Skip to main content

On the Minimum Corridor Connection Problem and Other Generalized Geometric Problems

  • Conference paper
Approximation and Online Algorithms (WAOA 2006)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 4368))

Included in the following conference series:

Abstract

In this paper we discuss the complexity and approximability of the minimum corridor connection problem where, given a rectilinear decomposition of a rectilinear polygon into “rooms”, one has to find the minimum length tree along the edges of the decomposition such that every room is incident to a vertex of the tree. We show that the problem is strongly NP-hard and give an subexponential time exact algorithm. For the special case of k-outerplanar graphs the running time becomes O(n 3). We develop a polynomial time approximation scheme for the case when all rooms are fat and have nearly the same size. When rooms are fat but are of varying size we give a polynomial time constant factor approximation algorithm.

This work was supported by the Netherlands Organisation for Scientific Research NWO (project Treewidth and Combinatorial Optimisation).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Arkin, E.M., Hassin, R.: Approximation algorithms for the geometric covering salesman problem. Discrete Applied Mathematics 55, 197–218 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  2. Arora, S.: Nearly linear time approximation schemes for Euclidean TSP and other geometric problems. Journal of the ACM 45, 1–30 (1998)

    Article  MathSciNet  Google Scholar 

  3. Arora, S.: Approximation schemes for NP-hard geometric optimization problems: A survey. Mathematical Programming 97, 43–69 (2003)

    MATH  MathSciNet  Google Scholar 

  4. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. Theoretical Computer Science 209, 1–45 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  5. de Berg, M., Gudmundsson, J., Katz, M., Levcopoulos, C., Overmars, M., van der Stappen, A.: TSP with neighborhoods of varying size. Journal of Algorithms 57, 22–36 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Demaine, E.D., O’Rourke, J.: Open problems from CCCG 2000 (2000), http://theory.lcs.mit.edu/~edemaine/papers/CCCG2000Open/

  7. Dorn, F., Penninkx, E., Bodlaender, H.L., Fomin, F.V.: Efficient exact algorithms on planar graphs: Exploiting sphere cut branch decompositions. In: Brodal, G.S., Leonardi, S. (eds.) ESA 2005. LNCS, vol. 3669, pp. 95–106. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  8. Dumitrescu, A., Mitchell, J.S.B.: Approximation algorithms for TSP with neighborhoods in the plane. Journal of Algorithms 48, 135–159 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  9. Elbassioni, K., Fishkin, A.V., Mustafa, N.H., Sitters, R.: Approximation algorithms for Euclidean group TSP. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 1115–1126. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  10. Feremans, C.: Generalized Spanning Trees and Extensions. PhD thesis, Université Libre de Bruxelles, Brussels (2001)

    Google Scholar 

  11. Feremans, C., Labbé, M., Laporte, G.: Generalized network design problems. European Journal of Operational Research 148, 1–13 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Fischetti, M., Salazar, J.J., Toth, P.: A branch-and-cut algorithm for the symmetric generalized traveling salesman problem. Operations Research 45, 378–394 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Fomin, F.V., Thilikos, D.M.: New upper bounds on the decomposability of planar graphs. Journal of Graph Theory 51, 53–81 (2006)

    Article  MathSciNet  Google Scholar 

  14. Garey, M.R., Johnson, D.S.: The rectilinear Steiner tree problem is NP-complete. SIAM Journal of Applied Mathematics 32, 826–834 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  15. Garey, M.R., Johnson, D.S.: Computers and intractability: A guide to the theory of NP-completeness. W. H. Freeman, San Francisco (1979)

    MATH  Google Scholar 

  16. Gu, Q., Tamaki, H.: Optimal branch-decomposition of planar graphs in O(n 3) time. In: Caires, L., Italiano, G.F., Monteiro, L., Palamidessi, C., Yung, M. (eds.) ICALP 2005. LNCS, vol. 3580, pp. 373–384. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  17. Helvig, C.S., Robins, G., Zelikovsky, A.: An improved approximation scheme for the Group Steiner Problem. Networks 37, 8–20 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  18. Hicks, I.V.: Planar branch decompositions I: The ratcatcher. Informs Journal on Computing 17, 402–412 (2005)

    Article  MathSciNet  Google Scholar 

  19. Hicks, I.V.: Planar branch decompositions II: The cycle method. Informs Journal on Computing 17, 413–421 (2005)

    Article  MathSciNet  Google Scholar 

  20. Impagliazzo, R., Paturi, R., Zane, F.: Which problems have strongly exponential complexity? J. Comput. Syst. Sci. 63(4), 512–530 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  21. Lipton, R.J., Tarjan, R.E.: A separator theorem for planar graphs. SIAM J. Appl. Math. 36, 177–189 (1979)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mata, C.S., Mitchell, J.S.B.: Approximation algorithms for geometric tour and network design problems. In: ACM SoCG 1995, Vancouver, BC, Canada, pp. 360–369. ACM, New York (1995)

    Google Scholar 

  23. Mitchell, J.S.B.: Geometric shortest paths and network optimization. In: Handbook of Computational Geometry, pp. 633–701. Elsevier, North-Holland (2000)

    Chapter  Google Scholar 

  24. Rao, S., Smith, W.D.: Approximating geometric graphs via spanners and banyans. In: ACM STOC 1998, Dallas, Texas, USA, pp. 540–550. ACM, New York (1998)

    Google Scholar 

  25. Reich, G., Widmayer, P.: Beyond Steiner’s problem: a VLSI oriented generalization. In: Nagl, M. (ed.) WG 1989. LNCS, vol. 411, pp. 196–210. Springer, Heidelberg (1990)

    Google Scholar 

  26. Safra, S., Schwartz, O.: On the complexity of approximating TSP with neighborhoods and related problems. In: Di Battista, G., Zwick, U. (eds.) ESA 2003. LNCS, vol. 2832, pp. 446–458. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  27. Seymour, P.D., Thomas, R.: Call routing and the ratcatcher. Combinatorica 14, 217–241 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  28. Zachariasen, M., Rohe, A.: Rectilinear group Steiner trees and applications in VLSI design. Mathematical Programming 94, 407–433 (2003)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2007 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bodlaender, H., Feremans, C., Grigoriev, A., Penninkx, E., Sitters, R., Wolle, T. (2007). On the Minimum Corridor Connection Problem and Other Generalized Geometric Problems. In: Erlebach, T., Kaklamanis, C. (eds) Approximation and Online Algorithms. WAOA 2006. Lecture Notes in Computer Science, vol 4368. Springer, Berlin, Heidelberg. https://doi.org/10.1007/11970125_6

Download citation

  • DOI: https://doi.org/10.1007/11970125_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-69513-4

  • Online ISBN: 978-3-540-69514-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics