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INTRODUCTION. 

In this paper, we shall give some results on the approximation and on the numerical 

solution of some non linear elliptical problems. It is also shown that the iterative 

method used to solve the approximate problems is also useful for solving other non 

linear problems arising in mechanics and physics. 

I. THE CONTINUOUS PROBLEM. 

LetQ be a bounded open set of ~N such that its boundaryEis regular. Let p be such 

that. i <p <+oo. JQrl 
We shall denote by V the space wI'P(Q) whose norm is iivlI] = ( ~v]Pdx) I/p 

o 
Let p' be the conjugate of p i.e. (p-l)(p'-l) = 1. Let V' be the dual W-I'P'(Q) of V 

ft" II its norm. 

We shall , ite IlVIIs instead of ItVIIwS,P< >. 

It can be shown (see for example,If ], chapter 2) that the non linear elliptical pro- 

blem : 

(I) -V.(IVulP-2~u) = f, fEV' 

(2) u = o on F 

has a unique solution and is equivalent to 

(3) fQlvu]P-ZTu.W dx = <f,v> gvEV , uEV. 

In (3), <.,.> is the bilinear form of the duality between V' and V. 

We shall call A the monotonous operator form V-,V' defined by 

A(v) =-v(Ivvlp-2~A~) ; 

if p = 2~ A = -4. 
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2. THE APPROXIMATED PROBLEM. 

~2. .D 

For the sake of clarity we shall suppose that Q is a polyhedral of Let~ h be a 

finite triangulation of~ such that : 

(4) 

(5) 

TE~ vTE ~ h '  T~h T =~ 

and T' have only one common vertex or only one common side. 

We choose h egual to the length of the greatest side of the T~h and.we approach V 

by 

(6) V h ={VhlVhE C°(~), v h = o on£, VhITEP 1 ~TE~h } 

with PI = space of polynomials of order ~I ; we have Vh~V and we approach (3) by the 

problem in finite dimension 

(7) ~IVu hlp-~uh'Vvh dx :<f,vh> VVhEVh,U hEV h" 

Problem (7) has a unique solution and the following theorem can he shown 

THEOREM 2.1 

If the angles of~h are bounded from below, uniforml X in h, by 0 0 >o, we have : 

(8) lim llUh-U!I] = o when h_o where u is the solution of (3). 

3. ESTIMATIONS OF THE ERROR OF APPROXIMATION. 

LEMMA 3,1 : We have, Vu, vEV 

(9) < A(v) - A(u), v-u>~Iv-u]I ~ if p 92 

(|O) <A(v) A(u), v-u>~l~-ull~(Hvi!l +IlulIl )p-2 if 1 ~p.~<2 

(|I) iIA(v) - A(u) II~+~l~-ull](llvlI| +llull|) p-2 if p ~2 

(12) IIA(v) - A(u)II ~I~-~l p-I if l<p~2 

with ~, ~ >o and independant of u,v. 
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LEMMA 3.2 : Let u,w be any elements of V. Let Uh,W h be the solutions of (7) corres- 

ponding respectively to f = A(u) and f = A(w). Then : 

(14) 

1 p-2 

I~ h - tthlll ~ (~)P-IlIw-ulIlP-I(IIWlI1 +llUlll )p-1 i f  p ) 2  

(15) I~ h - UhIll ~I~-~l;-l(llWIIl +liUlll )2-p if I <p ~2 

If Q is bounded in ~2 and F is lipschitz, then w2'P(Q)cC=(~) with continuous injec- 

tion VP, I <p~+oo; from this property, from the results of [2] on the interpolation 

of differentiable functions and from the above lemmas, we deduce the following theo- 

rem : 

THEOREM 3.1 

Under the hypothesis of theorem 2.1, we have : 

1 p-2 1 

(16) [lUh - ull I ~ClluIl; -I IIull]P-lh p-I 

1 2-p 1 
3-p 3-p (17) ]lUh - U H l ~ < C l [ u l l  2 IIujJ1 h 3-p 

I~EV~w2'P(Q), p 

VuEV~w2'P(Q), 1 <p~2 

with C independant of h and u. 

From L. TARTAR [3] and from the above results, by non linear interpolation between V 

and V~w2'P~), we prove the following theorem : 

THEOREM 3.2 

Under the hypothesis of theorem 2.1, we have for sEEI,2]: 

p,-2 1 s-I 
(18) llUh - ull I ~CllullP-l]lullPs-I h p-I Vu Cv~wS;P(Q), p~>2 

(I 9) [[u h -Ulll~cIIul~lllUll ~ h • guEv~wS'P(Q), I <p ~<2 

with C independant of h and u, and in (]9) we have 

(2-p) ((2-s)+(s-1) (p-l)) ~ = p-I 
5= (2-s) + (s-1)(p-l)(3-p) (2-s)+(s-l)(p-l)(3-p) Y = (s-l)~ 
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4. AN ITERATIVE METHOD FOR SOLVING THE APPROXIMATED PROBLEM. 

The problems (7) and (20), below, are equivalent. 

(20) 
1 p 

J(Uh) ~J(v h) VVhEVh'Uh EV h ; J(v h) = ~l~I| -<f'vh>" 

The method of non linear surrelaxation described in [4] is almost inefficient if 

applied to (20) for p<1.5 and p~10. The method of auxilatory operator of I 5] is 

suitable for (7) only if p is close to 2. 

The remedy is to increase the number of variables while simplifying the non linear 

structure of (20) by taking z h = Vv h. 

Then z h and v h are decoupled by penalisation and simultanuous dualisation of Zh-VVh=O 

(following a principle due to HESTENES[6]). 

Indeed, if a penalisation alone is used, it yields a problem different from the ini- 

tial problem ; all the less different and the most ill conditioned that the parameter 

of penalty is small ; if duality alone is used, it yields a problem coercive in z h 

and linear, therefore non coercive in v h. 

Let XT be the caracteristic function of T, 

j (v,z) =~ 

(2]) j (u h,yh ) ~< j (Vh,Zh) 

with Yh = VUh' 

Lh ={Zh Izh = ~ ~2} 
TE~hZTXT ' ZTE 

zlPdx - <f,v>with zE LP(~) x LP~) ; (20) is equivalent to 

V(Vh,Zh)E V h x Lh, VVh-Z h = o 

By penalisation and dualisation of ~Vh-Z h = o, we are led to introduce (penalisation) 
I 2 . 

Jg = J + ~g llz-x7vll 2 wlth g>o, then (dualisation) the Lagrangian 
L (Q) 

~(v,z;~) = jg(v,z) - ~Q~(z-~v)dx. 

Then, we can show ([~, N°28 can also be used) the following : 

PROPOSITION 4.1 :;g has a saddle point of the form (Uh, ~Tu h ; kh) on V h x L h x L h ; 

u h solution of (7). 
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From this result, we can use the following algorithm for solving (7) : 

0 
(22) k hEL h, given 

n n k n+l 
k h kno~, we compute u~, Yh' h by 

(23) =~(U~, y~ ; ~n n 
h)~< £(Vh,Zh;k h) 

~n+l 
(24) ~h = 

n n 

VV h EV h,z hE L h ; u h EV h, Yh cL h 

kn - ( n _Vu~), 
h Pn Yh Pn >° 

THEOREM 4.:I 

0 n n 
If O<ro~Qn ~<r I <2, when n~+oo and ~fAh, we have Uh_~Uh,Yh~TUh ; u h solution of (7). 

COMMENT 4.] : For ~ fixed, ~ is strictly convex in (v,z) and quadratic in v ; it 

implies that (23) can be solved by a modification of a relaxation type on Zh, surre- 

laxation on Vh, of the standard surrelaxation method on the Dirichlet problem ; the 

results of[ 8] apply to this modification which is easy to implement since, for given 

Vh' ~h' the minimization in z h of ~ decomposes into Card(~'h) , easy problems with 

two variables (this is one of the justification of algorithm (22)-(24)). 

COMMENT 4.2 : In some case, algorithm (22)-(24) applied directly to the continuous 

problem, converges. 

COMMENT 4.3 : For p=2, the above method, applied to solve (7), has little interest, 

since for Pn = ]/g, the sequence (u~) converges in tw_~o iterations. 

5. APPLICATIONS TO OTHER NON LINEAR PROBLEMS. 

With some minor modifications, we can apply the previous method to the following 

(continuous or approximated) problems : 

m!~_s__tic_-_P!_a_st!s__tor_sion__of_a__~_Z!!_~a_ri_ce!_~S~ ~ : 

(25) M~n ~IVv 12dx 

F_!o~__oLa__P!a_~t i_~ni_~ ~o~__s_f!ow_in_a_~i~_ : 

(26) in[~ ~ g Q Q o 
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(27) Min 

Generally speaking the above method is well adapted to non linear elliptical problems 

of order 2, when the non linearity is on~Tv ; this is the case of the problem of the 

Alternator &n magneto-static treated in [4] by non linear surrelaxation and of the 

subsonic flow of a compressible fluid around a profil of R 2, etc... 

6. NUMERICAL EXAMPLE. 

~or ~=I~I~ + x~ <~I ~n~ ~v>= ~f ~ ~ ~o~u~on o~ ~ ~ ~oo. 

P~ P 
u(x) = p-l(~)P-IR(l_(r)p-l),~ with r = ~ .  

P z ~ 

By making use of algorithm (22)-(24), we have been able to extend the field (I) of 

resolution of (I) to 1.1 ~p ~<50, with computing time of the order of a minute of 

CII 10070 and for triangulations of about 250 triangles. 

(]) limited to ].5~<p~IO for non linear S.O.R. 
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