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One of the first observations concerning L.-systems was that the correspond-
ing language families have very weak closure properties, in fact, many of the fam-
ilies are anti-AFL.'s, i.e., closed under none of the AFL operations. However,
this phenomenon is due to the lack of a terminal alphabet rather than to parallelism
which is the essential feature concerning L-systems. E.d., the family TOL of ali
TOL.-languages is an anti-AFL, whereas the family ETOL is a full AFL.. Later on
we will see how L.-systems can be used to convert language families with weak clo-
sure properties into full AFL's in a rather natural way.

The basic notion in this paper, K-iteration grammar, is a slight generaliza-
tion of the notion introduced by van L.eeuwen [ 57]. The motivation for such a notion
is three<old:

i) It provides a uniform framework for discussing OL -systems and all of
their coniext-free generalizations.

i) 1t shows the relation between OL —~systems and {iterated) substitutions.

iii) It associates with each family K of languages (having certain mild closure
properties) some full AFL.'s, obtained from K in the "Liindenmayer way'.

We make the following conventions, valid throughout this paper. All language
families discussed are non~trivial, i.e., they contain at least one language con-
taining a non-empty word. {A language family is understood as in [102].) Two gene-
rative devices are termed equivalent if they generate the same language or else the
language generated by one device differs from the language generated by the other
through the empty word A. (Thus in this sense, for any context-free grammar,
there is an equivalent context-free grammar with no X-rules.)

We introduce first some standard terminology and notations. Let K be a fam-
ily of languages. A K-substitution is a mapping o from some alphabet V into K.
The mapping ¢ is extended to languages over V in the usual fashion. For language

families K; and K;, we define
(1) sublK,, K;) ={olL) | L € K, and 0 is a K, -substitution} .

If Kz =OL or K, = TOL, families (1) are called macro-OL and macro-TOL fam-
ilies, respectively, and denoted by K, MOL and K, MTOL. Macros were introduced

in [7] and [9], where especially the cases K, =F (the family of finite languages)

and K; =R {the family of regular languages) were investigated. Using the fact
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(cf. [55]) that the family of EOL -languages is closed under arbitirary homomor-
phism, it is easy to show ihat

FMOL = EOL.
(There seems to be no short direct proof for the inclusion FMOL < EOL..)
Similarly, one can prove that

FMTOL = RMTOL = ETOL..
On the other hand, FMOL is properly included in RMOL. because Herman's language

h_1 {azn | nz 0} with h{a) = a, h(b) =X,
is in the difference RMOL-FMOL, cf. [35]. The family RMOL is the smallest full
AFL (and the smallest AFL) including the family OL, cf. [9] or [55]. It is also
the closure of FMOL under inverse homomorphism.

We will now present the _basic definition. Let K be a family of languages. A
NRAZTR-T u), where Vi

disjoint alphabets {of nonterminals and terminals), S € V+ with V = V/

K-iteration grammar is a quadruple G = (V

and VT are
N U VT (ini-
tial word) and U = {Ul ,...,0,] s a finite set of K-substitutions defined on V and
with the property that, for each i and each a € V, o0, (a) is a language over V.

The language generated by such a grammar is defined by
(2) L(G)=Uo0; ...00 (S)N v.l_*,
1 "

where the union is taken over all integers k2 1 and over all ordered k~tuples
(i:L yesayix) With 1 = iy= n. The family of languages generated by K-iteration gram-
mars is denoted by Kyier - By thte)r we denote the subfamily of K., , generated by
such grammars, where U consists of at most t elements, for some t= 1.

The different OL-families can now be easily characterized within this frame-
work. Consider the special case K =F. Then

th]e)r = Fﬂe), = EOL = FMOL..

(Note that it suffices to choose, for each a € V, ¢(a) to be the language consisting

of the right sides of the productions with a on the left side.) Similarly,
Fiter = ETOL (= FMTOL = RMTOL).

The families with D and/or P are characterized as follows. D means that the
o's are homomorphisms, P means that the g's are A-free. Thus, EPDTOL is the
subfamily of Fy... , obtained by such grammars where all substitutions ¢ are -
free homomorphisms.

If one wants to consider families without E (OL, TOL, etc.), then one
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simply assumes that Vi Is empty (which means that the intersection with VT* in
{2} is superfluous). Note that in the general case the generative capacity is not af-
fected by assuming that S € VN' Finally, the macro-families KMOL. and KMTOL are
obtained by K~iteration grammars satisfying the following condition. There is a
sub-alphabet \.fl of VN such that, for each i and each a & V‘, g, {a) is a finite lan~
guage over VN. Furthermore, for each [ and each a € VT’ o, (a) is empty and, for

each i and eacha € V,, - \/’, o, {a) is a language (in K) over the alphabet Voo

{Here it is assumed thai:]K contains all finite languages. }

Thus, all context-free L-systems find their counterpart in this formalism.
Note, however, that so far (apart from regular macros) one has not considered in
the theory of lLL-systems cases more general than K =F.

The basic tool needed in proofs for closure results is the following Theorem 1.

We say that a K-iteration grammar is A—free iff each of the substitutions g, is A~free.

Theorem 1. {[55], [57], [103]) Assume that K is a language family closed under
finite substitution and intersection with regular languages. Then for each K-itera~
tion grammar, there is an equivalent A-free K-iteration grammar.

Applying standard AFL.~theory and the technique used to prove Medvedev's

Theorem for finite automata, one can establish the following results:

Theorem 2. Assume that K satisfies the hypothesis of Theorem 1 and, furthermore,
contains all regular languages. Then all of the families Kygey , thtez‘ , forany tz1,
KMOL and KMTOL. are full AFL's,

Thus, Theorem 2 can be applied whenever K is a cone (also called a full trio).
Since the full AFL's associated with K are obtained by parallel rewriting, they are

naturally called Lindenmayer AFL.'s. Apart from the obvious inclusions

KMOL € KMTOL € K. , KMOL = ki) ek ¢ | ckyn s

very little is known about these AFL.'s, e.g., about the sirictness of the inclusions.
it is shown by van Leeuwen ("Notes on pre-set pushdown automata't, this vol-
ume) that Ri(ge), equals the family of languages accepted by pre-set pushdown automa-
ta. {In van L.eeuwen's terminology, Ry;., could be called "hyper-algebraic multi-
extension of regular languages!''.)
A natural notion from the point of view of LL-systems in AFL~theory is that of
a hyper—-AFL. . By definition, a family K satisfying the hypothesis of Theorem 2 is
a hyper-AFL iff Ky, = K. Hyper-AFL!s are discussed in the paper by P.A. Chri-
stensen (this volume). This approach shows that, among the L-families, the family
ETOL has a very interesting mathematical property.

iteration grammars have been generalized by Derick Wood {"A note on Linden-
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mayer systems, spectra and equivalence!', McMaster University Computer Science
Technica! Report No. 74/1) to cover L.~languages with interactions. He also gives
an example of how the uniform framework of iteration grammars can be used to gen-
eralize specific results. The example concerns the ultimate periodicity of spectra
in EOL-~ and ETOL -systems, [20], [27]. Wood's result shows that the specific
results mentioned depend only on the method of iterated substitution and not at all

on the finiteness of the substitutions.



