
APLGOL a Structured Programmin~Language for APL

Harwood G. Kolsky,

California, USA

IBM Scientific Center, Palo Alto,

ABSTRACT

APLGOL is a language providing interstatement control structure

for APL. It permits programs to be written using the power and

conciseness of standard APL expressions in conjunction with

structured programming concepts to emphasize more of the

overall program control flow, rather than the details of

individual statements.

The APLGOL System described consists of three parts: an Editor,

an APLGOL-to-APL compiler and an APL-to-APLGOL reverse

compiler. All three parts are themselves written in APL.

1. INTRODUCTION

The idea for APLGOL arose during the Fall of 1971 when John R.

Walters of the IBM Palo Alto Scientific Center was teaching a

class in computer science at Stanford University using APL

instead of the usual ALGOL-W. The class observed that although

an algorithm written in APL may be considerably shorter and

more concise than the same algorithm written in PL/I or ALGOL,

APL required explicit interstatement control to be written.

162

Although APL contains a great number of elegant operators,

these operators are designed to manipulate scalar, vector, or

array data. Only a single branch (right arrow) is available to

handle whatever interstatement control is necessary. This is

roughly equivalent to a machine-oriented conditional branch

instructiont which is, of course, very general but as a

consequence, the control flow within an APL program can be

obscure and non-structured.

It is the property of APL which has led to statements being

made that APL is ~'hostile" to structured programming. We feel

that the directness with which the APLGOL system has been

implemented to co-exist with APL certainly disproves this

claim. APL when augmented by APLGOL is now one of the best

structured programming languages.

Robert Kelley, one of Walter's students and co-workers, wrote

the first APLGOL compiler in APL, publishing his results in

1972 and early 1973 (Refs. 5,6). One of the major

considerations in designing APLGOL has been to replace the

branch arrow with more descriptive keyword-oriented structures

to clarify interstatement control. The first version of APLGOL

was an attempt to provide either ALGOL-like or PL/I-like

control structure syntax for a common set of semantics.

During 1973 Kelley and Walters (Ref. 7) revised and augmented

APLGOL by adding the concept of a reverse compiler to produce

APLGOL from compiled APL. In the original version a character

formof the source text had to be maintained along with the

object APL procedures. In the 1973 version the reverse compiler

was used to recreate the character source text in a canonical

structured form as required, so that only one form of the

program was necessary for maintenance, listing, and execution.

The evolution of APLGOL syntax and semantics has resulted in

163

the addition of a rich assortment of control structures

including IF, WHILE, UNTIL, FOREVER, FOR, and CASE statements.

Finally, the whole topic of labels and branches has been

examined, especially with respect to the control structures and

structured programming techniques. The result has been to

eliminate the GOTO statement and its attendant labels in favor

of LEAVE, ITERATE, and RESTART statements, which may only

access specific points within the scope of the control

structure nest. APLGOL has thus become a truly GOTO-free, and

label-free language. A version of this APLGOL written in APL

was published earlier this year. (Ref. 8). Specific details

given in this paper refer to that system.

2. The APLGOL Language

APLGOL is a language for providing a structured program

interstatement control for APL. The APLGOL Language is oriented

to an APL interpreter as the target machine. In general, APL

semantics are unaltered in APLGOL, and only minor changes occur

in the syntax. In APLGOL the comment delimi:ter~ ~ , for

example, must appear at both ends of a comment. Additionally,

the semicolon used in APL for catenation has been replaced by

the union symbol, u, in APLGOL.

An APLGOL program contains statements and comments arranged to

describe the program's execution. The set of tokens describing

an APLGOL program may be either basic symbols or APL

expressions. The lexicon for APLGOL is identical to the APL

character set. For details concerning the APL character set and

APL expressions, see the APL Language description (Ref. i). The

basic symbols for APLGOL are single characters and reserved

words as follows:

164

; o c=u~ A B C D E F I L N 0 P R S U W X DO IF OF END

FOR CASE ELSE EXIT NULL STEP THEN BEGIN LEAVE UNTIL WHILE

ASSERT _REPEAT FOREVER ITERATE RESTART SUBCASE PROCEDURE

Comments are a sequence of zero or more characters enclosed

with the comment delimiter character, ~ . Comments may appear

anywhere in an APLGOL program but maynot be imbedded in a basic

word or APL character string; it is understood that they do not

affect the execution of a program.

Elementary constructions are syntactic rules of the following

form:

< LEFT SIDE > ::= < RIGHT SIDE TOKEN SEQUENCE >

where the left side is a single token which may replace the

sequence of one or more tokens on the right. English words in

the brackets and are often used to describe approximately the

nature of the tokens. By collecting and substituting a right

hand token sequence the proper left side token for it and then

collecting further right side tokens with further substitution,

etc., a sequence of syntactic rules can be obtained for an

entire APLGOL program° The collection of each elementary action

or semantic rule applied for each substitution of a left hand

side for a right hand side produces the resultant APL object

program.

2.1 APLGOL Statements

APLGOL contains several types of statementsp which are either

basic statements executed independently, or control statements,

which govern the execution of other basic or control

statements.

I65

Basic Statements Control Statements

APL Statement

EXIT Statement

Empty Statement

NULL Statement

ASSERT Statement
m

ASSERT Level Statement

IF Statement

BEGIN Block
M

WHILE Statement Prefix

FOR Statement Prefix

FOREVER Statement Prefix

REPEAT Block

CASE Block

LEAVE Statement

ITERATE Statement

RESTART Statement

2.1.1 Basic Statements

The most fundamental APLGOL statement is the APL statement,

written as an APL expression terminated by a semicolon. This

statement may contain any valid combination of APL operations

and operands used to form a line of APL code, excluding the

branch instruction (right arrow).

The EXIT statement causes an exit from the current procedural

level to the next outer level. It may optionally contain an

expression to be evaluated just prior to the exit.

The Empty statement in APLGOL permits the programmer to write

partial programs which are correct both syntactically and

semantically. Should the statement be executed, the comment

associated with the Empty statement is printed, and the

execution is halted. From that point the programmer may choose

whatever course of action he wishes. Mainly, the Empty

statement is useful when a programmer wishes to debug certain

portions of his code while other parts have not yet been

166

written.

The NULL statement expresses a null action, and is primarily

useful in conjunction with CASE blocks.

The ASSERT statement is useful for developing programs.

The integer specified in the first part of the statement is

checked at compile time with a parameter set by the programmer.

If the value of the integer is less than the parameter, the

assertion test is not compiled into the program. The relational

expression in the second part of the statement allows a

programmer to make assertions about the correctness of his

program. The assertion expression is evaluated dynamically

during the program's execution. If the test fails, the program

is halted following a message printing 'assertion fails.'

The assertion level parameter set by the programmer is valid

for the current block and inner block levels, unless another

assertion level is specified at an inner nesting level. When

the current block is completed, the assertion level pertaining

to the next outer block level is restored. If the programmer

does not initially specify an assertion level, a value of i0 is

assumed.

2.1.2 Control Statements

Several statements are used in APLGOL to control the execution

of other statements. In general, they specify conditional,

iterative, or selective statement execution.

The IF statement conditionally executes a subsequent statement.

167

Optionally, it may contain an ELSE clause to choose between two

alternate statements for execution.

Since many of the statements in APLGOL, such as the IF, control

the execution of a single statement, a BEGIN block is available

to group several statements into a single unit. The BEGIN block

uses a matched pair of BEGIN and END keywords. The semicolon

on the true part statement is omitted if an ELSE clause is

present.

The _WHILE, F_OR, and FOREVER statement prefixes may be used to

specify how to execute an attendant statement. A BEGIN block is

often useful in conjunction with these prefixes, enabling them

to control the execution of an entire group of statements.

The _WHILE statement in APLGOL permits iterative execution of a

subsequent statement. The relational expression specified in

the W_HILE statement header is tested each time before executing

the statement. In order for the test to fail, the values in the

relational expression must be changed as a result of the

statement's execution.

The F_OR statement appears in two possible forms: The

FOR...UNTIL...DO form and the FOR...UNTIL...STEP...DO form. The

first expression must contain an assignment to initialize the

induction variable for the statement. The step for the

iteration may be specified as shown in the more complex form.

Otherwise, a step of one is implied. The test for the iteration

is performed at the top of the block each time before executing

the statement.

A FOREVER statement is used in APLGOL for unconditional and

continuous iteration of a statement. An escape is caused

typically by an EXIT or a L_EAVE, although an ~TERATE or a

t68

RESTART of an outer statement will also terminate a FOREVER

statement.

A REPEAT statement is used for repetitive execution of a

statement block. It is similar to the W_HILE, except the

condition is tested at the end of the block. Consequently, the

statements contained within the REPEAT block are executed at

least once° A REPEAT statement also differs from the WHILE in

its format.

A CASE block is used to select a particular statement in the
m

block for execution. The expression in the CASE header produces

an index value specifying which subcase statement is to be

executed. The integer in the second part specifies the maximum

subcase index value, with 0 as the lowest value. This is true

independent of the APL origin being used.

A subcase statement may be any type of basic statement or

control statement. Each subcase statement in the subcase list

is preceded by an integer followed by a colon to identify the

particular subcase. As a consequence, subcases may be written

in an arbitrary order, and null cases may be designated by

omitting the subcase expression, although a NULL statement may

be used explicitly to specify null subcases. Additionally,

several subcase expressions may refer to the same subcase.

2.1.3 Leave, Iterate and Restart Points

Statements in a structured procedure lie within some nest of

control statementst and for each control statement a ~EAVE,

~TERATE, and _RESTART point has been defined. These points can

be accessed from within the nested structure by L_EAVE, I_TERATE,

and RESTART statements which use a control statement list to

reference the particular control statement. Consequently,

169

branches are restricted to preserve the

structured programming.

disciplines of

The LEAVE statement causes control to resume with the first

statement following the specified control statement.

The control list contains combinations of the following

reserved words to designate the most immediate control

structure in the nest which satisfies the pattern of the list:

IF FOR CASE WHILE REPEAT FOREVER SUBCASE PROCEDURE

The same control list serves the LEAVE, ~TERATE, and RESTART

statements. If the control list designates a control structure

which does not contain the particular LEAVE, ITERATE, OR

_RESTART, the statement is adjusted for the procedure level. The

figure containing the example program shows some examples of

the control list in conjunction with the LEAVE statement.

In the first example of the ~EAVE, on line 17, the control list

designates the on line 2 by locating the nearest outer REPEAT

in the control structure nest, and then the nearest outer WHILE

statement from the REPEAT. Should this LEAVE statement be

executed, control would resume with line 33, the first

statement following the complete WHILE statement. The control

list in the second LEAVE statement on line 21 refers to the

_WHILE on line 6. Effectively, control would resume on line 30

if this LEAVE statement were executed. The third LEAVE

statement refers to the WHILE on line i!, and would cause

control to resume on line 27 if it were executed.

An ~TERATE of a _REPEAT implies another iteration over the

statements in the block if the condition specified in the UNTIL

170

clause is valid~ A RESTART resumes control at the entrance of

the REPEAT block without testing the condition.

An ITERATE of a FOR statement begins another iteration if the

induction variable has not passed the FOR statement limit after

adding the proper step. A RESTART begins the entire FOR

statement again, including the initialization of the induction

variable.

RESTART and ITERATE both denote identical actions when used in

conjunction with the IF, WHILE, C_ASE, S_UBCASE, [ROCEDURE, and

FOREVER statements. They cause each such statement to be

re-executed. (See the Figures for diagrams of the L_EAVE,

ITERATE, and RESTART points in each of the control structures.)

3. The APLGOL System

The standard APL System operates either in a computational mode

or a procedure-definition mode. In this latter mode an APL

procedure may be created or modified as desired. When this has

been accomplished, and the computational mode is entered, the

string of characters representing the function is encoded (or

compiied,) into an internal form more suitable for the APL

interpreter. To edit this procedure, the internal form is

transformed back to the character form as the programmer

changes again from computational mode into procedure-definition

mode. As a result, a workspace contains only a single copy of a

procedure.

In the APLGOL System a special APLGOL editor, similar to the

CMS editor (Ref. 4), is available for the programmer to create

and edit APLGOL procedures. The programmer may invoke one of a

pair of compilers, either to translate APLGOL source programs

into internal APL object programs, or to translate internal APL

171

object programs back into APLGOL source programs for subsequent

editing. (See Fig. I)

To invoke the APLGOL editor the programmer types:

< NAME >÷EDIT <NAME >

where the name specifies a character array containing the

representation of an APLGOL procedure. When editing is

complete, the EDIT program returns the updated APLGOL program

as a character array.

The EDIT commands are listed below in section 3.1.

To evoke the compiler one types

APLGOL < NAME>

The APLGOL compiler produces an APL function whose name is

< APLFN> given by the PROCEDURE< APLFN>; statement in the APLGOL

source.

The APL interpreter only operates on the indistinguishable

internal form, which may have been produced from standard APL

or APLGOL. (It should be noted, however, that although it is

possible to print and edit APLGOL programs using the standard

APL editor, it is not possible to produce APLGOL programs from

arbitrary APL programs. The Reverse APL to APLGOL compiler

relies heavily on the canonical form of the APL program as it

is compiled from APLGOL.)

172

To use the reverse compiler one types

REVERSE'< APLFN>'

The result is an APLGOL source program in expanded, indented

form. It is left in a global character array variable named

"OUT".

The APLGOL System was designed recognizing that the user

requires different human factors capabilities when he is typing

or editing a program than when he lists a program to display

its structure. Consequently, the APLGOL compiler has been

designed to accept text with combinations of abbreviated and

completely spelled keywords and many source statements to the

line, while the REVERSE compiler produces source programs with

fully spelled keywords in statements, one statement per line,

with two-space indenting for each layer of nesting. Thus, a

procedure can be entered as:

SAMPL; ~ A~B I~B A+C; ~ J÷I ~ L(N-1 +I)÷2
L2+L3÷L4L-J-I; L4÷ -L-l+pY÷7 DYADF L; E; E E A÷D;
2:ppZ T X C[2]÷(I+pZ)÷N~ Z+N,C,N,P,Q,R; E

while it is produced by the reverse compiler and used for

subsequent editing as:

~ROCEDURE SAMPL~
ZF A~B ~HEN

BEGIN
A+C;
~OR J÷I ~NTIL L(N-I+I)~2 ~0

L2÷LS+L4L-J-I;
BEGIN

Lq÷-L-I+pY÷7 DYADF L;
END~

END
ELSE

A÷D;
~Z i : p p Z ~HE~

[XIT C[2]÷(I+pZ)÷N~
Z+N,C,N,P,Q,R~

END PROCEDURE

3.1 The APLGOL Editor

173

A single context-oriented editor is used to enter new programs,

edit old ones, and list programs. This editor has been

patterned after the CMS editor in VM/370 (Ref. 4). Compared

with typical APL editors, this editor is keyed to context and

not to line numbers. Its functions include locating the next

occurrence of a character pattern, changing one character

pattern to another, inserting, deleting, replacing, or printing

lines of text relative to an implied cursor, and, finally,

moving the cursor up or down a few lines or to the top or

bottom of the text. The text has no special relation between

APLGOL statements and physical lines; an arbitrary number of

lines may be used to enter an APLGOL statement, or many

statements can be entered on a line.

APLGOL source programs are actually APL character arrays.

Keywords all begin with an underlined first letter for easy

recognition, while other letters are not underlined in order to

reduce keystrokes. Also, when programs are being entered, only

the first underlined letter need be used. This is intended to

facilitate the entering of programs and to reduce misspelling

of keywords.

To create an entirely new source program the editor is invoked

by entering:

NEWPGM+EDIT (O , N) p ~ t

974

where NEWPGM is the name of the new source text~ and N

specifies the line width. The editor is then in Command Mode

and may accept commands for inserting, deleting, or changing

lines of source text. To edit a text array, the edit procedure

is invoked according to the following example:

ARRAYs-EDIT ARRAY

where ARRAY is the name of both the old text being edited and

the newly edited text. Different names can be used for the old

and new texts if desired.

The programmer may terminate editing either by typing "FILE"

to translate the APLGOL source text into internal APL, or by

typing "QUIT" to abort the editing process without affecting

the prior status of the procedure.

The EDITOR accepts the following commands:

INSERT or I

Insert text after the current line.

When the editor is in Command Mode, Insertion Mode is entered

by typing an "I" followed by a carriage return. Following

this, successive lines of text may be inserted by typing them

one after the other as they are to appear in the text. To leave

Insertion Mode and return to Command Mode, a null line is

entered by pressing the carriage return on a new line before

any other character.

DELETE n or D n

Delete n lines beginning with the current line. If n is

175

omitted, then 1 is assumed.

PRINT n or P n

Print n lines beginning with the current

omitted, 1 is assumed.

line. If n is

NEXT n or N n

Step forward

assume i.

n lines in the Text. If n is omitted then

UP n or U n

Step up n lines. If n is omitted then assume i.

TOP or T

Position line pointer at first line in text.

BOTTOM or B

Position line pointer at last line in text.

LOCATE / / or L/ /

Search the lines following the current line for the line

containing the text string The characters / and /

are used to delimit the argument of locate; they are not

part of the string being searched for. Any character may

be used as a delimiter. If the pointer is on the last line

of the function, the search will begin at the top of the

function.

CHANGE /textl/text2/ or C /textl/text2/

Search the current line for textl, and replace it by text2

if it occurs. As noted, above, the character / serves as a

delimiter and may be replaced by any character. If textl

176

is null, text2 is inserted at the beginning of the line.

If text2 is nu!ll textl is deleted.

REPLACE or R

Replace the current line by the text If no text is

given, this is the same as DELETE, UP, INSERT combined.

FILE or F

Leave the editor and assign the newly edited text to the

target array specified.

QUIT or Q

Leave the editor and make no change to the status of the

function. If the function was undefined prior to editing,

it will still remain undefined. If it was a defined

function, its definition will be unaltered.

Note: If the argument to NEXT, PRINT, LOCATE, or

DELETE is such that the line pointer would move past the

end of the function, then the line pointer is set to point

to the last line. Similarly, if the UP command tries to

point beyond the top line, the line pointer is set to

point to the first line in the text.

3.2 The APLGOL Compiler

The compiler is organized into three main sections: (i) a

syntax scanner, (2) a lexical scanner, and (3) an APL object

text generator. One of two driving procedures is used to

initialize the tables for the appropriate syntax before

invoking the syntax scanner.

177

The syntax scanner is the controlling procedure, obtaining meta

symbols from the lexical scanner, identifying the grammar

rules, and then invoking the text generator as necessary to

produce the appropriate APL object text.

On each invocation, the lexical scanner returns a single meta

symbol number representing a reserved word, label, special

character, or an APL expression. Source text characters are

scanned for one of a very limited set of characters, which is

then used to key a detailed search for a specific meta symbol;

e.g., the first character in each reserved word is underlined

to aid in distinguishing it as a particular meta symbol, both

for the lexical scanner and for the reader. The terminal meta

symbols listed in Appendix II are detected in the lexical

scanner.

When a grammar rule is identified by the syntax scanner, the

text generator is invoked with a number corresponding to that

grammar rule to locate the applicable portion of the generator.

Information accumulated in the compile stack and elsewhere is

then used to generate labels, branches, or to produce a single

APL text line from a buffered APL expression.

An output procedure is employed to form an array of object

text, and is invoked from the text generator each time a new

line is created. This object text array remains in the compiler

workspace, so that extraneous branches and labels can be

removed after all the object text has been produced.

The semantics of the control structures are indicated in the

enclosed figures.

In the APL object text produced by the simple one-pass

compiler, many of the labels and branches may be unnecessary,

178

particularly those statements which consist of a label and an

absolute branch. To remove them, the compiler builds tables as

the object code is formed showing labels and their references.

After all the object code has been produced, a label followed

by an absolute branch can be detected and removed with

references to that label suitably revised to references to the

target of the absolute branch. Further, if multiple labels

appear on a single line of object text, all but one are

removed, and the references are changed accordingly.

3.3 The APL to APLGOL Back-Compiler

It has been customary in APL systems to retain a single

internal form for each APL procedure and to translate this to

or from a character representation, as necessary. This requires

a pair of translators, one for each direction.

Although APLGOL and APL are rather dissimilar, it has been

possible to construct both translators. The translation from

APL to APLGOL, however, is heavily conditioned by the patterns

produced by translation the other way. The main advantage of

the single form is that there are not multiple forms of the

source program to get out of synchronization. In the original

APLGOL implementation (Re,. 5) the APLGOL source was a separate

entity from the APL object, and one could not guarantee that

both forms were at the same maintenance level. Additionally,

storage requirements are reduced by having only a single copy

of a procedure.

The reverse translation from APL to APLGOL will produce a

stylized canonical form, which may appear quite different from

the original APLGOL program as entered. Rather than attempt to

duplicate the original, the translator was designed to produce

an indented format which displays the structure of the program

graphically. In this form, keywords are fully spelled, and each

179

control level is consistently indented, typically with one

statement per line. This graphical representation of the

program is very useful to depict the program structure. Because

this form is available for listing an APLGOL program that has

been successfully translated to APL, the APLGOL program can

always be listed in a standard format, thereby promoting a

consistent style.

In general the reverse compiler does not change the structure

of the APLGOL program. It does, however, keep count of the

number of APL statements in each block. If the APL function is

edited to have two or more statements where only one was

present in the original APLGOL source, the reverse compiler

will add a BEGIN ...END pair around the statements during back

compilation.

4. ACKNOWLEDGEMENTS

The author wishes to acknowledge the work of the IBM Palo Alto

Scientific Center staff for their inspired work in designing,

implementing and testing the APLGOL system. The major original

contributions were made by Robert A. Kelly, John R. Walters and

Dan McNabb (See Refs. 5-7). Special thanks are due to H. Joseph

Myers for the more recent modifications and testing APLGOL

under many conditions.

The author is particularly grateful to John R. Walters for

making available to us his most recent copyrighted APLGOL

functions written in APL. (Ref.8)

180

APPENDIX I: References

io APL/360 User's Manual, GH20-0683, IBM Corporation.

2. Dijkstra, E. Wo~ "The Humble Programmer", 1972 Turing

Lecture, Communications of the ACM, Vol. 15, No. I0,

October 1972.

3. Dijkstra, E.W., "Structured Programming", (with O. J.

Dahl and C. A. R. Hoare) Academic Press, London, October

1972.

4. IBM Virtual Machine Facility/370: Edit Guide, GC20-1805,

IBM Corporation.

5. Kelley, R. A., "APLGOL, a Structured Programming Language

for APL", IBM Palo Alto Scientific Center Report No.

320-3299, August 1972.

6. Kelley, R. A., "APLGOL, an Experimental Structured

Programming Language", IBM Journal of Research and

Development, VOlo 17, No. I, January 1973.

7. Kelley, R. A. and Walters, J. R., "APLGOL-2 A Structured

Programming System for APL"r IBM Palo Alto Scientific

Center Report No. 320-3318, August 1973.

8. Kelley, R. A. and Walters, J. R., "APLGOL-2 A Structured

Programming Language System for APL". Proceedings of

APL-VI Conference, May 14-17, 1973.

9. Knuth~ D. E., "A Review of Structured Programming"

Stanford University Computer Science Department,

STAN-CS-73-371, June 1973.

181

[I]

[2]

[3]
[4]

[5]
[6]

[7]
[8]

[9]
[10]
[11]
~12]

~13]
[14]
[1 5]
[16]
[17]
[18]
[1 9]
[20]
[21]
[22]
[23]

[24]

[25]

[26]

[273
[28]

[29]

[3 0]

[3 1]

[32]

[33]

[34]

[35]

[36]

[37]
[38]
[39]

APPENDIX II: APLGOL SYNTAX
.

<PROGRAM> ::= _I_ <PROCEDURE> <STATEMENT LIST> <END>
PROCEDURE _I_

<PROCEDURE> ~:= PROCEDURE <EXPRESSION> ;

<STATEMENT LIST> ::= <STATEMENT> ;
I <STATEMENT LIST> <STATEMENT> ;

<STATEMENT> ::: <COMMENT LIST> <STATEMENT-A>
I <STATEMENT-A>

<COMMENT LIST> ::= <COMMENT STATEMENT>
I <COMMENT LIST> <COMMENT STATEMENT>

<STATEMENT-A> ::= <EXPRESSION>
<ASSERT HEAD> : <EXPRESSION>
<ASSERT HEAD>
<EMPTY STATEMENT>
NULL
<BRANCH> : <CONTROL LIST>
EZZT
[XIT <EXPRESSION>
<BEGIN> <STATEMENT LIST> <END>
<REPEAT> <STATEMENT LIST> ~NTIL <EXPRESSION>
<IF CLAUSE> <TRUE PART> <STATEMENT>
<FOR EXPR> ~0 <STATEMENT>
<WHILE HEAD> DO <STATEMENT>
<FOREVER> DO <STATEMENT>
<CASE EXPR> BEGIN <SUBCASE LIST> <END CASE>

<ASSERT HEAD> ::= ASSERT <EXPRESSION>

<TRUE PART> ::= <STATEMENT> <ELSE>

<IF CLAUSE> ::= <IF> <EXPRESSION> THEN

<FOR EXPR> ::= <FOR LIMIT>
1 <FOR STEP>

<FOR STEP> ::= <FOR LIMIT> <STEP> <EXPRESSION>

<FOR LIMIT> ::= <FOR HEAD> ~NTIL <EXPRESSION>

<FOR HEAD> ::= <FOR> <EXPRESSION>

<WHILE HEAD> ::= WHILE <EXPRESSION>

<CASE EXPR> ::= <CASE HEAD> ~F <EXPRESSION>

<CASE HEAD> ::= ~ASE <EXPRESSION>

<END CASE> ::= <END> EASE

<SUBCASE LIST> ::= <SUBCASE>
1 <COMMENT STATEMENT>
1 <SUBCASE LIST> <SUBCASE>
I <SUBCASE LIST> <COMMENT STATEMENT>

182

APPENDIX II: APLGOL SYNTAX
.

[40] <SUBCASE> ::= <SUBCASE HEAD> <STATEMENT> ;

[41] <SUBCASE HEAD~ ::: <SUBCASE HEAD-l> :

[42]
[4 3]

<SUBCASE HEAD-l> ::= <EXPRESSION>
I <SUBCASE HEAD> <EXPRESSION>

[44] <BEGIN> ::: BEGIN
[4 5] I

[46] <BRANCH> ::: LEAVE
[47] I ~TERATE
[4 8] ! Z
[4 9] I RESTART
[5 o] !

[5 1]
[5 2]

[5 3]
[5 4]
[5 5]
[56]
[57]
[58]
[59]
[60]
[61]
[6 2]
[6 3]

<CONTROL LIST> ::: <CONTROL>
1 <CONTROL LIST> <CONTROL>

<CONTROL> ::= ~EPEAT
<IF>
WHILE
~ASE
SUBCASE
PROCEDURE
~OR
FOREVER

[64] <END> ::: END
[6 5] I

[6 6] <REPEAT> ::= REPEAT
[6 7] I

[68] <ELSE> : :: ELSE
[6 9] I _E

[70] <IF> : :: /F

[71] I I_

[72] <FOR> : := FOR
[7 3] i F

[74] <FOREVER> : :: FOREVER
[7 5] I _zZ

[7 6] <STEP> : := S T E P
[77] 1 S

A
P
L

W
O
R
K
S
P
A
C
E

o
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

o
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

o

1
o

.
.

.
.

.
.

o

i
I
N
P
U
T

O
F

~
I

[
A
P
L
G
O
L
 1

I
A
P
L
G
O
L

S
O
U
R
C
E

P
R
O
G
R
A
M
I
 ~

 ~
 :
 :
 :
 ~.
 ~
~
;
~
"-
 ;
;
".
 ",
 I
E
D
I
T
O
R
I

I
(
F
R
O
M

K
E
Y
B
O
A
R
D
)

I
I

o
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

o

I

I(
E

D
IT

)t

o
-o

.

.
.

.

o

T
÷

o
.

.
.

.
.

.
.

.
.

o

.
.

.
.

.
.

.

o
o

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.

o

I
S
O
U
R
C
E

P
R
O
G
R
A
M

]
I

A
P
L
G
O
L

I
I
(
C
H
A
R
A
C
T
E
R

A
R
R
A
Y
)

I ~

:
~

o

I
P
R
O
G
R
A
M

L
I
S
T
I
N
G
I

I
o

.
.
.
.
.
.
.
.

o
.
.
.
.
.
.
.
.

o
÷

I
~

o
..

..
..

..
..

..
..

..

o

I
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

o

I
A
P
L
G
O
L

I
I

I
A
P
L
G
O
L

C
O
M
P
I
L
E
R

I
I
R
E
V
E
R
S
E

C
O
M
P
I
L
E
R
I

I
1
(
W
R
I
T
T
E
N

I
N

A
P
L
)
 I

[
(
W
R
I
T
T
E
M

I
N

A
P
L
)
I

I
I

(
A
P
L
G
O
L
)

I
I

(
R
E
V
E
R
S
E
)

I
o

.
.

.
.

.
.

.
.

o

.
.

.
.

.
.

.

o
o

.
.

.
.

.
.

.
.

.
.

.
.

.
.

.
.

o

I
+

÷

I
...

...
...

...
...

.
÷

I
C
H
A
N
G
E
S

I
N

I
c
~
I

U
S
U
A
L

I
o
;
:
~
:
I

A
P
L

P
R
O
G
R
A
M

]
o

;
~

~
:

o

IA
PL

P
R
O
G
R
A
M
I
~
:
:
~
I
A
P
L

E
D
I
T
O
R
I
~
:
:
:
o
I
(
S
P
E
C
I
A
L

P
O
R
M
)
 I

[
(
X
E
Y
B
O
A
R
D
)

I
.
.
.
.
.
.
.
.
.
.
.
.

l
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

o
.
.
.
.
.
.
.
.
.
.
.
 o

I

+
I
R
E
S
U
L
T
S

O
F
I
o
~
:
:
:
~
:
~
I
O
U
T
P
U
T

OF
f

I
+

I
E
X
E
C
U
T
I
O
N

I
I

I
R
E
S
U
L
T
S

I
I

~
.
.
.
.
.
.
.
.
.
.
.
.

T
.
.
.
.
.
.
.
.
.
.
.

o
 .

.
.
.
.
.
.
.
.
.

~

.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.

÷

.
.
.
.
.
.
.
.
.
.

o

+
÷

0
.

.
.

.
.

.
.

.
.

.
.

.

o
÷

[
E
X
E
C
U
T
I
O
N

OF

f
÷

IA
PL

P
R
O
G
R
A
~

I
c

~
:

:
~

:
~

o

.
.

.
.

.
.

.
.

.
.

.
.

o

Fi
gu

re
 1

A
N

A
P
L
G
O
L

S
Y
S
T
E
M

W
R
I
T
T
E
N

I
N

A
P
L

184

APLGOL STATEMENTS

BASIC STATEMENTS

APL STATEMENT
EXIT STATEMENT
EMPTY STATEMENT
NULL STATEMENT
~SSERT STATEMENT
ASSERT LEVEL STATEMENT

FIGURE 2

CONTROL STATEMENTS

~F STATEMENT
BEGIN BLOCK
WHILE STATEMENT PREFIX
FOR STATEMENT PREFIX
[OREVER STATEMENT PREFIX
REPEAT STATEMENT PREFIX
REPEAT BLOCK
CASE BLOCK
LEAVE STATEMENT
~TERATE STATEMENT
RESTART STATEMENT

<BASIC STATEMENT> ::: <EXPRESSION>

EXAMPLES:

P+(2=+/[2]:So. IS)/S+tN;
~TIME= 'uTu' RATE= 'uRu' DISTANCE= ~uDEI÷I+S;J÷JIB]~

<BASIC STATEMENT> ::= EXIT
I EXIT <EXPRESSION>

EXAMPLES:

ZF A=$ THEN
[XIT

ELSE
EXIT P÷PIS~

<BASIC STATEMENT> ~:= c <EXPRESSION> ~ ;

EXAMPLE:

~F SSECTODATE < SSMAX ~HEN
c SOCIAL SECURITY COMP GOES HERE ~

<BASIC STATEMENT> ::= NULL

FIGURE 3

185

<BASIC EXPRESSION> ::: ASSERT <EXPRESSION> : <EXPRESSION> ;

EXAMPLE:

~SSERT 10 : A<pTABLE;

<BASIC EXPRESSION> ::: ASSERT <EXPRESSION> ;

EXAMPLE:

ASSERT 100;

FIGURE 4

<CONTROL STATEMENT> ::: ~F EXPRESSION [HEN <STATEMENT>
IIF EXPRESSION THEN <STATEMENT>

ELSE <STATEMENT>

<STATEMENT> BLOCK> ::: BEGIN <STATEMENT LIST> END

EXAMPLES OF BEGIN BLOCKS IN CONJUNCTION WITH THE ~F <STATEMENT>
ARE THE FOLLOWING:

IF A>5 THEN IF A>5 THEN IF A>-5 THEN
B_EGIN B÷A I 5 ; BEGIN

B÷A I 5 ; ELSE B÷I I 5 ;

A÷C÷ 5 ; BEGIN A÷C'5 ;
END A÷A + 1 ; END

E_LSE C÷B÷B I C ; ELSE
BEGIN E_ND ; A÷A+I "~

A÷A+I ;
C÷B÷B I C ;

E_ND ;

FIGURE 5

186

<CONTROL STATEMENT> ::: WHILE <EXPRESSION> DO <STATEMENT>

<CONTROL STATEMENT> ::: [OR <EXPRESSION> [NTIL <EXPRESSION>
DO <STATEMENT>

I FOR <EXPRESSION> [NTIL <EXPRESSION>
STEP <EXPRESSION> DO <STATEMENT>

<CONTROL STATEMENT> ::= [OREVER DO <STATEMENT>

EXAMPLE :

FOREVER ~0
~F FLAGFUNCTION THEN

LEAVE : FOREVER~

<CONTROL STATEMENT> ::= dEPEAT <STATEMENT LIST> [NTIL
<EXPRESSION>

FIGURE 6
.

<CONTROL STATEMENT> ::= CASE <EXPRESSION> OF <EXPRESSION>
BEGIN <SUBCASE LIST> [ND ~ASE

<SUBCASE> ::: <EXPRESSION> : <STATEMENT>

THE FOLLOWING IS AN EXAMPLE OF THE EASE STATEMENT BLOCK:

[ASE IIJ ~F 15

BEGIN
O:

FOR K÷IIJ UNTIL (pTABLE)[I] ETEP J ~0
BEGIN

TABLE[K;I]÷FUN ARG~
I+I+l~
J+J-l~

~ND~
2:

NULL~
i:

c CASE i EMPTY FOR NOW ~
10: 12: i%:

BEGIN
I÷I-l;
J÷J-l~

~F 10aIIJ ZHEN
RESTART: EASE

ELSE
~TERATE: EUBCASE~

[ND~
5:

[XIT I,J;
END EASE;

FIGURE 7

187

<BASIC STATEMENT> ::= LEAVE : <CONTROL LIST> ;
I ~TERATE : <CONTROL LIST> ;
I RESTART : <CONTROL LIST> ;

FIGURE

EXAMPLE:

[13 PROCEDURE EX;
[2] WHILE A>B ~0
[3] BEGIN
[4] REPEAT
[5] B+C[I];
[6] WHILE I<pC ~0
[7] BEGIN
[8] ~F B=5 ~HEN
[9] BEGIN
[10] I÷B;
[ii] WHILE J<I+oD DO
[123 BEGIN
[13] ~F 4<J++/D[J;] ~HEN
[14] BEGIN
[15] A+A-I;
[16] B÷J;
[17] LEAVE: REPEAT WHILE;
[18] ~ND
[19] ELSE
[20] ~F B=I0 THEN
[21] LEAVE: WHILE WHILE
[22] ELSE
[23] ZF J=pC THEN
[24] LEAVE: WHILE;
[25] B+A+0;
[263 END;
[27] END;
[28] I÷I+l;
[29] END;
[30] UNTIL B>15;
[31] C÷C,J,B;
[32] END;
[33] A÷B;
[34] END PROCEDURE

FIGURE 9

188

l o I F / T H E N 2. IF/THEN/ELSE

I t e r a t e / R e s t a r t

()

@
True
Part

S ta tement

Leave

Iterate/Restart

()

True

Sta tement TruePart

Else
S ta tement

Leave

Figure 10 APLGOL

189

3. PROCEDURE BLOCK 4. FOREVER STATEMENT

Iterate/Res tart

?
P r o c e d u r e
Block

Leave

Iterate/Res tart

Forever

Statement

I
O
Leave

Figure Ii

5. WHILE STATEMENT 6. REPEAT BLOCK

I t e r a t e / R e s t a r t

0

ue

W h i l e
S t a t e m e n t

04
Leave

I t e r a t e

Re start

R e p e a t
Block

False

~ rue

Leave

Figure 12

190

7. FOR STATEMENT

Restart

nitia [iza tior,

!
t

..... I For Statement

O ~

Leave

APLGOL

Figure 13

8. CASE BLOCK AND SUBCASE

191

Iterate/Re s tart

?
Select I
Ith Case

for Case Block

• • •

Iterate/Re start
for Subcase N

<>

I
Leave
for

Case and Subcases

APLGOL

Figure 14

