Preview
Unable to display preview. Download preview PDF.
References
Adámek, J., Free algebras and automata realizations in the language of categories. Comment. Math.Univ.Carolinae 15 (1974), 589–602.
Adámek, J., Realization theory for automata in categories. To appear.
Adámek, J., Automata and categories: Finitness contra minimality. This volume, pp. 160–166.
Anderson, B.D.O., Arbib, M.A. and Manes, E.G., Foundations of system theory: finitary and infinitary conditions. Computer and Information Science, University of Massachusetts at Amherst.
Arbib, M.A.and Manes, E.G., A categorist's view of automata and systems. Category Theory applied to Computation and Control, Proceedings of the First International Symposium 1974, 62–76.
Arbib, M.A. and Manes, E.G., Machines in a Category: An expository introduction. SIAM Review 16 (1974), 163–192.
Arbib, M.A. and Manes, E.G., Foundations of System Theory: Decomposable Systems. Automatica 10(1974), 285–302.
Čech, E., Topological Spaces. Academia, Prague 1966.
Ehrig, H., Universal theory of automata. Teubner Studienbücher 1974.
Ehrig, H., Kiermeier, K.D., Kreowski, H.I. and Kühnel, W., Systematisierung der Automatentheorie, Seminarbericht, Technische Universität Berlin, Fachbereich Kybernetik, 1973.
Goguen, I.A., Minimal realization of machines in closed categories. Bull. Amer. Math. Soc. 78 (1972), 777–784.
Goguen, I.A., Realization is Universal. Math. Syst. Theory 6 (1973), 359–374.
Herrlich, H. and Strecker, E.G., Category Theory, Allyn and Bacon, Boston 1973.
Hušek M., S-categories. Comment. Math. Univ. Carolinae 5(1964), 37–46.
Koubek, V., Setfunctors I. and II. Comment. Math. Univ. Carolinae 12(1971), 777–783 and 14(1973), 47–59.
Koubek, V. and Reiterman, J., Automata and Categories — Input processes. This volume, pp. 280–286.
Kůrková-Pohlová, V. and Koubek, V., When a generalized algebraic category is monadic. Comment. Math. Univ. Carolinae 15(1974), 577–602.
MacLane, S., Categories for the working mathematician. Springer New York-Heidelberg-Berlin 1971.
Manes, E.G., Algebraic Theories. A draft of a book.
Trnková, V., On a descriptive classification of set functors I. and II. Comment. Math. Univ. Carolinae 12(1971), 143–174 and 345–357.
Trnková, V., On minimal realizations of behavior maps in categorial automata theory. Comment. Math. Univ. Carolinae 15(1974), 555–566.
Trnková, V., Minimal realizations for finite sets in categorial automata theory. Comment. Math. Univ. Carolinae 16(1975), 21–35.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1975 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Trnková, V. (1975). Automata and categories. In: Bečvář, J. (eds) Mathematical Foundations of Computer Science 1975 4th Symposium, Mariánské Lázně, September 1–5, 1975. MFCS 1975. Lecture Notes in Computer Science, vol 32. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-07389-2_188
Download citation
DOI: https://doi.org/10.1007/3-540-07389-2_188
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-07389-5
Online ISBN: 978-3-540-37585-2
eBook Packages: Springer Book Archive