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INTRODUCTION,

In this paper, we shall give some results on the approximation and on the numerical
solution of some non linear elliptical problems. It is also shown that the iterative
method used to solve the approximate problems is also useful for solving other non

linear problems arising in mechanics and physics.

1. THE CONTINUOUS PROBLEM.

Let{ be a bounded open set of IRN, such that its boundary['is regular. Let p be such
that. 1 <p <+,

We shall denote by V the space W(I)’p(Q) whose norm is ”v”1 = (J;—QIVVIPdX)]/P.

Let p' be the conjugate of p i.e., (p~1)(p'-1) = 1. Let V' be the dual W—I ’p'(gg) of V
and [f.||4 its norm.

We shall write ||v||_ instead of il .
8 WS’P(Q)

It can be shown (see for example,[l], chapter 2) that the mon linear elliptical pro-
blem :

m . (vu|PEm) = £, fev

{2) u= 0 on [

has a unique solution and is equivalent to

(3) jQIVu!P—QVu.W dx = «&£,v> VveV, uev.

In (3), <.,.>> is the bilinear form of the duality between V' and V.

We shall call A the monotonous operator form VoV' defined by

aw) = -9(|vv [P 2

if p=2, A=~
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2, THE APPROXIMATED PROBLEM.

For the sake of clarity we shall suppose that  is a polyhedral of R Let’[ be a

finite triangulation ofQ such that :
) €q y1eC, U T=0

T and T‘E¢Z’h=>TﬂT' =@ or
(5)

T and T' have only one common vertex or only one common side.

We choose h egual to the length of the greatest side of the Te"fi1 and.we approach V
by

= ° 5 =
(6) Vh —{vhivhg c° @y, vy =© onT, vthe P1 VTG{h}

with PI = space of polynomials of order ! ; we have Vh <V and we approach (3) by the

problem in finite dimension

P =
7 JQ[Vuh[ 2Vuh.‘Vvhdx =<f,v> 7, € Vv € Vp-
Problem (7) has a unique solution and the following theorem can be shown

THEOREM 2.1

If the angles of't’h are bounded from below, uniformly in h, by 60>o, we have :

(8 lim Hu,n—uH1 = o when h_o where u is the solution of (3).

3. ESTIMATIONS OF THE ERROR OF APPROXIMATION.

LEMMA 3.1 : We have, vu, vgV

(9 < A() - AG), v-usZafv-ul|® if p>2

(10) <A() - A(w), v-us Zffv-uli| (fv]); + +fu i P2 4 1<pg?
(1 a6 = a0 ||eBliv-ull; ¥l #ilid®” - if pp2

(12) A = AGw 1]*sf31}v-u{111)—] if l<p<?

with o, B >0 and independant of u,v.
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LEMMA 3.2 : Let u,w be any elements of V. Let Uy sWy be the solutions of (7) corres-—

ponding respectively to £ = A(u) and £ = A(w). Then :

(13) el <l

L p-2
(14) I, = w1l < PN f-u [P (el +lall P i€ 2
(15) ”Wh - uh“} Q'S?HW'HW;‘}(HWHI +L’§uHI)2—P if 1<p <2

If Q@ is bounded in Rz and I' is lipschitz, then Wz’p(Q)c:C”Gﬁ) with continuous injec-—
tion yp, ! «<p €+0; from this property, from the results of [2] on the interpolation
of differentiable functions and from the above lemmas, we deduce the following theo-

rem :
THEOREM 3.1

Under the hypothesis of theorem 2,1, we have :
1 ez 1
(16) ey, = ully <cllellB™ PR wevant P @, p 32
1 2-p 1
(17) e, - ully <Clfe 112'1’“11“3 P3P e P@), | w2

o

_.

with C independant of h and u.

From L. TARTAR [3] and from the above results, by non linear interpolation between V

and V(}Wz’pGE), we prove the following theorem :
THEOREM 3.2

Under the hypothesis of theorem 2.1, we have for 56[1,2]:

p-2 1  s-1
(18) [, = ully <cllul®™ 1]|uﬂ nP” vu €VAWTIP (), pe2
19 oy, = ulllgcnulﬁ‘ﬂujji B vue vOWP@), 1 <p <2

with C independant of h and u, and in (19) we have

_ (27p) ((2=5)+(s=1) (p=1)) p-1 o
G-s) + (=D -1 OBp) b= oo 1t TP




330

4. AN ITERATIVE METHOD FOR SOLVING THE APPROXIMATED PROBLEM.

The problems (7) and (20), below, are equivalent.
- . =1 P
(20) J(u) SIGvy) Vv, €V, ,u €V, 5 J(v,) = EHVhHI <f,v>.

The method of non linear surrelaxation described in [4] is almost inefficient if
applied to (20) for p<1.5 and p 210. The method of auxilatory operator of [5] is

suitable for (7) only if p is close to 2.

The remedy is to increase the number of variables while simplifying the non linear
structure of (20) by taking zy =‘Vvh.
Then z, and vy are decoupled by penalisation and simultanuous dudlisdation of z, Vv, =o

h "h
(following a principle due to HESTENES[6]).

Indeed, if a penalisation alone is used, it yields a problem different from the ini-
tial problem ; all the less different and the most i1l conditioned that the parameter
of penalty is small ; if duality alone is used, it yields a problem coercive in zy

and linear, therefore non coercive in Vi

Let Xq be the caracteristiec function of T,

2
Ly ={zh|zh =X ZoXps Zp€ R}
Tet,

jlv,2z) = %J9|zlpdx - <f,v> with z¢ LP(Q) X LP(Q) ;5 (20) is equivalent to
2n j(uh’yh)gj(vh’zh) V(Vh,zh)E Vh X Lh, vVh_Zh =0

1 =V
with Yh up -

By penalisation and dualisation of vvh—zh = 0, we are led to introduce (penalisation)

jo= i+ %E]hJVvHZZ with £>0, then (dualisation) the Lagrangian
L7(Q):

L(v,z3) = jE(V,Z) - Qp,(z—vv)dx.

Then, we can show ([ﬂ, N°28 can also be used) the following :

. 3 v . .
PROPOSITION 4.1 :3 has a saddle point of the form (uh, u s Kh) QE.Vh X Lh X Lh H

u, solution of (7).

h
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From this result, we can use the following algorithm for solving (7) :

(22) KEGLh, given

+
7&2 known, we compute ug, yg,k; ! by

(23) gy ¥ 5 A< £ (zihg) Yy €V € Ty 5 up eV g ely
n+] n n n
(24) ?\h = ?\h - pn(yh —Vuh), Pp>0

THEOREM 4.1

If 0O<r O KX <;:2—, when n—+oo dnd V)\g, we have uﬁ _,uh,yﬁ—, Vuh 3wy solution of (7).
COMMENT 4.1 : For | fixed, £ is strictly convex in {(v,z) and quadratic in v ; it
implies that (23) can be solved by a modification of a relaxation type on z,, surre-
laxation on Vi of the standard surrelaxation method on the Dirichlet problem ; the
results of [ 8] apply to this modification which is easy to implement since, for given
Vo e the minimization in zy of x# decomposes into Card("(,’h), easy problems with

two variables (this is one of the justification of algorithm (22)-(24)).

COMMENT 4.2.: In some case, algorithm (22)-(24) applied directly to the continuous

problem, converges.

COMMENT 4.3 : For p=2, the above method, applied to solve (7), has little interest,

R n . . ;
since for o, = 1/e, the sequence (uh) converges in two iterationms.

5. APPLICATIONS TO OTHER NON LINEAR PROBLEMS.

With some minor modifications, we can apply the previous method to the following

(continuous or approximated) problems :

Elastic-Plastic torsion of a cylindrical beam :

(25) Min[-—lz—fglvv !de -JQ fvdx], v EH(I)(Q), \Vv]g] p:P-

Fiow of a Plastic-viscous flow in a pipe :

(26) Min[%jg IVV }zdx +g jg lVVIdx —jg fvdx j, vEé H;(.Q)
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Minimal surfaces :
27 Min JQVI + }VVI dx, v=gonl.

Generally speaking the above method is well adapted to non linear elliptical problems
of order 2, when the non linearity is on Vv ; this is the case of the problem of the
Alternator in magneto-static treated in [4] by non linear surrelaxation and of the

subsonic flow of a compressible fluid around a profil of R2, etc...

6. NUMERICAL EXAMPLE.

For Q={x}x§ + x§ <R2} and <f,v>= C ngdx, the solution of (3) is given by

B P
= P21 CRyplp o (5yPTly =\I2 “
ux) > (2 )] R(1 (R) ), with r X + Xy.

By making use of algorithm (22)-(24), we have been able to extend the field M of
resolution of (1) to 1.1 <p <50, with computing time of the order of a minute of

CII 10070 and for triangulations of about 250 triangles.

(1) 1limited to 1.5<p <10 for non linear S.0.R.
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