database rather than the standard box of 

ADLs, etc.), ALI allows for replacing boxes in the graphical notation with any figure 

the architect chooses as long as interfaces are displayed and labeled properly on that 

figure. As a comparison between the two approaches (boxes vs figures to represent 

components), the problem with boxes is that all boxes look basically alike, so it would 

be relatively difficult to identify and locate a component in a large architecture. On 

the other hand, the problem with having different images for different components is 

that, with a large number of component types, the architecture may appear unduly 

cluttered. So, whether to use boxes or images is left to the architect to decide upon 

based on the nature and size of the system in any particular project. 

As for future work, two major issues top the list for the work on the ALI project:  

 Tool support: while the work on a toolset for ALI is in progress (using the 

ADLARS toolset as a starting point), the plan is to make the ALI toolset (and the 

notation) an open source project. In this way the notation and the toolset will, it is 

hoped, benefit from a broad range of contributions, both from industry and 

academia.  

 Providing “round-trip” to code: the ability to go from architecture to code and 

back has always been an appealing concept for people working in industry. Work 

on Model Driven Architectures (MDA) is one successful example of communities 

working on code generation from architecture specification. In ALI, the possibility 

of attaching code to components (and glue code to connectors) will be studied. 

This, if found feasible, will potentially allow for automated generation of 

substantial parts of the system implementation. 

 

Finally, as the major idea behind ALI is to bridge the gap between industry and 

academia in the field of ADLs, devising a proper “roll-out” plan for the adoption of 

ALI in industrial pilot projects (in the first instance) will be considered. Once 

experience is gained with the language in industrial settings, the aim is to have 

libraries of meta types, interface types, connector types, etc. for each application 

domain which architects could then use off-the-shelf. 
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