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I. Introduction. Tarski in 1948, [I 4 published a quantifier eli- 

mination method for the elementary theory of real closed fields (which 

he had discoverd in 1930). As noted by Tarski, any quantifier elimina- 

tion method for this theory also provides a decision method, which en- 

ables one to decide whether any sentence of the theory is true or false. 

Since many important and difficult mathematical problems can be ex- 

pressed in this theory, any computationally feasible quantifier eli- 

mination algorithm would be of utmost significance. 

However, it became apparent that Tarski's method required too much 

computation to be practical except for quite trivial problems. Seiden- 

berg in 1954, [171, described another method which he thought would be 

more efficient. A third method was published~by Cohen in 1969, [3~. 

Some significant improvements of Tarski's method have been made by W. 

B~ge, [203, which are described in a thesis by Holth~sen, [211 . 

This paper describes a completely new method which I discoverd 

in February 1973. This method was presented in a seminar at Stanford 

University in March 1973 and in abstract form at a symposium at Carne- 

gie-Mellon University in May 1973. In August 1974 a full presentation 

of the method was delivered at the EUROSAM 74 Conference in Stockholm, 

and a preliminary version of the present paper was published in the 

proceedings of that conference, [81 . 

This research was partially supported by National Science Foundation 

grants GJ-30125X and DCR74-13278. 
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The method described here is much more efficient than the pre- 

vious methods, and therefore offers renewed hope of practical applicabi- 

lity. In fact, it will be shown that, for a prenex input formula ~, 

the maximum computing time of the method is dominated, in the sense of 

[51 , by (2n)22r+8m2r~6d3a, where r is the number of variables 

in 4 , m is the number of polynomials occurring in 4, n is the maximum 

degree of any such polynomial in any variable, d is the maximum length 

of any integer coefficient of any such polynomial, and a is the number of 

occurrences of atomic formulas in 4. Thus, for fixed r, the computing 

time is dominated by a polynomial function Pr(m,n,d,a).In contrast, it can 

be shown that the maximum computing times of the methods of Tarski and 

Seidenberg are exponential in both m and n for every fixed r, including 

even r=1, and this is likely the case for Cohen's method also. (In fact, 

Cohen's method is presumbly not intended to be efficient.) B~ge's improve- 

ment of Tarski's method eliminates the exponential depeneency on m, Put 

the exponential dependency on n remains. 

Fischer and Rabin, [93 , have recently shown that every decision 

method, deterministic or non-deterministic, for the first order theory 

of the additive group of the real numbers, afortiori for the elemen- 

tary theory of a real closed field, has a maximum computing time which 

dominates 2 cN where N is the length of the input formula and c is some 

positive constant. Since m, n, d ,r and a are all less than or equal to N 

(assuming that x n must be written as x • x .... • x), the method of this 

2 kN 
paper has a computing time dominated by2 where in fact k<8. The re- 

sult of Fischer and Rabin suggests that a bound of this form is likely 

the best achievable for any deterministic method. 

In a letter received from Leonard Monk in April 1974, I was in- 

formed that he and R. So~vay had found a decision method, but not a 

quantifier elimination method, with a maximum computing bound of the 
2 kN 

form 22 . However, the priority and superiority of the method described 

below are easily established. 

The most essential observation underlying the method to be des- 

cribed is that if ~ is any finite set of polynomials in r variaSles with 

real coefficients, then there is a decomposition of r-dimensional real 

space into a finite number of disjoint connected sets called cells, in 

each of which each polynomial in ~ is invariant in sign. Moreover, these 
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cells are cylindrically arranged with respect to each of the r variables, 

and they are algebraic in the sense that their boundaries are the zeros 

of certain polynomials which can be derived from the polynomials in ~. 

Such a decomposition is therefore called an ~-invariant cylindrical 

algebraic decomposition. The sign of a polynomial in ~in a cell of the 

decomposition can be determined by computing its sign at a sample point 

belonging to the cell. In the application of cylindrical algebraic de- 

composition to quantifier elimination, we assume that we are given a 

quantified formula ¢ in prenex form, and we take ~to be the set of all 

polynomials occurring in ¢. From a set of sample points for a decompo- 

sition, we can decide in which cells the unquantified matrix of the for- 

mula # is true. The decomposition of r-dimensional space induces, and 

is constructed from, a decomposition of each lower-dimension space. 

Each cylinder is composed of a finite number of cells, so universal and 

existential quantifiers can be treated like conjunctions and disjunc- 

tions, and one can decide in which cells of a lower-dimension space the 

quantified formula is true. The quantifier elimination can be comple- 

ted by constructing formulas which define these cells. 

The polynomials whose zeros form the boundaries of the cells are 

the elements of successive "projections" of the set ~. The projection 

of a set of polynomials in r variables is a set of polynomials in r-1 

variables. The cylindrical arrangement of cells is ensured by a condi- 

tion called delineability of roots, which is defined in Section 2. 

Several theorems giving sufficient conditions for delineability are 

proved, culminating in the definition of projection and the fundamen- 

tal theorem that if each element of the projection of a set ~ is inva- 

riant on a connected set S then the roots of A are delineab!e on S. 

This theorem implicitly defines an ~-invariant cylindrical algebraic 

decomposition. Section 2 also defines the "augmented projection", a 

modification of the projection which is applied in certain contexts in 

order to facilitate the construction of defining formulas for cells. Sec- 

tion 2 is concluded with the specification of the main algebraic algo- 

rithms which are required as subalgorithms of the quantifier elimination 

algorithm described in Section 3. These algebraic algorithms include 

algorithms for various operations on real algebraic numbers and on po- 

lynomials with rational integer or real algebraic number coefficients. 

Section 3 describes the quantifier elimination algorithm, ELIM, 

and its subalgorithms, which do most of the work. ELIM invokes succes- 

sively its two subalgorithms, DECOMP (decomposition) and EVAL (evaluation). 
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DECOMP produces sample points and cell definitions, given a set of poly- 

nomials. EVAL uses the sample points and cell definitions, together 

with the prenex formula ~, to produce a quantifier-free formula equiva- 

lent to ~. DECOMP itself uses a subalgorithm, DEFINE, to aid in the con- 

struction of defining formulas for cells. These algorithms are described 

in a precise but informal style with extensive interspersed explanatory 

remarks and assertions in support of their validity. 

Section 4 is devoted to an analysis of the computing time of the 

quantifier elimination algorithm. Since some of the required algebraic 

subaigorithms have not yet been fully analyzed, and since in any case 

improved subalgorithms are likely to be discovered from time to time, 

the analysis is carried out in terms of a parameter reflecting the com- 

puting times of the subalgorithms. 

Section 5 is devoted to further discussion of the algorithm, in- 

cluding possible modifications, examples, special cases, and the ob- 

served behavior of the method. 

It should be noted that the definition of the projection operator 

has been changed in an important way since the publication of the pre- 

liminary version of this paper. This change is justified by a new defi- 

nition of delineability in Section 3 and a new proof of what is now 

Theorem 5. This change in the projection operator contributes greatly 

to the practical feasibility of the algorithm. 

2. Algebraic Foundations. In this section we make some needed de- 

finitions, prove the basic theorems which provide a foundation for the 

quantifier elimination algorithm to be presented in Section 3, and define 

and discuss the main subalgorithms which will be required. 

By an integral polynomial in r variables we shall mean any element 
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of the ring I[x I ..... Xr], where I is the ring of the rational integers. 

As observed by Tarski, any atomic formula of elementary algebra can be 

expressed in one of the two forms A = O, A > O, where A is an integral 

polynomial. Also, any quantifier-free formula can be easily expressed 

in disjunctive normal form as a disjunction of conjunctions of atomic 

formulas of these two types. However, for the quantifier elimination 

algorithm to be presented in this paper, there is no reason to be so 

restrictive, and we define a standard atomic formula as a formula of 

one of the six forms A = O, A > O, A < O, A ~ 0, A > O, and A < O. A 

standard formula is any formula which can be constructed from standard 

atomic formulas using propositional connectives and quantifiers. A 

standard prenex formula is a standard formula of the form 

(QkXk) (Qk+iXk+1) ... (QrXr)~ (x I ..... x r) , (1) 

where ¢(x~,...,x r) is a quantifier-free standard formula, I i k i r, 

and each (Qixi) is either an existential quantifier (~x i) or a univer- 

sal quantifier ~xi). 

The variables x i range over the ordered field R of all real numbers, 

or over any other real closed field. For additional background informa- 

tion on elementary algebra, the reader is referred to Tarski's excel- 

lent monograph, [18], and van der Waerden, [19], has an excellent 

chapter on real closed fields. 

The quantifier elimination algorithm to be described in the next 

section accepts as input any standard prenex formula of the form (I), 

with I < k < r, and produces as output an equivalent standard quanti- 

fier-free formula ~(Xl,...,Xk_1). 

~ will denote an arbitrary commutative ring with identity. Unless 

otherwise specified, we will always regard a polynomial A(Xl,...,x )e 

~I ..... Xr~ as an element of ~[x I ..... Xr_1] ~r]; that is, A is regarded 

as a polynomial in its main variable, x r, with coefficients in the poly- 

nomial ring ~[x I ..... Xr_l]. Thus, for example, the leading, coefficient 

of A, denoted by idcf(A), is an element of ~[ x I ..... Xr_ ~ . Similarly, 

n (x 1 deg(A) denotes the degree of A in x r. If A(Xl,...,x r) = ~ i=oAi ,..., 

Xr_1)'xi and deg(A)=n, then idcf(A)=A and idt(A)=An(X I ..,Xr_1)-x~,the r n '" 
leading term of A. Following Tarski, red(A), the reductum of A is the 

difference A-idt(A). By convention, deg(O)=idcf(O)=O, and hence also 

idt(O)=red(O)=O. ~' will denote the derivative of a. 
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R k will denote the k=fold Cartesian product R x ... x R, k > I. 

If f and g are real-valued functions defined on a set S G R k, we write 

f > 0 on S in case f(x) > 0 for all x e S, f = O on S in case f(x) = O 

for all x E S; f < O on S, f # O on S, f < ~ on S and other such re- 

lations are similarly defined. We say that f is invariant on S in case 

f > O on S, f = O on S, or f < O on S. These definitions are also applied 

to real polynomials, which may be regarded as real-valued functions. 

The field of complex numbers will be denoted by C. We will re- 

gard R as a subset, and hence a subfield, of C. A polynomial A(x1,. 

..,x r) belonging to R[x I .... ,Xr] will be called a real polynomial. 

Let A(xl,...,x r) be a real polynomial, r~2, S a subset of R r-1. 

We will say that fl,...,fm, m~17delineate the roots of A on S in case 

the following conditions are all satisfied: 

(I) fl,...,fm are distinct continuous functions from S to C. 

(2) There is a positive integer e i such that fi(al,...,ar_1) is a root 

of A(al,...,ar_1,x ) of multiplicity e i for (al,...,ar_l)eS and 

1<i<m. 

(3) If (al,...,ar_1)ES, beC and A(al,...,ar_1,b) = O then for some i, 

1~i<_m, b=fi(al,...,ar_1). 

(4) For some k, O~k~m, fl,...,fk are real-valued with f1<f2<...<fk and 

the values of fk+1''''' fm are all non-real. 

e i will be called the multiplicity of fi" If k~1, we will say that f1' 

"'''fk delineate the real roots of A on So The roots of A are delineable 

on S in case there are functions fl,...,fm which delineate the roots 

of A on S. 

Note that if the roots of A are delineable on S then A(al,..,ar_1,x) 

is a non-zero polynomial for (a1,...,ar_1)E S, and the number of distinct 

roots of A(a1,...,ar_l,X ) is independent of the choice of (a1,..o,ar_ I) 

in S. The number of roots, multiplicities counted, Zi=im el=n, must also 

be invariant on S. Hence deg(A)=n is also invariant on S, so idcf(A)~O 

on S. The following basic theorem shows that if these necessary condi- 

tions are satisfied and additionally S is connected, then the roots of A 

are delineable on S. 

The___~orem 1. Let A(Xl,... rXr) be a real polynomial, r>2. Let S be a 

connected subset of pr-1. If 1Hcf(A)~O on S and the number of distinct 

roots of A is invariant on S, then the roots of A are delineable on S. 
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Proof. We may assume S is non-empty and deg(A) = n >O since other -- 

wise the theorem is trivial. Let (al,...,ar_1)=a e S and let ~1,...,em 

be the distinct roots of A(a Ig...,ar_ 1,x) . We may assume that ~I < ~2 

<''" <~k are real and ek+1'''''~m are non-real. If m=1 let ~=I and other- 

wise let ~=12mini< jl~i-~j!. Let C i be the circle with center ei and 

radius ~. Let A(x 1,...,xr)=Zni=o Ai(x1'''''Xr-1)xi" Since the Ai are 

continuous functions on S and An#O on S, by Theorem (I ,4) of [7~ there 

exists ~>O such that if a'=(a'1,...,a'r_1)e s and IIa-a'll<~ then A(a',x) 

has exactly e i roots, multiplicities counted, inside Ci, where e i is the 

multiplicity of ei" Since bv hypothesis A(a';x) has exactly m distinct 

roots and the interiors of the m circles C i are disjoint, each circle 

must contain a unique root of A(a" ,x), whose multinlicity is e i- 

Since the non-real roots of A(a,x) occur in conjugate pairs, the in- 

teriors of the circles Ck+ I,...,C m contain no real numbers and hence 

the roots of A(a',x) in Ck+ I,...,C m are non-real. If i<k and C i con- 

tained a non-real root of A(a',x) then its conjugate would also be a non- 

real root of A(a',x) in C i since the center of C i is real. So the roots 

of A(a',x) in CI,...,C k are real. 

Let N={a':a'eS&! la-a'l !<~}. For a'eN define fi(a') to be the unique 

root of A(a',x) inside C i. Then f1<f2<...<fk are real functions and 

fk+1,...,fm are non-real valued. By another aoplication of Theorem (I,4) 

of [7~, the fi are continuous functions on ~, which is an oDen nei~hbor- 

hood of a in S. Hence if O~k<_m and S k is the set of all a e S such that 

A(a,x) has exactly k distinct real roots, then S k is ooen in S. Since a 

connected set is not a union of two disjoint non-empty subsets, there 

is a unique k such that S=S h. 

We can now define fi(a) to be the it_hh real root of A(a,x) for a e S 

and 1~i~k, so that fl<f2<...<fk on S. By the preceding paragraph it is 

immediate that fl,...,fk are continuous. By another application of the 

as a root of A is an invariant e. connectivity, the multiplicity of fi 1 

throughout S since, as we have already shown, the multiplicity is io- 

cally invariant. 

The proof of the existence of the non-real functions fk+1,.o.,fm 

is somewhat more difficult because the topology of C is not induced by a 

linear order. Choose a fixed point a of S an~ arbitrarily denote the non- 

real roots of A(a,x) by ~k+1,...,em. For any a ~ e S there is a path P 

in S from a to a" since S is connected. For any Doint a''of P there is 

an open neighborhood N of a'" and m-k continuous functions defined on 
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which are non-real roots of A. These open neiqhborhoods for all points 

a''of P constitute an open cover of the set P. Since P is comnact, this 

cover has a finite subcover. Since P is connected, the elements of the 

finite subcover can be arranged into a chain N1,...,N h such that aeN1, 

a'eN h and Ni~ Ni+ I is non-empty for 1~i<h. The functions defined on N I 

can be designated by {(I) f(1) in such a manner that f!l) (a)=e.. The 
-k+1' .... m 3 ] 

(i+I) so that f(i+1) (a'') functions on Ni+ I can be uniquely designated by fj j 

= f!i) (a'') for all a''eNi~Ni+ 1 Finally we can set a~=f!h) (a') for k+l ] • ] ] 
<j<m. In this way we can define th~ jth root of A(a',x)for k+1<j<m and 

a'eS. Then we define fj(a') to be the jth root of A(a',x) and easily prove 

that fj is continous, non-real valued, and of invariant multiplicity.| 

We say that the polynomials A,B,e~x] are similar, and write A~B, 

in case there exist non-zero a,be~such that aA = bB. 

We define redk(A), the kth reductum of the polynomials A, for k>O, 

by induction on k as follows: red°(A)=A and redk+1(A)=red(redk(A)) for 

k>O. We say that B is a reductum of A in case B=redk(A) for some k>O. 

We repeat some definitions from [4~. Let A and B be polynomials over 

~with deg(A)=m and deg(B)=n. The Svlvester matrix of A and B is the 

m+n by m+n matrix M whose successive rows contain the coefficients of 

the polynomials xn-lA(x),...,A(x),xn-IB(x),...,xB(x),B(x), with the 
i coefficients of x occurinq in column m+n-i. We allow either m=O or 

n=O. As is well known, res(A,B) , the resultant of A and B, is det(M), 

the determinant of M. (We adopt the convention det(N)=O in case N is a 

zero by zero determinant.) For O~i~j<_min(m,n) let M. . be the matrix ob- 
3,1 

tained from ~{ by deleting the last j rows of A coefficients, the last j 

rows of B coefficients, and all of the last 2j+I columns except column 

m+n-i-j. The jth subresultant of A and B is the polynomial Sj(A,B) 

=Z~l=odet(Mj,i)'xi'a polynomial of degree j or less. We define also the 

jth princiDal subresultant coefficient of A and B by pscj(A,B)=det(Mj,j). 

Thus pscj(A,B) is the coefficient of x j in Sj(A,B). We note, for subsequent 

application, that if deg(A)=m>O then pscm_1(A,A')=m.ldcf(A ) . 

Theorem 2. Let A and B be non-zero nolynomials over a unique fac- 

torization domain. Then deg(gcd(A,B))=k if and only if k is the least j 

such that pscj(A,B)~O. 
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Proof. Let k=deg(gcd(A,B)). By the fundamental theorem of polyno- 

mial remainder sequences, [2],~j(A,B)=O for O~j<k,and gcd(A,B~(A,B). 

Hence pscj(A,B)=O for O~j<k, deg(~k(A,B))=k , and pSCk(A,B)#O. | 

Theorem 3. Let A(x) be a real univariate polynomial with deg(A) 

=m>1 and let k=deg(gcd(A,A')). Then m-k is the number of distinct roots 

of A. 

Proof. Let A have the distinct roots el,...,~n with respective mul- 

tiplicities el,...,e n. By a familiar arqument, ~i is a root of A'with 

multiplicity ei-1(meaning that ~i is not a root of A" if ei=l). Hence 

ei is a root of gcd(A,A') with multiplicity ei-1. Since every root of 

gcd(A,A') is some ei' k=deg(gcd(A'A'))=Zi=o(ei -I)=Z =oei -h=m-h and 

m-k=h.| 

Using reducta and principal subresultant coefficients, we now ob- 

tain a more useful sufficient condition for the delineability of the 

roots of a polynomial. 

Theor______em__ 4. Let A(Xl,...,x r) be a real polynomial, r>_2, S a connec- 

ted subset of R r-1. Let ~= {redk(A) :k>O&deq(redk(A))>1}, ~={idcf(B) :BE~}, 

~=Lpsck(B,B'):BE~ &O<k<deg(B')} and ~ = ~ .  If every element of 

is invariant on S, then the roots of A are delineable on S. 

Proof. If deg(A)<1 then the theorem is obvious, so let A(Xl,...,x r) 

=Z~ Ai(x ..... Xr_1)x~ with deg(A)=n>2 If i>I and Ai~O then Aie~so A. l=o i ' r -- " -- l 

is invariant on S for 1<i<n. If A.=O on S for 1<i<n then the theorem is 

obvious, so let m~1 be maximal such that Am~O on S and let k be such that 
i B redk(A)=Z~=oAi(Xl,...,Xr_1)Xr = . Then A=B on S so it suffices to show that 

the roots of B are delineable on S. BE~ so pscj(B,B') is invariant on S 

for O~j<m-1. Also pSCm_1(B,B')=mAm~O on S. By Theorem 2, deg(gcd(B,B')) 

is invariant on S, that is, for some k, deg(gcd(B(a,x),B" (a,x)))=k for 

all asS. By Theorem 3, the number of distinct roots of B on S is the in- 

variant m-k. By Theorem I, the roots of B are delineab!e on S.I 

Let ~ be a set of real polynomials in r variables, r>2. Leh 

={red k(A) :Ac~&k>_O&deg(red k(A))>_1} ,~={idcf(B):BE~}}, ~I ={psck(B;B') :BE~ & 

O<k<deg(B') }, ~2={ psc k(B I,B2) :B I,B2~ ~ &O<k<min(deg(B I) , deg(B2)) } and ~= 
~U~ I U ~2" Then ~will be called the projectiqn of ~. If ~=[A I .... ,A n } is 

a non-empty finite set of non-zero polynomials, we will say that the roots 
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of ~ are delineable on a set S in case the roots of the product n A=Hi=IA i 
are delineable on S. Note that the roots of each A i could be delineable 

on S without the roots of ~ being delineable on S. The next theorem 

shows how the inclusion of the set ~2 in the projection ~=proj ( ~ ) 

helps to ensure the delineability of the roots of ~. 

Theorem 5. Let ~={A I ..... ~n } be a non-empty set of non-zero real 

polynomials in r real variables, r~2. Let S be a connected subset of R r-1. 

Let ~be the projection of ~. If every element of~is invariant on S, 

then the roots of ~are delineable on S. 

Proof. By Theorem 4, the roots of A i are delineahle on S for 1<i<n. 
n 

Let ~i be the set of delineating functions for A i and let~=Ui=1~i. 

If fl,...,fm are the distinct elements of ~, with fl < f2<...<fk real 

valued, fk+1' .... fm non-real valued, and if fi(a)#fj(a) for i#j and a~S, 

then fl,...,fm delineate the roots of ~. 

and (4) of the definition of delineation 

if fi(a) is a root of Aj of multiplicity 

of multiplicity ei=E~=lei, j. Hence if fi 

For if A=H~= I A i then (I), (2) 

are obviouslv satisfied. Also, 

ei, j then fi(a) is a root of A 

.>O (a)#fj(a) for i#j then ei, 3 

just in case fi is a delineating function of Aj. So if fi(a)#fj(a) for 

all aES then the multiplicity of fi as a root of A on S is the invariant 

ei=Zjei, j where the sum is taken over all j such that fi is a delineating 

function of Aj. 

Hence it suffices to show that if fi#fj then fi(a)#fj(a) for all asS. 

Without loss of generality we may assume that fi is a delineating function 

of A 1 and gj is a delineating function of A 2. Let gl,...,g s be the deli- 

neating functions of AI, hl,...,h t the delineating functions of A 2. Let 

M be any s by t matrix of zeros and ones and let S M be the set of all aeS 

such that gi(a)=hj(a) if Mi,j=O and ~i(a)~hj(a) if Mi,].=1 for all i and 

all j. Assume S M is non-empty, and let aeS M. By continuity there is an 

open neighborhood N of a in S such that if Mi,j=1 then qi(a')~hj(a') for 

all a'eN. Since S M is non-empty, there is for each i at most one j such 

that Mi,j=O. Let (il,Jl) .... ,(il,Jl) be all the distinct pairs (i,j) 

such that Mi,j=O. Let d i be the multiplicity of fi as a root of At, ej 

the multiplicity of gj as a root of A 2. Then deg(gcd(A I (a,x), A2(a,x)) 

=Z~=imin(dk,e k) . Since psc h(A I,A 2) is in ~ for O!h<min(deg(A I) , deg(A 2)) , 

deg(gcd(A I (a',x),A2(a',x))) is invariant for all a'~S. Hence if a'cN 

and gil (a')~ hjl (a') then deg(gcd(A1(a',x),A2(a',x)))=Z h=2min(dk,ek ) 

<~ ~=im±n(dk,ek) , a contradiction. 
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So a'~S M for all a'eN. It follows that each S~ is an open subset of S. 

Since S is conDected and the sets S~, are disjoint, there is a unique 
~q 

M such that S=S M, which M must obviously satisfy Mi,j=O if and only if 

gi=hj. Hence if aeS and gi#hj then gi(a)#hj(a), comDletin c the proof. I 

Let us write der(A) for A, the derivative of A. ~Te define der°(A) 

=A and, inductively, der k+1 (A)=der(der k(~)) for k>O. 

Let ~ be a set of real polynomials in r variables, r>2. Let 

={redk(A):Ae~&k!O&deg(redk(A))~1},~={~erk(B):Be~ &O<k<de~(B)} and 

"={psck(D,D') :D~&O!k<deg(D') }. Then ~U~ where ~ is the projection 

of ~, will be called the augmented projection of ~. 

Theorem 6. Let ~ be a set of real Delynomials in r variables, r>2. 

Let S be a connected subset of R r-1. Let~ ~ be the augmented projection 

of ~. If every element of ~ ~ is invariant on S then the roots of derJ(A) 

are delineable on S for every Ae~ and every j~O. 

Proof. Let Ae~, j!O, Ae=derJ(A), ~={redk(Ae):k~O&deg(redk(A~))~1}, 

~={idcf(B):B~ 8}, ~={pSCh(B,B') :O~h<de~(B')}, and ~ = ~  . By Theorem 

4, it suffices to show that each element of ~is invariant on S. If k>O 

and deg(redk(A~))>1 then redk(A~)=redk(derJ(A))=derJ(redk(A)) so idcf 

(redk(A~))=idcf(derJ(redk(A))=a'idcf(redk(A)) for some positive integer 

a. Also deg(redk(A))!deg(redk(A~))!1 so Idcf(redk(A)) is in the projection 

of ~. Hence every element of ~is invariant on S. If j=O then the roots 

of A=der3(A) are delineable on S by Theorem 5, so assume j>O. If j~ 

deg(redk(A)) then derJ(redk(A)) is an integer and hence invariant on S. 

Otherwise, O<j<deg(redk(A)) so if B=redk(derJ(A))=derJ(redk(A)) then psc h 

(B,B') belongs to the augmented projection of ~and is invariant on S 

for O<h<deg(B'). Hence every element of ~ is invariant on S.| 

We now complete this section with discussion and specification of the 

more important subalgorithms which will be needed for the quantifier eli- 

mination algorithm. 

The quantifier elimination algorithm of the next section will require 

computation of the projection or augmented projection of~just in case 

is finite and ~=I[x I ..... Xr_1~ , r~2. Thus we assume the availability 

of an algorithm with the following specifications. 

B = PROJ (A) 
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Input!~=(A I .... ,A m ) is a list of distinct integral polynomials in r 

variables, r>2. 

Output: ~=(BI,...,B n) is a list of distinct integral polynomials in r-1 

variables, such that {BI,...pB n} is the projection of {AI,...,Am}. 

Another like algorithm, APROJ~is assumed for comnuting the augmen- 

ted projection. 

Now let ~be a unique factorization domain, abbreviated u.f.d. 

If a,be~ we say that a and b are associates, and write a~b, in case 

a=ub for some unit u. An ample set for ~(see[10]) is a set A~which 

contains exactly one element from each equivalence class of associates. 

Relative to ~we can define a function acd on ~x~ into~ such that 

gcd(a,b)e~and gcd(a,b) is a greatest common divisor of a and b for all 

a,bE~. We will assume, moreover, that ~ is multiolicative, i.e. closed 

under multiplication, from which I£~. I~%enever ~is a field we will have 

={O,1}. For~=I, we set ~={O,I,2 .... }. ~[x] is also a u.f.d and if 

~is an ample set for~we take {A:idcf(A)e~} as ample set for ~[x3 

(see [143). 

A(x)=Z~=oaiXi~ is a non-zero polynomial over 4, we set cont(A) If 

=gcd(an,an_1,...,ao), the content of A, and we set cont(O)=O. If A~O we 

define pp(A), the primitive Dart of A, to be the ample associate of A/cont 

(A), and we set pp(O)=O. The polynomial A is primitive in case cont(~)=1. 

Clearly pp(A) is primitive and A~cont(A).pp(A) for all A#O. 

Let ~ be a set of primitive polynomials of positive degree over ~. 

A basis for ~ is a set ~ of amnle primitive polynomials of positive de- 

gree over'satisfying the following three conditions: 

(a) If BI,B2e ~ and BI~B 2 then gcd(Bi,B2)=1. 

(b) If Be ~ , then BIA for some Ae ~ . 

(c) If Ae ~ , there exist B1,...,Bne ~ and positive integers el,..,e n 

such that 

A~i=iBiei(with n=O if A~I). 

If ~ is an arbitrary set of polynomials over ~, then a basis for ~ is a 

set ~= ~I U ~2 where ~1={cont(A) :AE~&A#O} and ~2 is a basis for {pp(A) : 
Ae ~ &deg(A)>O}. 

If ~ is a set of primitive Do!ynomials of positive degree then the 
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set @of ample irreducible divisors of elements of ~ is clearly a basis 

for ~. If ~I and ~2 are bases for ~, we say that 81 is a refinement 

of ~2 in case every element of ~I is a divisor of some element of ~2" 

~is the finest basis for ~ in the sense that it is a refinement of 

every other basis. 

Every set ~ also has a coarsest basis, ~, in the sense that every 

basis for ~is a refinement of ~, as we will now see. Let ~be the set 

of all ample irreducible divisors of positive degree of elements of ~. 

For Pc@ , let o(P) be the set of all positive integers i such that, 

for some Ae~,pilA but not pi+IJA. Let e(P) be the greatest 

common divisor of the elements of o(P). For P,Q in @, define P~Q in 

case, for every As ~ , the orders of P and O in A are identical. Let 

be the set of all products {[Q,pQ e(P~ with P£@ . Then it can be 

shown that ~is a coarsest basis for ~ . 

If ~is finite, its coarsest basis can be computed by q.c.d, cal- 

culation. Set ~= ~ . If A and B are distinct elements of ~, set 

C=gcd(A,B), A=A/C, B=B/C. If C#If replace A and B in ~ by the non-units 

from among C,A and B. Eventually the elements of ~will be pairwise re- 

latively prime and ~will be a coarsets basis for ~. 

A sauarefree basis for ~ is a basis each of whose elements is square- 

free. If A is any primitive element of ~[x] of positive degree, there 

exist ample, squarefree, relatively prime polynomials A I .... ,A k and in- 

tegers e1<...<e k such that A~I=!.A~il " (AI'''''Ak) and (e I ,...,e k) con- 

stitute the squarefree factorization of A. Musser, [14] and [15], dis- 

cusses algorithms for squarefree factorization, which require if~has 

characteristic zero, only differentiation, division and sreatest common 

divisor calculations. We assume the availability of an algorithm for 

squarefree factorization in ~[x] for the cases ~=I[x I ..... Xr_1~, r~1, 

and ~=Q(~), where Q(~) is the real algebraic number field resultin~ 

from adjoining the real algebraic number ~ to the field Q of the ratio- 

nal numbers. For the case ~=O(~) we assume the following specifications. 

SQFREF (~ ,A, ~,e) 

Inputs: e is a real alqebraic number. A is a nrimitive element of 0(~) 

[x~of positive degree. 

Outputs: ~=(AI,...,A k) and e=(el,...,e k) constitute the squarefree fac- 

torization of A. 
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A similar algorithm for the case ~'~u~=I~x I ..... Xr_ ~ is needed in 

order to compute a coarsest sguarefree basis for integral polynomials, 

as follows. 

e. 

If A~H~=IAi I is the squarefree factorization of A, then {AI,...,A k} 

is clearly a coarsest squarefree basis for {A}. Let ~={AIr...,A m} be 

a squarefree basis for ~, ~={B I ..... B n} a squarefree basis for ~. Con- 

sider the following algorithm proposed by R. Loos: 

(I) For j=1,...,n set B.÷B.. 
J 3 

(2) For i=I ..... m do [Ai+Ai ; for j=1 ..... n do (Ci,j÷gcd(Ai,Bj) ; Ai÷Ai/Ci,j; 

Bj÷Bj/Ci,j)]- 

(3) Exit. 

Upon termination, the distinct nonunits among the Ai' the Bj -- and the 

C.. constitute a squarefree basis ~ for ~=~U ~. Moreover, if ~ and 

are coarsest squarefree bases, then so is ~. Thus by s~uarefree fac- 

torization and application of Loos' algorithm we can successively ob- 

tain coarsest squarefree bases for {AI}, {AI,A2},..;{AI,A2,...,Am}. 

Thus we assume the availability of the following basis algorithm. 

~= BAsls(d) 

~=(AI,...,A m) is a list of distinct integral polynomials in Input: r 

variables, r>1. 

Output: ~=(BI,...,B n) is a list of distinct integral polynomials in 

r variables such that {BI,...,B n} is a coarsest squarefree basis for 

{A I .... ,Am}. 

A similar algorithm, ABASIS, with an additional input e, a real 

algebraic number, will be assumed for computing the coarsest squarefree 

basis when ~ is a finite list of univariate polynomials over Q(~). 

A recent Ph.D. thesis by Rubald, [16]; provides algorithms for the 

arithmetic operations in the field Q(~) and in the polynomial domain 

Q(~)[x]. Rubald also provides an efficient modular homomorphism al~o- 

rithm for g.c.d, calculation in Q(e) Ix3. An imDortant feature of Rubald's 

work is that the minimal polynomial of ~ is not required. Instead, 

is represented by any pair (A,I) such that A is a primitive squarefree 

integral polynomial of positive degree with A(e)=O, and I=(r,s) is an 

open interval with rational number endpoints such that ~ is the unique 
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zero of A in I. This feature is important because as yet (see [6 ! ) no 

algorithm with polynomial-dominated maximum computing time is known for 

factoring a primitive univariate integral polynomial into its irreducible 

factors. A non-zero element 8 of Q(e) is then represented by any poly- 

nomial B(x)eQ[x3 such that deg(B)<deq(A) and B(~)=B . Although this re- 

presentation fails to be unique whenever A is reducible, no difficul- 

ties arise. 

The next algorithm is easily obtained using Sturm's theorem, since 

Rubald's work provides an efficient algorithm for determining the sign 

of any element of Q(~), and because his algorithm for g.c.d, calcula- 

tion in Q(~)[x] can be extended to the computation of Sturm sequences. 

ISOL(e, ~ , I ,v ) 

Inputs: ~ is a real algebraic number. ~=(AI,..,Am) is a list of non-zero 

squarefree and pairwise relatively prime polynomials over Q(~). 

Outputs: I=(I1,...,I n) is a list of open intervals with rational end- 

points with Ii<I2<...<I such that each I. contains exactly one real 
n 3 

zero of A=Ki= Im Ai, and every real zero of A belongs to some I..3 

~=(Vl,...,v n) is such that the zero of A in Ij is a zero of Av.. 
3 

The Algorithm ISOL can be easily obtained by application of Sturm's 

theorem and repeated interval bisection. Heindel, [113, presents an 

algorithm of this type for the case of a single univariate integral poly- 

nomial. If the real zeros of each A i are separately isolated, then the 

resulting intervals can be refined until they no longer overlap, while 

retaining the identity of the polynomials from which they came. 

In the quantifier elimination algorithm, occasion will arise to 

reduce a multiple real algebraic extension of the rationals, Q(el,...,~m), 

to a simple extension Q(e). This can be accomplished by iterating an al- 

gorithm of Loos, [12], based on resultant theory, with the 

following specifications. 

SIMPLE (~, 8 ,y, A,B) 

Inputs:~ and 8 are real algebraic numbers. 

Outputs: y is a real algebraic number. A and B are polynomials which 

represent e and 8 respectively as elements of Q(y). 
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Finally, one additional subalgorithm, also provided in [I~ , is 

the following. 

NORMAL (~ ,A, I ,A, I) 

Inputs: ~ is a real algebraic number. A is a non-zero polynomial over 

Q(e). I=(I1,...,I m) is a list of rational isolating intervals, II<I2< 

...<Im, for the real zeros of A. 

OutDuts: A is a non-zero squarefree primitive integral polynomial such 

that every real zero of A is a real zero of A. 

I=(I,...,I m) is a list of rational intervals with I~I. such that if ~. 
3--_J 3 

is the zero of A in Ij then ej is the unique zero of A in ~j, I <j<m. 

3. The Main Algorithms. We define, by induction on r, a cylindrica!l 

algebraic decomposition of R r, abbreviated c.a.d. For r=1, a c.a.d, of 

R is a sequence ($i,S2,...,S2v+i), where either v=O and SI=R , or v>O 

and there exist v real algebraic numbers ~I<~2<...<~ such that S2i v 
={~i } for I<_i<~, $2+ I is the open interval (~i,ei+1) for 1<_i<v, $1=(-~,~ I) 

and S2v+1=(~v, ). Now let r>1, and let (S1,...,S u) be any c.a.d, of R r-1. 

For I<i<~, let fi,1<fi,2<...<fi,vi be continuous realvalued algebraic 

=S.xR. If v >O set S , that is, functions on S i. If vi=O , set Si, I 1 i i'2j=fi,j 

Si,2j ={ (a,b) :aESi&b=fi, j (a)} for 1<j<_vi, set Si,2j+1={ (a,b) :a~Si&fi, j (a) 
(a)} 

<b<fi,j+ I for 1<_J<vi, set Si,1= { (a,b) :a~Si&b<fi, I (a)}, and set 

Si,2vi+l={ (a,b) :aeSi&fi,vi(a)<b}. A c.a.d, of R r is any sequence ($1,1' 

• ,S , _~) which can be obtained by this con- " "" '$1,2v i+I' " " 7S~ ,I' " " ~,~v ~J 

struction from a c.a.d of R r-1 and functions f. . as just described. 
1,3 

It is important to observe that the cylinder S.xR is the disjoint 1 
i~2vi +I 

union ~j=1 Si, j for 1<i<uo If S=(S1,...,S ) is any c.a.d, of R r, the 
u 

S i will be called the cells of S. Clearly every cell of a c.a.d, is a 

connected set. If ~is a set of real polynomials in r variables, the 
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c.a.d. S or R r is ~-invariant in case each A in ~ is invariant on each 

cell of S. 

A sample , of the c.a.d. S=(S I .... ,S ) is a tuple 8=(81 .... ,8 ) such 

that 8ieS i for I~i~ . The sample 8 is algebraic in case each 8 i is an al- 

gebraic point, i.e. each coordinate of 8 i is an algebraic number. A 

c[lindrical sample is defined by induction on r. For r=1, any sample 

• +i ) be is cylindrical. For r>1, let S=($I,1,...,$I,2vI+I,...,S ,I, ..,S ,2v u 

a c.a.d, of R r constructed from a c.a.d. S~=(SI,...,S u) of R r-l, and let 

8 W =(81,...,8 u) be a sample of S*. The sample 8=(81,1,...,81,2vi+I,..., 

8 ,i,...,8 ,2v +I ) of S is cylindrical if the first r-1 coordinates of 

8i,j are, respectively, the coordinates of 8i, for all i and j, and 8 W is 

cylindrical. Cylindrical algebraic sample will be abbreviated c.a.s. 

Since a c.a.d, of R r can be constructed from a unique c.a.d of R r-1 , 

any c.a.d. S of R r determines, for 1~k<r, a c a.d. S W of R k • , which will 

be called the c.a.d, of R k induced by S° Similarly any c.a.s. 8 of S 

induces a unique c.a.s. 8 W of S . 

If S is an arbitrary subset of R r, the standard formula ~(Xl,...,x r) 

containing just Xl,.0.,x r as free variables, defines S in case S={ (a I , 

...,ar):al,...,arER&#(al,...,ar) }. A standard definition of the c.a.d. 

S=(SI,...,S ~) is a sequence (#I' .... #u) such that, for 1~i~u, %i is a 

standard quantifier-free formula which defines S i. 

We are now prepared to describe a decomposition algorithm, DECOMP. 

The inputs to DECOMP are a finite set ~ of integral polynomials in r 

variables, r>1, and an integer k, O<k<r. The outputs of DECOMP are a 

c.a.s. 8 of some ~-invariant c.a.d. S of R r and, if k~1, a standard 

definition ~ of the c.a.d. S ~ of R k induced by S. 

Before proceeding to describe DECOMP we first explain its intended 

use in the quantifier elimination algorithm, ELIM, which will be described 

subsequently. ELIM has two distinct stages. Given as input a standard 

prenex formula %, namely (Qk+iXk+1)... (QrXr) ~ (x1,...,Xr), ELIM applies 

DECOMP to the set ~of all non-zero polynomials occurring in ~ , and 

the integer k. The outputs S and ~ of DECOMP, together with the formula 

%, are then input to an "evaluation" algorithm, EVAL, which produces a 

standard quantifier-free formula #~ (Xl,...,x k) which is equivalent to 

~. Thus, ELIM does little more than to successively invoke DECOMP and 
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EVAL. 

DECOMP uses a subalgorithm, DEFINE, for construction of the stan- 

dard definition. The inputs to DEFINE are an integral polynomial 

A(xl,...,Xr),r~2, such that for some connected set _SCR r-1 the real 

roots of A and of each derivative of A are delineable on S, and an al- 

gebraic point 6eS. The output of DEFINE is a sequence (#i,...,#2m+i) of 

standard quantifier-free formulas ~i such that if ~ is any formula which 

defines S, then the conjunction %A% i defines the it_~h cell of the cylin- 

der SxR determined by the m real roots of A on S, as in the definition 

of a c.a.d. The description of DEFINE will be given following that of 

DECOMP. 

DECOMP( ~ ,k,6,~) 

Inputs: ~=(AI,...,A m) is a list of distinct integral polynomials in r 

variables, r>1. k is an integer such that O<k<r. 

Outputs:~ is a c.a.s, for some ~-invariant c.a.d. S of Rr.~ is a stan- 

dard definition of the c.a.d. S of R k induced by S if k>O, and ~ is the 

null list if k=O. 

Algorithm Description 

(I) If r>1, go to (4). Apply BASIS to ~, obtaining a coarsest squarefree 

basis ~=(B I ..... B h) for ~. Apply ISOL to ~, obtaining outputs I=(I1, 

. .,I n ) and ~=(~I .... 'Vn )" (Each Ij contains a unique zero, say ~j, of 

B, and ~i<~2<...<~ are all the real zeros of elements of ~. Thus n 
3 

the ~j determine an ~-invariant c.a.d. S of R, and (B ~ .,Ij) represents 
ej). 3 

(2) For j=1,...,n, where Ij=(rj,sj), set 62J -I÷r'3 and 82j÷~ j.If n=O, set 

82n~i+O and if n>O, set S2n+1÷Sn . Set 8÷(81,...,62n+i). (6 is now a 
c.a.s, of S.) 

(3) If k=O, set ~÷() and exit. If n=O, set ~i÷"0=0",~+(~i) and exit. For 

, . . . .  ÷ if i=I ,h do [~i,n÷Sign(idcf(Bi)); for j=n-1 .... ,0 set si,3 (-~isj+1 

i=vj+1,si,j+ I otherwise)]. (Now ~i,j is the sign of B i in $2j+I , where 

S=($I,...,$2n+I).) For j=1, .... n, where rj=aj/bj and sj=cj/d j with bj>O 

and d 3.>O, set ~2j÷"B~j=O&bjXl-aj>O&djXl-Cj<O". (Now ~2j defines Sj={ej}.) 
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For j=1 .... ,n-l, set ~2j+1+"a .B >O&a .B >O&bjXl-aj>O&dj+ix I 
vj, 3 v j vj+ 1,3 vj+ I 

-cj+1<O". (If vj=vj+ I then the first two conjuncts are identical, so one 

1>O&dlxl ÷" >O&bnX I can be omitted.) Set ~1÷"a 1,oB v -ci<O" and ~2n+I ~ nBv 
Vn' n 

-a n>O". Set #+(~i,...,~2n+i ). (~ is now a standard definition of S.) Exit. 

(4) Apply BASIS to ~, obtaining ~, a coarsest squarefree basis for ~. 

(This action is inessential; we could set ~÷ ~. But the algorithm is 

likely more efficient if the coarsest squarefree basis is used, and it 

may be still more efficient, on the average, if the finest basis is com- 

puted here.) If k<r, apply PROJ to ~ , obtaining the projection, ~ , of 

. If k=r, apply APROJ to ~, obtaining the augmented projection, ~, 

of ~. 

(5) If k=r, set k'÷k-1; otherwise, set k'÷k. Apply DECOMP (recursively) 

to ~and k', obtaining outputs 8' and ~' (For some ~-invariant c.a.d. 

S' of R r-l, B' is a c.a.s, of S' and ~' is a standard definition of the 

c.a.d. S W of R k' induced by S', except that ~'=() if k'=O. Since~con- 

tains the projection of ~ and S' is ~-invariant the real zeros of 

are delineable on each cell of S' by Theorem 5. Hence S', together with 

the real algebraic functions defined by elements of ~ on the cells of 

S', determines a c.a.d. S of R r. S is ~-invariant and therefore also 

-invariant since ~ is a basis for ~. Also, S ~ is induced by S .) 

(6) (This step extends the c.a.s. 8' of S' to a c.a.s.8 of S. Let 8 '= 

(8' 1 ..... 8[ ) and 8'j=(B'9,1 . . . . .  ,B~,r_ I) We assume, inductively, that 

Sj there is associated with each algebraic point ' an algebraic number ~j 

such that Q(8~ ' which repre- 3,1 .... 'Bj'r-I)=Q(~j ) and polynomials B~ 3,k 
! sent the 8j, k. The basis for this induction is trivial since the polyno- 

' =~' ~ ~ is irrational, and mial x represents 8j, I j as an element of Q(e ) if a3 

if ~ is rational it represents itself as an element of Q-Q(j).) Let 8J 
=(B 1,...,Bh). For j=1,..., 1 do [For i=I, .... h set B~3,i(x)÷Bi(8 i,I' 

I ...,Bj,r_1,x). (B~ . is a polynomial over Q(a~).) Apply ABASIS to ~ and 
B~ . 3,i ~ ^ A ] ] 
( ,1,...,Bj,h), obtaining =(Bj,I, .... ~j,mj) a coarsest squarefree basis. 

A 
Apply ISOL to ~[ and B~, obtaining outputs I~=(I~ ~,...,Ij,n.) and vj 

3 A J J J'" . in I~., and ). (B has a unique real zero yj,n A 3, K =(vj,1 ..... Vj,nj 3,vj, k 
Yj,1<...<Yj,n are all the real zeros of elements of ~j. For k=1 ..... 

^3 
mj do ~et Ij, k to the subsequence of I. consisting of those Ij, ! such 

^ 3 
that Vj,l=k. (Then Ij, k is a list of rational isolating intervals for the 

A 
real roots of ~j,k.) Apply NORMAL to~,Bj, k and Ij, k, obtaining as out- 
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puts Bj,k and Ij,k. ] Merge the sequences I ~ 3' k into a single sequence 

~'=(~J3 ,I .... 'Ij,nj- ) with ~j,1<~j,2 <...<~.3,nj. (Now Yj,k is represen- 

ted by (Bj,k,Ij,k).) If n.=O,3 set ~j,1+O. If n.>0,3 for k=1 ,...,nj, where 

~j,k=(rj,k,Sj,k ) , set 6j,2k_1÷rj,k and ~j,2k÷Yj,k; also set 6j,2n.+1÷Sj,n . 
3 3 

I I For k=1 .... ,2nj+1, set 8j,k÷(Sj,1 , .... 8j,r_1,~j,k). For k=1,...,2n.+1 
3 

I apply SIMPLE to ~j and 6j,k' obtaining outputs ~j,k,Aj,k and Bj, k. (Now 
! I i ! 

Q(Sj, I ..... 6j,r_1,~j,k)=Q(~j,~j,k)=Q(aj, k) , Aj, k represents ej in Q(ej,k ) , 
and Bj, k represents 6j,k in Q(~j,k ) .) For h=1,...,r-1 and k=1 .... ,2nj+1 , 

where ~j,k is represented by (CJ, k'I'3,k)' set Dj,h,k(X)~B i,h(Aj,k(x)) 
I-- I ~E I I modulo Cj,k(X). (ej-Aj,k(~j,k)'8 j,h j,h(~j) and Cj,k(~j,k)=O, so Dj,h, k 

u 

represents 6j,h in Q(~j,k).)] Set 8÷(81,1 .... ,61,2nI+I,...,81,i,... , 
81,2ni+i). (Now 8 is a c.a.s, of S.) 

(7) If k<r, set ~÷~' and exit. (If k<r, then k'=k so ~' is a standard 

definition of the c.a.d. ~ of R k induced by S', and hence induced also by 

S. Otherwise k=r,k'=r-1 and we next proceed to extend the standard de- 

finition 4' of S' to a standard definition ~ of S. Since k=r, ~ is the 

augmented projection of ~ and, by Theorem 6, the real roots of every deri- 
vative of every element of ~ are delineable on every cell of S' because 

S' is ~-invariant.) For j=1,...t 1 do [For i=1,...,h apply DEFINE to 
v B i and 89 ' obtaining as output a sequenceXi ,j=~i,j,1 .... 'Hi,j,2n..+I )" 

1,3 
(~i,j,k is a standard quantifier-free formula such that ~3&Xi,j,k de- 
fines the kth cell of the cylinder S'xR as determined by the real zeros 

3 
of B i on S~.3 We next proceed to use the~i,j,k to define the cells of the 
cylinder S'xR3 as determined by the real zeros of B=K h=IB i, that is, the 

cells of the jth cylinder of S, using the results of step (6). Observe 

that B has nj real zeros on S. and that the kth real zero is a zero of 
^ 3 -- ^ 
Bj,~j,k ") For i=1,...,h and k=1,...,nj, set ~i,j,k=1 if B.3,gj,k is a 

divisor of B3,i, and 6i,j,k=O otherwise. (Now 6i,j,k=1 just in case 

B ~.3, i(Yj,k)=O. For k=1,...,nj,w set lj,k to the least i such that. 6.l,j,k=1. 

(Now Yj,k is a root of B3, lj,k') For k=1 ..... nj, set/~,k÷Zll3__{k6i,j,k . 

. Hence the kth real root of (Now Yj,k is the ~,kth real root of B3,1j,k 

B on S i is the~,kth real root of BI.3,k on S:3 ") For k=1,...,nj set ~j,2k 

÷~j&~j,k,J,2/~, k . "  For k=1 ..... nj-1 set ~j,2k+1÷¢i&~lj,k,j,~,k+1& 

~lj,k+1,J,~j,k+1_1. If ~j,k=~j,k+1 then the last two conjuncts of ~j,2k+1 

coincide so one may be omitted.) If n.>O, set ~. ~V:&~I and 
3 3, 3 ~'.i,J,I 

~j,2nj+1÷~3&~lj,n,J,2~,nj+1 - If nj=O, set~j,1÷~3. ] 
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Set ~÷(~1,1 .... '~1,2nI+I' .... ~1,2~+i ) . (Now ~ is a standard defini- 

tion o f  S . )  E x i t .  

Next we describe the algorithm DEFINE. 

= DEFINE (B, 6) 

Inputs: B is an integral polynomial in r variables, r~2, such that for 

some connected set S_~ r-1 the real roots of B and of each derivative 

of B are delineable on S. 6 is an algebraic point of S. 

Output: ~=(#i,...,~2m+I ) is a sequence of standard quantifier-free for- 

mulas #i such that if ~ defines S then ~&#i defines the ith cell of the 

cylinder SxR as determined by the m real roots of B on S. 

Al~orithm Description 

(I) (We let 6=(61,...,8r_i). As in DECOMP, we may assume that we are 

given an algebraic number ~ such that Q(61,...,Sr_I)=Q(~), and polynomials 

B i which represent 6 i as elements of Q(~). Set BW(x)=B(61,...,Sr_1,x). 

Apply SQFREE to e and B ~, obtaining the list ~=(BI,...,B ~) of squarefree 

factors of B ~ and the list (el,...,e h) of corresponding exponents. Apply 

ISOL to ~ and ~, obtaining as outputs the lists (I1,...,I m) and (~I' 

.... ~m ) . (Ij isolates the jth real zero, yj, of the elements of ~, 

- , ~÷(~i ) and exit. For and yj is a zero of B.) If m=O, set ~i÷"O-O '' 
3 

i=1,...,m set ui÷e~.. (Now Yi is a zero of ~ of multiplicity ~i.) Set 
l i 

u j+1 (Now ~ is the ~m÷sign (idcf(B~)). For j=m-1,. .. ,O set ~j÷(-1) ~j+1" 3 

sign of B in the (2j+I) th cell of the B-invariant decomposition of the 

cylinder SxR.) If m=1 and ul is odd, set ~I÷"~oB>O"'#2÷"B=O '', %3÷"~B>O '', 

%÷(#i,%2,~3 ) , and exit. 

(2) Set B~'+der(BW), G+gcd(B~,B ~') and H÷B~'/G. (Now H(6)=O if and only 

if BW' (6)=O and Ba(6)~O.) Set H ÷gcd(H,H'). (H is squarefree and has 

the same roots as H.) Apply ISOL to ~ and the list (H), obtaining as 

output the list I'=(I~,...,I~) of isolating intervals for the roots of 

B~'which are not roots of B . For j=1,...,m and k=1,...,n, if Ij and I~ 

are non-disjoint, replace Ij by its left or right half, whichever con- 

tains a root of B a, and replace I~ by its left or right half, whichever 

contains a root of B ", and repeat until Ij and I~ are disjoint. Set n o 

to the number of intervals I~ such that Ik<I I. For j=1,...,m-1, set nj 
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to the number of intervals I~ such that Ij<Ik<Ij+ I. Set n m to the num- 

ber of intervals I~ such that Im<I ~. Set 11÷no" For j=1,...,m set 129 

÷{12j_i if ~j=1; 12j_i+I if uj>1}, and 12j+1÷12j+nj. (Now 12j-I is the 
number of zeros of B ~' less than yj, 12j is the number less than or 

equal to yj, and 12m+i is the number of all the zeros.) 

(3) Set B'÷der(B). Apply DEFINE to B' and 8, obtaining (~ ..... ~i ) as out- 

put. (Thus DEFINE is a recursive algorithm; its termination is assured 

because deg(B')<deg(B) .) 

(4) (This step computes ~2i for 1~i<_m.) For i=1,...,m if ui>l set #2i ÷ 

#~12 £. (If Ui>1 then the it_hh real zero of B is the 12i-t_~h real zero 

of B'.) For i=1,...,m if U.=11 set ~2i÷"B=O&#~12i_1+1 ''. (There are 12i-I 

zeros of B less than the ith zero of B, so the ith zero of B is in the 

121i_i+i-th cell of the B' decomposition. By Rolle's theorem, any two 

real zeros of B are separated by a zero of B' so there is only one zero 

of B in this cell.) 

(5) (This step defines #2i+I for 1~i<m. There are four cases.) For 

i=1,...,m-1 if ~i>I and ui+1>1 set %2i+1÷V212i+1<j<212i+2_1~i._ _ (In this 

case the it_~h zero of B is the 12ith zero of B' and the (i+1)t_~h zero of 

B is the 12i+2th zero of B'.) For i=1,...,m-1 if ui=1 and ui+1>1 set 
% J 

~2i+I÷{ ~iB>O&~2l 2i+i }V { V212i+2<j<212i+2_1%~}. ( T h e r e _  _ _ are 12i zeros 

of B' less than the ith zero of B. By Rolle's theorem the ith zero of B is 

only zero of B in the (212i+I)th cell of the B' decomposition. Since 

ui=1, B changes sign from ai_ I to a i at this zero.) For i=1,...,m-1 if 

V212i+1Ij!212i+2 ~' ~i>I and Pi+1=1 set ~2i+1÷{aiB>O&%~12i+2+1}~ { j}. (This 

case is similar to the preceding case.) For i=1,...,m-1 if ui=1 and 

set # .... ÷{a_B>O&~l. _.}~{a B>O&~ .}V {V . . . .  
Ui+1=1 ~, i zA2it~ i ZA2i+2 +1 212i+2<j<zA2i+2 

(6) (This step defines ~I and ~2m+i.) If ui>I set ~1÷V1<j<212_1~i. If 

' {~I ~ }" If I set ~2m+1÷V212m+1 ~i=I set ~1÷{OoB>O&~212+1}V ~J~212 3 ~m> 

<3<212m+i+i~ 3 .  !. If Um=1 set #2m+1÷{amB>O&~12m+1}V {V212m+2<j<212m+1_ _ +I 
! 

#j}. Set #÷(~i,...,#2m+I ) and exit. 
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Let ~ be any formula in r free variables and let S~Rr.% is invari- 

ant on S in case either (al,.°.,a r) is true for all (al,...,ar)CS or 

(al,...,ar) is false for all (al,o..,ar)eS. If S is a c.a.d, of R r, we 

say that S is ~-invariant in case ~ is invariant on each cell of S. If 

is a standard quantifier-free formula in r variables, ~ is the set 

of all non-zero polynomials which occur in % , and S is an ~-invariant 

c.a.d, of R r, then clearly S is also #-invariant. 

If ~ is a sentence, we will denote by v(%) the truth value of #, 

with "true" represented by I, "false" by O. Accordingly, if (v 1,...,v n) 
n =I and is a vector of zeros and ones, then we define ~i=lVi=1 if each v i 

n 
n n .=0 and k~ i ivi=1 ~i=Ivi=O otherwise. Similarly, we define ~i=ivi=Oifeach v i = 

otherwise. If % is a formula in r free variables and a=(al,...,ar) eRr, 

we set v(#,a)=v(#(a I .... ,ar)). If ~ is invariant on S, we set v(~,S) 

=v(%,a) for any aeS. 

The following theorem is fundamental in the use of a c.a.d, for 

quantifier elimination. 

Theorem 7. Let ~(Xl,...,x r) be a formula in r free variables and 

let ~W be ~Xr) ~ or (~Xr)~. If r>1, let S be a ~-invariant c.a.d, of 

R r, S* the c.a.d, of R r-1 induced by S. Then S ~ is # -invariant. If 

S e =(SI,..°,S m) and S=(SI,I,...,SI,~,...,Sm,I,...,Sm, n ) where (Si, I ..... 
n. m 

Si,ni ) is the ith cylinder of S, then V~Xr)~,Si)--~j~IV(~,Sij) and 

n. 
v((~Xr)#,Si)=~jllV(~,Si,j).= If r=1 and S=(S 1,°..,S n) is a c.a.d, of R, 

then v((~x 1)#)=~=Iv(#,Si ) and v((~x I)%)=~=I (%'Si) " 

Proof. We will prove this theorem only for r>1, and only for the 

case that #~ is (~Xr) ~. The omitted cases are similar. So let S=(S 1 I' 

...,Sl,nl,...,Sm,1,...,Sm,nm) be a %-invarxant c.a.d, of R , S =(SI,...,S m) 

the c.a.d, of R r-1 induced by S. Let 1~i<_m and choose (al,...,ar_1)£S i. 

Assume #~(al,...,ar_ I) is true. Let (b1~...,br_1)eS i. Let br~R. Then for 

some j, (bl,...,br) eSi, j. Choose a r so that (a I ..... ar) eSi, j. Since ~m 

(al,...,ar_ I) is true, ~(al,...,ar_1,a) is true for all aeR. In particu- 

lar, ~(al,...,a r) is true. Since S is %-invariant, ~ is invariant on Si, j. 

So ~(bl,...,b r) is true. Since b r is an arbitrary element of R, ~ 

(bl,...,br_ 1) is true. Since (bl,...,br_ I) is an arbitrary element of S i, 

#w is invariant on S i. Since S i is an arbitrary element of S, #~ is 
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S-invariant. This completes the proof of the first part. 

Now assume v(# ~, Si)=1. Let 1<_j<_n i. Choose (al,...,ar_1)eS i. By 

the first part, ~ais S-invariant so %~ (al,...,ar_ I) is true. Hence 

(a I ,...,a r) is true for all ar~R. Choose a r so that (a I ,...,an r)Esi'j" 
By the ~-invariance of S, v(~,Si,9)=1. Since j is arbitrary,~jilv(#,Si, j) 

=I. 

Next assume v(#~,Si)=O. Choose (al,...,ar_1)eSi. Since ~ais S-in- 

variant, ~ eR, ~ a r) is (al,...,ar_ I) is false. Hence for some a r (al, .... 

false. Let (al,...,ar)eSi, j. By the ~-invariance of S, v(~,Si,j)=O. Hence 
n. 

Aj~I v(~,Si,j)=O. 

Let a,b,eR r with a=(a 1,...,ar) and b=(b 1,...,b r) . We define a~b 

in case ai=b i for 1<_i<k. Note that a~b if and only if a=b, while a~b 

for all a,bER r. We define a<b in case a~b and ak+1<bk+ I for some k, 
O<k<r. The relation a<b is a linear order on R r _ , which we recognize as 

the lexicographical order on R r induced by the usual order on R. We note 

that if (~I,...,8m) is a cylindrical sample of a c.a.d. S, then BI<82 < 

• . .<8 m. 

The cylindrical structure of a c.a.d. S is obtainable from any 

c.a.s. S of S. We define a grouping function g. Let B=(81,...,Bm) by any 

sequence of elements of R r. Then for O<_k<_r, g(k,B)=((81,...,Snl), (8ni+i , 

.... 8n2) ..... (8ni_I+ I ..... 8nl)) where 1<n1<n2 < _  ...<nl_1<nl=m,Sj~Sj+1 for 

ni<J<ni+1, and 8n ~kSn +i. Note that g(O,8)=((81,...,Sm) ) and g(r,8) 
1 1 

=((81 ) ..... (Sm)). Also, if S is a c.a.d, of R r, Se=(S I,...,S m) is the c.a°d. 

of R k induced by S, and 8 is a c.a.s, of S, then g(k,B)=(8~, .. 8 a 
is the list of those points in 8 which belong to S~.xR r-~. " ' m) where 8i z 

We define now an evaluation function e. Let ~ (x 1,...,xr) be a stan- 

dard quantifier-free formula, S a ~-invariant c.a.d, of R r, 8 a c.a.s, of 

S, and let ~(x 1,...,xk) be (Qk+iXk+1) k... (QrXr)~ (x 1,...,xr) ,O<k<r. 
Let S~=(S~ .... ,~m ) be the c.a.d, of R induced by S, 8"=(8~ - - ~ 

, •.. ,8 m) 

=g(k,8). Then we define e(~ a ,8~) by induction on r-k, as follows. If 

k=r, then %~ is 4, 81=(8i), and we define e(~,8~.)=v(~,8 ). If k<r, let 
A • ;% 1 1 

g (k+1,Si)= (~i,... Then each 3 ,8n)=8. 8. is in the sequence g(k+1,8). Let 

(x I, .... Xk+ I) be (Qk+2Xk+2) ... (QrXr)~ (x 1,...,xr) . Then we define 
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B~) An , 
e(#~' i =/~=le[~'gj )' if Qk+1=~, 

e(#~, 8 i) =le(~, 8j), if Qk+1 ~" 

Theorem 8. Let ~(x I ,... ,x r) be a standard quantifier-free for- 

mula, S a ~-invariant c.a.d, of R r, 8 a cylindrical algebraic sample of 

S. Let %~(x 1,...,x k) be (Qk+iXk+1)... (QrXr)# (x 1,...,x r) , O_<k<_r. If k>O, 
let Sa=(S~ .... Sm~) be the c.a.d, of RKinduced by S and let g(k,8)=Se 

, .... B )° Then e(#a,8 )=v(% ~ ,S ) for 1<_i<m. If k=O, then e(% ~ ,8) 

=v(~* ). 

Proof. By an induction on r-k, paralleling the definition of e 

and using Theorem7 .I 

By Theorem 8, if k=O, then e(#a,B) is the truth value of #~ 

If k>O, let ~=(~1,...,~m ) be a standard definition of the c.a.d. S W, 

as produced by DECOMP, and let ~ be the disjunction of those #i such 

that e(# W ,~)=I° Then ~ is a standard quantifier-free formula equi- 

valent to %~ 

The function e can be computed by an algorithm based directly on 

the definition of e. e(# W ,8 ~i ) is ultimately just some Boolean function 

that of the truth values of # at the sample points 8j in the list 8 i, 

is, of the v(#,Sj). It is important to note, however, that usually not 

all v(~,B.)3 need be computed. For example, if Qk+1 =~ then the computa- 

tion of e(~a,8~) can be terminated as soon as any j is found for which 

e(@,8.)=O. Similarly, the computation of v(~,8),8 an algebraic point, 
3 

is Boolean-reducible to the case in which # is a standard atomic for- 

mula. This case itself amounts to determining the sign of A(BI,...,B r) 

where A is an integral polynomial and 8=(81,...,8 r) is a real algebraic 

point. With 8 we are given an algebraic number ~ such that Q(81,...,8 r) 

=Q(~) and rational polynomials B. such that 8i=B i (~). We then obtain sign 
l 

(A(81,...,s r))=sign(A(B 1 (~),...,B r(~)))=sign(C(~)) using an algorithm 

of [I 

Since a standard formula % may contain several occurences of the 

same polynomial, we assume that the polynomials occurring in % are stored 

uniquely in a list ~ inside the computer, and that the formula % is 

stored so that the atomic formulas of # contain references to this 

list in place of the polyn6mials themselves. Note also that the list 

need not contain two different polynomials whose ratio is a non- 
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zero rational number. In computing v(~,6), a list s should be maintained, 

containing sign (A(6)) for various polynomials A~ . Whenever the com- 

putation of v(#,8) requires the computation of sign(A(8)) the list 

should be searched to determine whether sign(&(8)) was previously 

computed; if not, sign(A (8)) should be computed and placed on the 

list. Thus the computation of v(%,8) will require at most one compu- 

tation of sign(A(6)) for each Ae ~, and in some cases sign(A(8)) 

will not be computed for all A~ ~. 

In terms of the funetions g and e, the evaluation algorithm can 

now be described as follows. 

~ = EVAL (%~, ~,~) 

Inputs: #Wis a standard prenex formula (Qk+iXk+1)... (QrXr)#(Xl,...,Xr) 

where O<k<_r and # is quantifier-free. 8 is a c.a.s, of some #-invariant 

c.a.d. S of R r. # is a standard definition of the c.a.d. S ~ of R k in- 

duced by S if k>O, the null list if k=O. 

Output: ~ = ~ (x I ..... Xk) 

lent to # W . 

is a standard quantifier-free formula equiva- 

Algorithm Description 

(I) If k>O go to (2). Set v=e(#~,8). If v=O set ~W÷"I=O". If v=1, set 
4e +,O=O... Exit. 

(2) Set S~+g(k,8). Let BW=(B1 ..... ~m) and ~=(~I .... ,~m ) . Set ~÷"I=O". 

For i=I ..... m if e(~,8~)=I set #e÷~iV~ Exit. 

Finally we have the followin~ ~uantifier elimination algorithm. 

~ = ELIM (#~) 

#w is a standard prenex formula 

where O~k~r and % is quantifier-free; 
(Qk+iXk+1) • . . (QrXr) ~ (x I , • . . ,x r) 

~Wis a standard quantifier-free formula equivalent to ~. 

Algorithm Description 

(I) Determine k. Extract from # the list ~=(AI,...,~) of distinct 

non-zero polynomials occurring in ~. 
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(2) Apply DECOMP to ~and k, obtaining 

(3) Set ~ ÷EVAL(~,6,~) and exit. 

6 and 9 as outputs. 

4. Algorithm Anal[sis. Step (4) of the algorithm DECOMP provides 

for the optional computation of a basis ~ for a set ~ of integral poly- 

nomials. Experience with the algorithm provides a strong indication 

that this basis calculation is very important in reducing the total 

computing time of the algorithm. If the set~ is the result of two or 

more projections, as in general it will be, then it appears that the 

polynomials in ~have a considerable probability of having factors, 

common factors, and multiple factors. This will be discussed further 

in Section 5. But, as remarked in Section 3, the basis calculation of 

step (4) is not essential to the validity of the algorithm. In order 

to simplify the analysis of the algorithm,we will assume that this 

basis calculation is not performed. In general, the polynomials in 

the basis ~ will have smaller degrees than the polynomials of ~, but 

the number of polynomials in ~ may be either greater or less than the 

number in ~. 

In Section 3 we gave conceptually simple definitions of projection 

and augmented projection, which definitions can be improved somewhat in 

order to reduce the sizes of these sets. It is easy to see that in the 

definition of the projection we can set ~2={psc~(redi(A),redJ(B)) : 

A,Be &A<B&i~o&j~O&O~k<min(deg(redi(A)), deg(re~(B)))}, where "<" is 

an arbitrary linear ordering of the elements of ~. Also, in the defi- 

nition of the augmented projectionlwe can set~psck(derJ(redi(A)), 

derJ+1(redi(A))) :Ae ~ &i~O&j~O&O!k<deg(derJ+1(redi(A)))}. Then the 

set ~I in the definition of the projection is contained in~', and 

the augmented projection of ~is ~U~ 2 0 ~'. 

Now suppose that the set ~ contains m polynomials, with the de- 

gree of each polynomial in each variable at most n. Assume m~1 and n~1. 

Then the set ~contains at most mn elements. In the set ~2, the pair 
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(A,B) can be chosen in {~I ways. Since k<min(deg(redi(A)) , deg(red j (B))) 

<_min(n-i,n-j)=n-max(i,j), we have O~i,j~n-k-1. Hence for given k, O~k~n-l, 
2 the pair (i,j) can be chosen in at most (n-k) ways. Hence (i,j,k) can be 

rm~n (n+1) (2n+I) _n-l, . .2 n(n+1)(2n+I) ways. So ~2 has at most k2) chosen in zk=O~n-K) = 6 

elements. In the definition of the set ~', we must have k<n-i-j-1. For 
-n-k-2 (h+1)= (n2k)ways Hence given k, O<k<n-2, (i,j) can be chosen in ~h=O 

n-2(n k (n~11 ~n~1) (i,j,k) can be chosen in Zk= 0 2 ~= ways. So ~" has at most m 

elements. Altogether, the augmented projection has at ~ost (~I n(n+1) (2n+I)- 
6 

,n+1) (m) ~+I) + mL 3 +mn elements. For n=1, this reduces to 2 +m= 2 <m 2. For hi2, 

(~)n(n+1) (2n+I) +m~1)+mn<~ 2. (15/4)n 3 n 3 Inn 3 2 3 6 -- 6 +m~- + - <m n . So in all 

4 m2n3 cases the augmented projection of ~has at most elements. 

By the definition of a principle subresultant coefficient, each 

element of -- ~2 ore" is the determinant of a matrix with at most 2n rows 

and columns, whose entries are coefficients of elements of ~. Hence the de- 

gree of any element of the augmented projection, in any variable, is at 

most 2n 2 . 

In order to analyze the growth of coefficient length under the 

augmented projection operation, we need the concept of the norm of a 

polynomial. If A is any integral polynomial, the norm of A, denoted by 

IAII , is defined to be sum of the absolute values of the integer coeffi- 

cients of A. This "norm" is actually just a semi-norm, having the im- 

portant properties IA+BII~IAII+IBII and IA-BII~IAII-IBII. Using these 

properties, it is easy to show (see [222 ) that if deg(A)=m and deg(B) 

=n, then any square submatrix of the Sylvester matrix of A and B has a 

determinant whose norm is at most IAI~IBI m 
i I I I I I" 

Let c be the maximum of the norms of the elements of ~. For any 

polynomials A with deg(A)=n, IA" l.~n]All. Hence it is easy to see that 
if P~¢" then IPII~(nJc) n-j-1 (nJ~Ic)n-3<nn2/2c 2n, while if Pe ~U~ 2 

2n 
then IPl1~c 

The length of any non-zero integer a, L(a), is the number of bits 

in the binary representation of a, and L(O)=I. It is easy to show that 

L(ab)~L(a)+L(b) and hence L(an)~nL(a) if n>O. Also, L(a)~a if a>O. So 

if P is any element of the augmented projection of ~, then L(IPll)~½n 2_ 

L(n)+2nL(c)~½n3+2nL(c). 
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The following theorem summarizes the several things we have proved. 

Theorem 9. Let ~ be a non-empty finite set of integral polynomials 

in r variables, r>2. Let ~ ~ be the augmented projection of ~. Let m 

be the number of elements of ~, n the maximum degree of any element 

of ~in any variable , n>1. Let d be the maximum of the lengths of 

the norms of the elements of ~. Let m W, n ~ and d W be the same functions 

of ~e. Then 

m~<_m2n 3 , (2) 

n~2n 2 , (3) 

d~½n3+2nd. (4) 

When ~is a set of polynomials in r variables, algorithm DECOMP 

computes a sequence of r-1 projections or augmented projections. Using 

Theorem 9 we can now derive bounds for all such projections. 

Theorem 10. Let ~m,n and d be defined as in Theorem 9. Let 

~=~ and let ~i+I be the augmented projection of ~i for 1~i<r. 

Let m k be the number of elements of ~k' nk the degree maximum for ~k' 

d k the norm length maximum for ~k" Then 

3 k 2 k-1 
mk~(2n) m , (5) 

I 2 k-1 
nk~(2n ) , (6) 

2 k 
dk~(2n) d. (7) 

Proof. One may first prove (6) by a simple induction on k, using 

(3). (5) obviously holds for k=1. Assuming (5) holds for k, by (2) we 

have mk+1~(2n)am 2k where a=2"3k+3-2k-1~6.3k-1+3-3k-1=3 k+1, proving (5). 

(7) obviously holds for k=1. Assuming (7) holds for k, by (4) we have 

dk+1~6(2n)a+(2n)ad~2(2n)ad~(2n)a+Id where a=3-2 k-1. But a+I~2 k+l so 

(7) is established. 

Using Theorem 10, we can now bound the time to compute all projec- 

tions. 

Theorem 11. Let ~,m,n,d and ~I .... ' ~r be defined as in Theorem 
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10. Then there is an algorithm which computes ~ ~2' .... ~r from ~i=~ 

3 r+1 2rd2 
in time dominated by (2n) m . 

Proof. Let A and B be integral polynomials in r variables, with 

degrees in each variable not exceeding n~2, and with norms of lengths 

d or less. There is described in (5) an algorithm for computing the resul- 

tant of A and B, whose computing time is dominated by n2r+2d 2. It is 

easy to see how to generalize this algorithm to compute psck(A,B), for 

any k, within the same time bound. By (6) and (7), any derivative of 

any element of ~k has a norm whose length is at most dk+L(nk!)~dk+n~ 

~(2n)2kd=d~. Since the elements of ~k have r-k+1 variables, each p.s.c. 

of ~k+l can be computed in time dominated by n~(r-k+1)dk 2, and there 

are at most mk+ I such p.s.c.'s to be computed. Using the inequality 

2(r-k+1)<2 r-k+1, we thus find that the time to compute all p.s.c.'s of 

~k+1 is dominated by (2n)am2kd 2 where a=3k+1+2r+2k+1~3r+2r+2r~9"3 r-2 

+8.3r-2~17-3r-2<2"3 r. Hence the p.s.c.'s of ~k+1 can be computed in 

time (2n) 2"3rm2rd2. Multiplyin~ by r and usinq r~2 2r-I, the p.s.c.'s 

of ~2 .... ' ~r can be computed in time (2n)3r+Im2rd 2. We have ignored 

the time required to compute reducta and derivatives, but this is rela- 

tively trivial. 

Let S be the c.a.d, of R r computed by DECOMP and let S k be the c.a.d. 

of R k induced by S, for 1<k<r. Thus S=S r. Let c k be the number of cells 

in S k. The cells of S I are determined by the real roots of m r polyno- 

mials, each of degree n r at most. There are at most mrn r such roots 

and hence c1~2mrnr+1. For each value of k, 2<k<r, step (6) substitutes 

the k-1 coordinates of each sample point of Sk_ I for the first k-1 

variables of the k-variable polynomials in ~r-k+1' thereby obtaining 

Ur_k+1~Ck_imr_k+ I univariate polynomials with real algebraic number 

coefficients, each of degree nr_k+ I at most. These polynomials have at 

most Ck_imr_k+inr_k+ I real roots, and hence Ck~2mr_k+inr_k+iCk_1+1. 
For convenience, we set Ur=m r. We can now prove the following theorem 

3 r+1 2 r 
Theorem 12. For 1<k<r, both u k and c k are less than (2n) m 

Proof. We have shown above that c1~2mrnr+1; hence c1~4mrn r. Simi- 

larly, from Ck~2mr_k+inr_k+iCk_1+1 it follows that Ck~4mr_k+lnr_k+iCk_l . 
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< r -2r r 
By induction on k, we then have Ck_Hi=r_k+14mini . Hence Ck~2 Hi=,mini 

2r r 
for all k. In a similar manner it is easy to show that Uk~2 Ki=Imini 

2r_r < a+b+2r b 
for all k. By (5) and (6) we then deduce that 2 ~i=imini (2n) m 

where a=~k=lJ-r ~k<2.1 3r+I and b=~=12k-1<2 r. Hence it suffices to show that 

r - I ~r+1 +2r~-J . But 2r+2r~2.2r~4.2r-1~4.3r-1<½.3r+1.~ 

Our next goal is to bound the time for step (I) of DECOMP. We must 

first obtain bounds for the computing times of the subalgorithms BASIS 

and ISOL. 

There exist (see [6~) polynomial greatest common divisor algo~thms 

for univariate integral polynomials which, when applied to two polynomials 

of degree n or less and with norms of length d or less, have a maximum 

computing time dominated by n3d 2 Mignotte has recently shown, [23] 

that if A is a univariate integral polynomial with degree n and norm 

and if B is any divisor of A, then IBl1~2nc. From these two facts it c, 

easily follows that thesquarefree factorization of A can be computed by 

the algorithm described in [14] in time dominated by n6+n4d 2 where d is 

the length of c=iAll and n=deg(A). 

Now suppose the coarsest squarefree basis algorithm outlined in 

Section 3 is applied to a set of m univariate integral polynomials, with 

degrees and norm lengths bounded by n and d respectively. In each of the 

m applications of Loos' algorithm, each input basis set will contain 

at most mn polynomials, with degrees and norm lengths bounded by n 

and n+d respectively. Hence the time for all applications of Loos' 

algorithm will be dominated by m(mn)2n3(n+d) 2, hence by m3n5(n2+d2)~ 

m3n7d 2. The time required for the m squarefree factorizations will be 

dominated by mn6d 2. Hence we arrive at a maximum computing time of 

m3n7d 2 for BASIS. 

Now consider the computing time of ISOL when applied to a set ~of 

m univariate integral squarefree and pairwise relatively prime polyno- 

mials, with a degree bound of n and a norm length bound of d. Collins 

has shown, [22], that if A is a univariate integral squarefree polyno- 

mial with deg(A)=n and iAl.=c, then the distance between any two roots 
I I12 31~ -n of A is at least ~(e n c) . This theorem on root separation, to- 

gether with the discussion of Heindel's algorithm in [6~, implies that 

Heindel's algorithm will isolate the real roots of A in time dominated 

by n8+n7d 3. Hence the real roots of the m polynomials in ~can be sepa- 
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rately isolated in time dominated by mnS+mn7d 3. An isolating interval 

for a root of A.c can be refined to length less than 2 -h in time 

dominated by n2~3+n2d2h. By application of the root separation theorem 

to the product A=H~=IA i of the elements of ~ , the distance between 
I /2 3/2cm)-mn=~ . any two roots of A is at least ~(e I (mn) Hence if the iso- 

lating intervals for each A i are refined to length 2 -h with 6/4~2 -h 

<6/2 then all intervals for all A. are disjoint. We then have h codomi- 
1 

nant with mnL(mn)+m2nd, so the time to refine each interval is domi- 

nated by m3n5L(mn)3+m6n5d 3, hence by m4n6+m6n5d 3. Since there are at 

most mn intervals to refine, the total time for ISOL is dominated by 

(mn8+mn7d3)+mn(m4n6+m6n5d3), hence by mn8+m7n7d 3. 

Theorem 13. The computing time for step (I) of DECOMP is dominated 
3 r+3 2 r+2 3 

by (2n) m d . 

Proof. The time to apply BASIS in step (I is dominated by m3n7d 2. 
r r 

By Theorem 10 since d+1<2d, m3n7d 2 is dominated by (2n)ambd 2 where 
' - r r 

b=3"2 r-1 <2 r+1 and a<3-3r+7.2r-1+2.2r<9-3r-1+7.2r-1+4.2r-1<20.3r-1<3r+2. 

The coarsest squarefree basis ~ obtained will have at most mrn r elements, 

with degrees bounded by n r and norm length bounded by nr+d r by Mignotte's 

theorem. Hence the time to apply ISOL will be dominated by (mrnr)n8 r 

7 7 3 
+(mrn r) nr(nr+d r) , which is dominated by m7n17d 3 By Theorem 10, m7n17d 3 

r r " r r 
<(2n)ambd 3 where b<7.2r-1<2 r+2 and a<7.3r+17"2r-1+3.2r<21"3r-1+17.3 r-1 

+6 • 3r-I=44 • 3r-1<3r+3. | 

Next we turn our attention to the "sizes" of the real algebraic 

numbers which arise in DECOMP. Two different representations are used, 

and hence there are two different definitions of "size". Regarded as 

an element of the field P of all real algebraic numbers, a real alge- 

braic number e is represented by a primitive squarefree integral poly- 

nomial A(x) such that A(e)=O and an interval I=(r,s) with rational end- 

points r and s such that a is the unique root of A in I. We will assume 

moreover that r and s are binary rationals, that is, numbers of the 

form a-2 -k where a and k are integers, k~O, and a is odd if k>O. Let 1 

be the minimum distance between two real roots of A. By the root sepa- 

ration theorem,~ l-1~2(e1/2n3/2c)n where ~n=deg(A) and c=IAll. Hence log 2 

l-1<l+n(1+~L(n)+d) and 2-k<l if k>l+n (1+~L (n) +d) z where d=L(c). Hence 

we assume that r=a-2 -h and s=b'2 -k with h, k~n(2+2L(n)+d). Since it 

follows from A(~)=O that Ial<c, we may also assume that L(a),L(b)~ 
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2n(1+L(n)+d). Then the "size" of e will be characterized by n=deg(A) 

and d=L(IAI i). 

Regarded as an element of the real algebraic number field Q(~), 

the real algebraic number 6 is represented by a polynomial B(x)eQ[x] 

with deg(B)<n=deg(A). The rational polynomial B(x) is itself represen- 

ted in the form B(x)=b -1 " B(x) where b is an integer, B(x) is an 

integral polynomial, and gcd(b,B)=l. In this case the "size" of S is 

characterized by L(b) and L(IBII). 

Let Pk be the set of all points 6=(61,...,6 k) belonging to the 

c.a.s, computed by DECOMP for the c.a.d. S k. For each such point there 

is computed a real algebraic number ~ such that Q(61,...,Bk)=Q(~), and 

a pair (A,I) which represents e. A is a squarefree univariate integral 

polynomial such that A(e)=O and I is an isolating interval for ~ as a 

root of A. Let ~ be the set of all such polynomials A. Let n k be the 

~ be the maximum norm maximum degree of the elements of ~k and let d k 

length of the elements of ~. 

For each coordinate 6 i of a point 8EP k, DECOMP computes a ratio- 

nal polynomial B.=b?IB. which represents 8 i as an element of Q(~). Let 
1 1 1 

~ be the set of all such rational polynomials B i associated in this 

way with points 6 of Pk' and let d~ be the maximum of max(L(b),L(IBl I) 

taken over all B=b-IBE ~. 

Our next goal is to obtain recurrence relations for nk,w d k~ and d~. 

For k=1, each algebraic number 61 is a root of some element of ~r' 

a=61, and the polynomial A is an element of the basis for ~r which 

is computed in step (I). By Mignotte's theorem, 

(8) nl!n r , 

d I <-nr+dr" ( 9 ) 

If 81 is irrational, then B(x)=x represents B1=~ as an element of Q(~). 

If 61 is rational then B(X)=81 represents ~1=s as an element of Q(~). 

Referring to step (2) of DECOMP, 81 arises as an endpoint of an isola- 

ting interval produced in step (I) by the application of ISOL to a basis 

for ~r" Let B be the product of the elements of ~ . Then deg(B) 

~mrn r and, since B is the product of at most mrn r polynomialsleach having 

a norm length of at most nr+d r, the norm length of B is at most 
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mrnr(nr+dr ) . In accordance with our previous discussion of the root 

separation theorem, we may therefore assume that the numerator and deno- 

minator of 81 have lengths not exceeding 2mrnr{ 1+L(mrn r) +mrn r (nr+d r) }<_ 
4m2n 2 (n +d ). Hence, 

r r r r 

dI~<4m2n2(n +d ) (10) 
~- r r r r 

For each point 6=(61,...,8 k) in Pk' and each polynomial C(x1,°.., 

Xk+ I) in ~r-k' step (6) of DECOMP substitutes 8 i for x i, obtaining a 

polynomial Ca(x)=C(81 ..... 6k,X) belonging to Q(~) Ix], Q(~)=Q(81' .... Bk)" 

This substitution may be performed in two stages. In the first stage we 

substitute B. (y) for x., where B i represents 8 i as an element of Q(a), 
1 A 1 

resulting in C(y,x)=C(B1(Y) .... ,Bk(Y),X), an element of Q[y,x]. In the 

second stage, C(y,x) is reduced modulo A(y), where A represents e, re- 

sulting in CW(y,x)eQ[y,~. C (y,x) may be identified with C~(x) since 

the coefficients of~C (y,x) are elements of Q[~ which represent the 

coefficients of Ca(x) as elements of Q(e). 

Instead of computing C(y,x) directly, we compute instead the inte- 

k b ~i} ~(y,x), where ~i is the degree of C in gral polynomial C(y,x)={~i= I i ~ 

~I i 
x i. To illu~trate, suppose k=1 a~ let C(Xl,X2)=Zi=oCi(x2)xl . Then C(y,x) 

Vl ' Vl -i ~ .fv 1 
=Zi=oCi(x)B1(y)ibl . Since ICI I=Z o!Cill, we see that IcI I!IC11 

where f= max(ibll ,IBII i). In general, recalling the definition of d~, 

we see that the length of the norm of C is at most dr_k+knr_kd~. Also, 
A _ _ 

C(y,x)=c Ic(y,x) with L(c)~knr_kd ~. Furthermore, the degree of C(y,x) in 

y is at most knr_kn~ since the degree of each B i is less than n~. 

/% 

In reducing C(y,x) modulo A(y), we compute the pseudo-remainder, 

C~y,x), of C(y,x) with respect to A(y). C" (y,x)eZ[y,x~ and we have c'C 

(y,x)=A(y) "Q(y,x)+C" (y,x) for some c'ez and some Q(y,x)~Z[y,x], with the 
/% 

degree of C" in y less than deg(A). Hence C(y,x)=A(y){ (cc')-IQ(y,x)} 

+(cc')-Ic" (y,x), and C~(y,x)=(cc')-Ic" (y,x). Regarding the pseudo-re- 

mainder as a subresultant, we have I C'i i<_I CI I" AI ~ where n is the de- 

gree of C in y. Since L( I C1 1)<_dr_k+knr_kdk , L( A 1 1)<d~ and n<_knr_kn:, 

L(IC'$)<d~ ~+kn ~d,'+kn .n.~d~ Also, c'={idcf(A)} h with h<n so L(cc') 
. -- ~--~ r--~ J< r-K K 9[" -- ' 

< kn d" +~n ~;w -- r-k k ~" r-k'~k~k" 

The polynomial C~(x) arises from a point 8~ Pk and a polynomial 
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C E ~r-k" Keeping 8 fixed while C ranges over all elements of ~r-k' we 

obtain a set ~Wof univariate polynomials over Q~ ). Step (6) of 

DECOMP specifies the application of ABASIS to ~to produce a coarsest 

squarefree basis ~W. However, at present no theorem is known which 

provides a reasonable bound for the "sizes" of the coefficients of 

the elements of ~. As an alternative we may therefore apply the al- 

gorithm NORMAL to = and CW(x)7 for each C W in ~e, producing an inte- 

gral polynomial D(x) such that every root of C W is a root of D. Let 

be the set of all polynomials D so obtained as C ~ ranges over ~e. 

Given ~ , represented by the integral polynomial A(y) and the iso- 

lating interval I, and the rational polynomial CW(y,x)=c-Ic" (y,x) repre- 

senting C~(x), NORMAL proceeds as follows. Let C" (y,x)~mi=oC'i(Y)xi, 

where Cm(~)#O. The integral polynomial C" (y,x) is divided by gcd(Cm(X), A 

(x)), producing an integral polynomial C'" (y,x). Then D(x) is the re- 

sultant, with respect to y, of C'" (y,x) and A(y). 

deg(A) and the degree in y of C'" (y,x) in y are both at most n~. 

The degree of C" (y,x) in x is at most nr_ k, the degree of C(Xl,...,Xk+ I) 

in Xk+ I . Hence the degree of D is at most n~nr_ k. Since the norm length 

of C" (y,x) is at most dr_k+knr_kd~+knr_kn~d~ and the norm length of A 

is at most dk, W the norm length of D is at most nkdk+nkd r_k+knr_knkdk + 

knr_kn~2~ • 

Let ~ be the coarsest squarefree basis of 0q). Then every 8k+l 

with(61, .... Sk,Sk+1)ePk+l will be represented by a polynomial D ~ 

and, by Mignotte's theorem, the norm length of D is at most nknr_k+nkdk 

+ n k d r _ k + k n r _ k n k d k + k n r _ k n k  d k • 

Next algorithm SIMPLE is applied to ~ and 8k+I' producing ~'such 

that Q(~,Bk+I)=Q(~'). ~ and 8k+ I are represented by the polynomials A 

and D. ~" is represented by a polynomial A" (x), which is the resultant of 

A(x-hy) and D(y) with respect to y, where h is some integer with lhl < 

deg (A)'deg(D). Since Ix-hyl 1=lhl+1, we have IA(x-hy) I I<IAI 1" (lhI+1)deg(A)" 

Hence L(iA(x-hy) I 1)<d~+n~(2L(n~)+L(nr_k)). Since deg(D)<_nkWnr_ k and the 

degree of A(x-hy) in y is deg(A)<n~, we have L(IAJl)<_n~nr_k{d~+2n~L(n~) 

+n~L(n r k)}+n~{n~nr k+n~d~k+n~d r k+knr kn~dk+knr kn~2d~}. Since the de- 
gree of A(x-hy) in x is deg(A)<n~, we have deg(A')<n~k n r k.Thus we have 

proved 
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n~.~<n~2n . . (11) 

L(nr_ k) by , and making other simpli- Also, replacing L(n~) by nk, nr_ k 

fications in theinequality above for L(IA~I i ) , we have also 

2 + e3 
~ ~ (2n 2 k+dr k+~k+knr kdk)nk +(k 2)n r kd~knk - dk+1<_ (dknr_k) nk + . . . .  (12) 

It remains to obtain a relation for dk+ I . Algorithm SI}~LE, when 

applied to ~ and Bk+1, produces, besides ~'such that Q(~,Sk+I)=Q(~'), 

rational polynomials E and F which represent e and 8k+I as elements of 

Q(e'). The polynomial A" (y) which represents ~" is the resultant of 

A(x-hy) and D(y). The monic greatest common divisor of A(~'-hx) and 

D(x) in Q(~') is the polynomial X-6k+l. This implies that if G(y,x)= 

G1(Y)X+Go(Y) is the first subresultant of A(y-hx) and D(x) then 8k+ I 

=-Go(~')/G I ~'). Let H=gcd(A',G1) and A'=A'/H. Since A'is squarefree, 

A" and G I are relatively prime integral polynomials. Applying the exten- 

ded Euclidean algorithm, we obtain integral polynomials U and V such 

that A'U+GIV=C , where c#O is the resultant of A" and G I. Also, G I ~') 

~O SO H(~')#O and A" (~')=O. Hence Gl~')V(~')=c. Let G2=-GoV. Then 

c-IG2(~')=-Go(~')c-lv(~')=-Go(e')/G I (e')=Sk+1. Hence if bG2(Y)=Q(y)A" (y) 

+G3(Y) where G 3 is the pseudo-remainder of G 2 and A', then (bc)-IG3 re- 
+ -1 

presents 6k+I" Also, ~'=~ h6k+ I so if G4(Y)=bcy-hG3(Y) then (bc) G4(Y) 
represents e in Q(~'). 

The same degree and norm length bounds, (11) and (12), which were 

derived for the resultant A" apply also to the subresultant coefficients 

G O and G I. Since A" is a divisor of A', deg(A')<n:+ I and, by Mignotte's 

theorem, L(I A'I 1)<-n~+1+d~+1" deg(V)<deg(A')<_n~+ I and resultant bounds 

apply to c and I V 1 I" Thus L(c), L(IV I i)<n~+i (2n~+1+d:+1). Hence deg(G2) 
<2n~ W 2 W ~ e -- W 2 
-- k+1 and L( I G21 1)<2nk+1+nk+idk+1+dk+l . Therefore, L( I G31 1)<_(2nk+1+nk+l 

+d-~ )+2n ~ d ~ 2n, ~ Z+3n~. d. a +d a ,L(b)< 2n. ~ d e and L(bc)< ~+I k+1 k+1 k+1 = k+1 k+1 k+1 k+1 -- k+l k+1 
2n~+1+3n~+1d~+ I. Since L(lhl +I)<L a (nk+1) <_n~+l L(IG41 i)<2n~ 2 -- ' ' -- k+1 
+~-~ d ~ - 4r +~ <~ ~2 _ ~ _~ 
ank+ I k+Itnk+1 ek+1_znk+1+~nk+lak+1 • 

Let Bi=b[1B i represent 6 i as an element of Q(~), i<k. Let G'=g-IG" 

where g=bc and G'=G 4. Then G" represents ~ as an element of Q(~'). Hence 

G" (~')=~ and Bi(~)=8 i so Bi(G" (~'))=8 . Let B~(V) vi- • =q B(G" (y)) where v 
1 1 

=deg(B ). B. ~eis an integral polynomial with deg(B~)_<deg(Bi).deq(G') 

<_n~n~+~ and±L(IB~ll)<L(iB i11)+deg(B i). (2n~+~+4n~+Id~+1)_<d{+n:(2n~+ I+4n~+ I 
d ~ ) Also, 

k +  1 " 
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V 

~2 ~ w 
L(big )_ek÷nk(2nk+1+4nk+Idk+1 ) . Let ~" be the pseudo-remainder of 

=b.b g . Then B.=b. B. represents 8 B ~. and A', b~iB~i=A'Q+B~,and b~ ~ v i I . .-I-. 

as an element of Q(~'). L(IBil )<L(~B~I)+n-'~n~+ d~+l<dk+2~n~+~+5n~n~+ 
I -- k I -- k I 

dk+l~e, and L(b~.) s a t i s f i e s  the same bound. 

Combining the last two paragraphs " ~ ~ 2 '1% ~ ~ is a ' dk+2nknk+ I +5nknk+1 dk+ i 
norm length bound for the polynomials which represent 81,...,Bk+ I as ele- 

ments of Q(~') whenever Bk+ I is a root of one of the polynomials which 

is obtained by substituting 8 I,...,8 k for x 1,...,x k in a polynomial 

of ~r-k" But we must also consider the case that Bk+ 1 is a rational 

endpoint of some isolating interval. We have seen that, for fixed 

B1'''''Bk' the isolated roots are all roots of the polynomials in the 
A 

basis ~of ~. Let D be the product of the elements of ~. ~has at 

most mr_ k elements, each of degree n~nr_ k at most. Hence ~has at 

most mr_kn~nr_ k elements, each of degree n'~nK r-K- at most. We observed 

previously that ~. d.~+nWd ~+kn ~n,~d~+kn ~n~u2d~ is a norm length bound 
k k k ~-~ ~-~ ~^~ ~-~ ~ 

for the elements of ~. Hence deg (D)<_n~mr_knr_k and L(I~ 1 1)<_(~d~+~dr_k 

+knr_kn~dk+knr_kn~2~)mr_ k. If D ~ is the greatest squarefree divisor of 

then by Mignotte's theorem L(ID'II)<(n~n r k+n~kd~+knr kn~d~+knr kn~2d~) _ -- -- • -- 

mr_k=Lk , say. According to our earlier discussion, we may assume that 

the lengths of the numerators and denominators of the rational endpoints 

of isolating intervals for the roots of D* do n~ot exceed 2n~mr_knr_k(1+L 

(2n~mr_knr_ k) +L_) <2n,~m _n _+4nW. 2m 2 _n 2 _+2~m _n -L. <2{kn . d" K -- K r-K r-K K r-K r-K K r--K r-K K-- r-K K 
- -- =, +2n~ ~ 2 2 W n~2m 2 Adding to this the bound u k knk+1 +nr kdr k+(k+4)~knr-kdk } k r-k" 

+5nknk+idk+ I , we find that 

d. <_,+~ w ~ 2+_ w ~ ~a +2{knr kd~+nr kd r k+(k+4 ) k+1_ak znknk+ I bnknk+lak+ I - _ _ 

n~2 ~ ~2 2 
knr_k~k;nk mr_ k" 

(13) 

Now we use the recurrence relations (11), (12) and (13) to prove 

the following theorem. 

n •  ~ and d~ as defined above, we have Theorem 14. With , d k 

2r+k-1 
n~(2n) ; (14) 

3r+I 2r+I 
2r+k+2(2n) m d; (15) 

d~ (2n) 

d~(2n)2r+k+2(2n)3r+Im2r+Id. (16) 
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Proof. To establish (14)~ we will show that ~n~<(2n) sk where s~ 
~--J~-~-Z-5_ ~ • s ~- - ~" 

=zk .2r+k 21. For k=1, by (8) and (6), n~<n <(2n) I since s.=2 r I. 
i=l s. I-- r-- i . . 

• e K W a r-K-I 
Assumlng nk_<(2n) , by (11) and (6), nk+1_<(2n) where a_<2Sk+2 . 

But ZSk+2~ -r-k-1=Ti=12k -r+k+1-2i+2-r+k+1-2(k+1)=Sk+ I, completing the induc- 

tion. And Sk_<2r+k-2(1+2-2+2 -4+ ...) <2 r+k-1, proving (I 4). 

Using (14), we can now simplify the recurrence relation (12). We 
2 k 

observe first that k+2~2 , from which it follows by (6) that (k+2)nr_ k 
2 r 

~(2n) . It is then not difficult to derive from (12), using (6), (7) 

and (14), the inequality 

2 r+k+1 
(2n) ( d+d~+d[ ) . ( 17 ) dk+ I 

Similarly, we can simplify (13) using (5), (6), (7) and (14). We obtain 

dk+1_< (2n) 2 r+2 2.3r-km2r-k ~+ 
(2n) (d+d k dk+1+dk ). (I 8) 

Let Dk be the common right hand side of (15) and (16). Substitu- 

ting from (17) for dk+ le into (18), we obtain 

2r+k+1+2 r+2 .3r-km2r-k 
dk+1~2 (2n) (2n) 2 (d+~k+d~). (19) 

Since, by (17), (19) also holds with d or dk+ I in place of dk+1, we 

have 

Dk+1~6((2n) 2r+k+1+2r+2 (2n) 2 "3r-km 2r-kl~D k , (20) 

where Dk=d+d~+d ~.__ It suffices then to show that Dk~5 k for 1~k~r. We will 

prove instead the stronger inequality 

2 r+k+2 u k v k 
m d, (21) Dk~(2n) (2n) 

Zi= I and Vk=~i=iz . For k~2, 6<23<(2n) 3 and 2 r+k+2 where Uk=2 k 3r-i+1 ~k ^r-i+1 

+2r+k+1+2r+2+3~2r+k+3.Since also Uk+2.3r-k=Uk+l and Vk+2r-k=Vk+l,(20)ir~fl_~s 
that (21) holds for k+1 if it holds for k>2. It remains then to prove 

(21) for k=l and k=2. By (9), (6) and (7), 

, 3.2 r-1 
dl~2n) d. (22) 
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By (10), (5), (6) and (7), 

d i <(2n) 5"2r-I .3 r 2 r _ (2n) 2 m d. (23) 

If r=1, then (22) and (23) imply (15) and (16). Otherwise, r~2, 3~(2n) 

and 5-2r-1+2~2r+2, so (22) and (23) imply 

2 r u I v I 
D1~(2n)3" (2n) m d, (24) 

which proves (21) for k=1. Now (20) and (24) yield (21 

6~(2n) 3 and 2r+3+2r+2+3"2r+3~2r+4.| 
for k=2 since 

As an easy corollary of Theorem 14, we obtain the following theo- 

rem. 

Theorem 15. For 1<k<r, 

n~< (2n) 22r-I, (25) 

d~,dk<_(2n )22r+3 2r+I m d. (26) 

Proof. This follows immediately from Theorem 14 by observing that 

3h<22h'_ I 

We now have all of the information necessary to complete an ana- 

lysis of the computing time of algorithm DECOMP. Theorem 12 bounds the 

number of cells in the decomposition as a function of m, n and r. Theo- 

rems 10 and 15 together bound the degrees and coefficient lengths of all 

polynomials which arise in the mainstream of the calculation. From these 

bounds and from known computing time bounds for the various subalgorithms, 

it is straightforward, but tedious, to complete the analysis. We have 

given above computing time bounds for some, but not all of these sub- 

algorithms. Those which we have not given may be found by the interes- 

ted reader in the various references listed at the end of this paper. 

The critical property of these subalgorithms is that their computing 

times are all dominated by fixed powers of natural parameters such as 

degree products and maximum coefficient lengths or, as in the case of 

the BASIS algorithm, the number of polynomials in a list. Theorems 11 

and 13 have illustrated the analysis of the computing time of certain 

parts of DECOMP. Thus the completion of the analysis of DECOMP does not 

involve any novel techniques or subtleties. The seriously interested 
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or skeptical reader may complete the analysis for himself. We there- 

fore now state without additional proof the result of such analysis. 

22r+8 
Theorem 16. The computing time of DECOMP is dominated by (2n) 

m2r+6d 3" 

The exponents occurring in this theorem can likely be decreased 

in several ways. In the first place, the computing times used for the 

subalgorithms all presuppose that classical algorithms are used for in- 

teger multiplication and division. With the use of fast algorithms such 

as the Sch~nberg-Strassen algorithm, J25], for integer arithmetic, it is 

evident that the exponent of d can be reduced from 3 to 2+6 for every 

>0. Secondly, it is probable that a tighter analysis without change 

of the subalgorithm would yield some improvement, for example perhaps 

the 2r+8 could be reduced to 2r+4. Thirdly, it is likely that improved 

mathematical knowledge would also improve the bound without change of the 

algorithms. For example, the analysis depends strongly on the root se- 

paration theorem, and it seems likely that this theorem is far from opti- 

mal. It should also be noted that the theorem bounds the maximum compu- 

ting time, an~ the average computing time is likely much smaller. 

By the remarks preceding the algorithm EVAL, if ~W is a standard 

prenex formula with matrix ~, ~ is the set of polynomials occurring in 

, and 8 is a sample point, the truth value of each atomic formula in 

can be determined by at most one evaluation of sign(A(8)) for each 

AE ~ . Thus the application of EVAL to #W, a c.a.s. 8, and a standard 

definition ~ involves mainly the evaluation of sign(A(~i)) for each 

A£~ and each sample point 8is~ . This is not essentially different 

from the calculations performed during the last phase of the applica- 

tion of DECOMP, and the bound of Theorem 16 again applies. However, one 

must not overlook the time required to compute the truth value of 

from the truth values of its atomic formulas, for each sample point 8. 

The time required for this is obviously dominated, for each B, by the 

number, a, of occurrences of atomic formulas in ~. Thus the computing 

time bound of DECOMP, multiplied by a, is a bound for EVAL. Finally, 

consider step (I) of ELIM, which extracts from ~ the set~ of distinct 

polynomials occuring in #. This involves, at most, ma polynomial com- 

parisons, one comparison for each atomic formula with each element of the 

list of distinct polynomials already extracted. The time for each compa- 

rison is at most (n+1)rd!(2n)rd!(2n)2rd. We therefore obtain our final 
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result: 

Theorem 17. The computing time of ELIM is dominated by 

m2r+6d3a. 
(2n) 

22r+8 

As a corollary of this analysis, we can obtain a computing time 

bound for ELIM as a function only of the length N of the formula % . 

Obviously we must have m,r,d and a less than or equal to N and, assu- 
k 

ming as is usual that x must be expressed as the product of k x's, we 

also have n~N. Since r~1 and N~3 for every formula, we have 2r+8!5N 

and r+6<3N. Hence by Theorem 17, the computing time is dominated by 
25N--N23N 2 k 2 h+k 

(2N) N 4. But it is easy to prove by induction on h that h <2 . 

N23N 227N 224N 222N 28N -- Hence (2N) 25N N 4 < < 2 . 

Theorem 18. For a fomula of length N, the computing time of ELIM 
28N 

is dominated by 2 . 

In Theorem 17, d is the maximum norm length of the polynomials in 

~, whereas in the Introduction the result of Theorem 17 was stated with 

coefficient d defined as the maximum coefficient length. But if d" is 

the maximum coefficient length then,since a ~lynomia] in r variables with de- 

grees bounder by nbasatmos~n+1) r integer coefficients, d<L(n+1)r)+d'<rL(2n) 

+d'~2rL(n)+d'~2rn+d'~2rnd', and d3<(2n)3r3d'3<(2n)22222rd'3<(2n)22r~1d'3. 

Thus as a corollary of ~heorem 17, the computina time of ELIM is domi- 
22r+9 2r+ ~ 

nated by (2n) m d'3a. But in fact the exponent 2r+9 can me re- 

nlaced by 2r+8 by converting from d to d" while carrvinq out the proof 

of Theorem 17. 

5. Observations. For the sake of conceptual simplicity, ~d to fa- 

cilitate the analysis, we have kept our quantifier elimination algorithm 

as simple as possible. But for practical application many refinements 
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and improvements are possible, some of which will now be described. 

It is unnecessary to form reducta when projecting a set of poly- 

nomials in two variables. The leading coefficient of a non-zero bivari- 

ate polynomial A is a non-zero univariate polynomial, which vanishes 

at only a finite number of points. If the leading coefficient of A is 

invariant on a connected set S~R then either S is a one-point set, on 

which the roots of A are trivially delineable, or else !dcf(A)~O on 

S. 

We recall ([19], Chapter 4) that the discriminant of a polynomial 

A, which we will denote by discr(A), satisfies discr(A)=res(A,A')/idcf(A). 

If A is a squarefree bivariate polynomial, then discr (A) is also a non- 

zero univariate polynomial, which vanishes at only a finite number of 

points. Thus it is easy to prove (confer Theorem 4) that if A(Xl,X 2) is 

a squarefree polynomial, ~={idcf(A):deg(A)!1} , ~={discr(A) :deg(A)!2}, 

S is a connected subset of R, and every element of ~ U ~  (there are at 

most two elements) is invariant on S, then the roots of A are delinea- 

ble on S. 

If now ~ is a set of bivariate polynomials and ~ is a squarefree 

basis for ~ then any two distinct elements of ~ have a non-zero resul- 

tant, which again vanishes at only a finite number of points. Thus we 

see that in this case we can define proj (~)=~ =~U ~ where 

={Idcf(B):BE ~ &deg(B)!1} , ~={discr(B):B~ &deg(B)!2} and~={res(B1, 

B2):BI,B2e ~ &B1<B2&deg(B1)!1&deg(B2)~1} , and Theorem 5 will still hold. 

For the augmented projection of a set of bivariate polynomials, 

we must be cautious; although A is squarefree, some derivative of A may 

fail to be sq~arefree. But if A is any polynomial, ~ is a squarefree basis 

for{A},and the roo~ of ~ are delineable on a connected set S, then the 

roots of A are delineable on S. So, with proj(~) defined as in the 

preceeding paragraph, we can define the augmented projection of ~ as 

follows. Let ~={der j (A) :Ac~&1~j~deg(A)-2}={D I ..... Dk}. Let ~i be a 

squarefree basis for {D i} and ~i=proj(~i ) . Then proj (~)= U{ U~=1~i } 

will suffice for the augmented projection of ~. Actually, this still 

gives us a little more than necessary; the leading coefficients of the 

elements ~i are superfluous. One might suppose that these basis of the 

calculations would be time-consuming, but in most cases one will quickly 

discover that D i is squarefree so that ~i={Di } and for ~i we can then 

use just {discr(Di)}. 
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Now let ~ be a set of polynomials in three variables. 

According to our earlier definition, we begin the projection by forming 

the set ~ of all reducta of elements of ~ such that the degree of the re- 

ductum is positive. In general, this set ~ is much larger than necessary. 

The objective is just to ensure that for each Ae~ , ~ contains some 

reductum of A whose leading coefficient is invariantly non-zero on each 

cell S of the induced c.a.d. Indeed even this is unnecessary for one-point 

cells S, because then the roots of A are trivially delineable on S. So 

if the first i coefficients of A are simultaneously zero at only a fi- 

nite number of points of R 2, then redk(A) can be excluded from ~ for k>i. 

Also, if the leading coefficient of A has no zeros in R 2, as when its 

degree in both x I and x 2 is zero, then redk(A) can be excluded from 

for k>1. 

For the case i=2, let A1=idcf(A) , A2=ldcf(red(A)). If AI (~i,~ 2) 

=A2(~I,~2)=0 then R1(el)=O where R1(x I) is the resultant of A1(Xl,X 2) 

and A2(Xl,X2) with respect to x 2. Hence if RI~O there are only a finite 

number of ~1's. Similarly, if R 2 is the resultant with respect to x I 

and if R2~O then there are only finitely many ~2's. If RI#O and R2~O 

then there are only finitely many points (~i,e2). 

Of course if either A I or A 2 has degree zero in either x I or x2, 

then the resultants R I and R 2 can not both be formed, but then there are 

alternatives. If A I is of degree zero in x 2 and A 2 is of degree zero in 

x I (or vice versa) then there are only finitely many solutions. Suppose 

A I is of degree zero in x 2 and A 2 is of positive degree in both x I and 

n (Xl)'X ~. Then there are only finitely many so- x2, say A2(Xl,X2)=~i=oA2,i 
lutions if gcd(Ai,A2,n,...,A2, I) is of degree zero. Also, there are only 

finitely many solutions if A I and A 2 are both degree zero in x2(or x I) 

and the degree of gcd(AI,A 2) in x1(respectively x 2) is zero. 

If the cases i=I and i=2 fail, then we may try i=3. Let A3=idcf(red2 

(A)). Then it suffices to show, as above, that A I and A3, or A 2 and A3, 

have only finitely many common solutions. Better still, we may compute 

res(gcd(Ai,A2),A3). 

There are obvious reasons to expect that in most cases it will be 

unnecessary to include in ~ redk(A) for k~2 when ~ is a set of polynomials 

in three variables. The reader can easily see for himself how to extend 

these methods to polynomials in r>4 variables. For example, when r=4 we 

can compute res(AI,A2), res(A2,A3)) with respect to Xl,X 2 and x 3. It will 

usually be unnecessary to include in ~ redk(A) for khr-1. 
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By a similar argument, for a given BE ~ , it is in general unnece- 

ssary to include in the set ~i psck(B'B') for all k such that O~k<deg(B'). 

If we can show that the equations psci(B,B')=O, for O~i~k, have only a 

finite number of solutions then psci(B,B') may be omitted from ~I for 

i>k. 

Thus, if A is a polynomial in r variables, it will usually suffice 

I pscj (red i (A) , der (red i to include in ~ (A))) only for O<_i<_r-2 and O<j<r-2, 
2 a total of (r-1) polynomials. One can even do better than this. For 

example, if the equations idcf(A)=O and pSCo(red(A) , der(red(A)))=O 

have only finitely many common solutions, then we need not include 

(red(A) ,der(red(A))).. Thus we will usually need to include pscj(red i psc I 

(A) ,der(redl(A))) only for O<_i+j<_r-2,, a total of (~) polynomials. Simi- 

lar considerations apply to the set ~2 of the projection and to the set 

" of the augmented projection. Whereas we derived an upper bound of 
2 3 

m n for the number of polynomials in the augmented projection, the expec- 

ted number will now be about m2r 2 when n is larger than r. 

It is important to realize that the resultants used in testing for 

finitely many solutions need not be computed; it is only necessary to 

decide whether or not they are zero. If, in fact, a resultant is non- 

zero then this can usually be ascertained very quickly by computing the 

resultant modulo a large single-precision prime and modulo linear 

polynomials x.-a.. 1 l 

As an experiment, we have computed the two successive projections 

of a set ~={A1(Xl,X2,X3), A2(Xl,X2,X3)} where A I and A 2 are polynomials 

of total degree two with random integers from the interval [-9,+93 as 

coefficients. Each A i is then a polynomial with 10 terms, of degree 2 

in x3, with constant leading coefficient. ~I' the projection of ~, is 

then a set consisting of four elements, B1=discr(A1),B2=discr(A2 ) , 

B3=res(AI,A 2) and B4=psc1(AI,A2). The leading coefficient of each B i has 

degree zero in x I so the content of B i is an integer. Dividing B I by 

its content, we obtained the primitive pa~t B.. We then found that 
1 

each ~i was an irreducible polynomial in Z[Xl,X ~ so ~i ~BI,B2,B3,B 4} 

was a finest basis for ~I" BI and B2 are of degree 2 in each variable 

and have total degree 2. Their integer coefficients are two of three 

decimal digits in length. B3 is of degree 4, in each x i separately and 

in total, with 4-digit coefficients. B4 has degree I and 2-digit coeffi- 

cients. 
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~2' the projection of ~I' has as its elements Di=discr(B i) for 

i=I,2,3 and Ri,j=res(Bi,Bj~ for 1~i<j~4. Again we set Di=PP(D i) (the 

primitive part of D i) and Ri,j=pp(Ri,j). The contents of the D i and Ri, j 

are from I to 5 decimal digits in length. The largest of these primitive 

parts is 53, with degree 12 and coefficients about 22 to 24 decimal di- 

gits in length. Now we factor each D. and each R. . to obtain a finest 
1 1,3 

basis, ~2' for ~. The results are as follows: 

D1,D2,RI,2,R1,4,R2, 4 irreducible, 

D3=PIP~, 

- 2 

R3,4=P2 , 

2 
R1,3=P4 , 

- 2 

R2,3=P5 • (27) 

Here each Pi is irreducible. Note that P2 is a common factor of D3 and 

R3, 4 • 

Since random polynomials are almost always irreducible, the fac- 

torizations (27) strongly suggest some theorems. To help preclude chance 

events, the entire experiment was repeated using polynomials A 1 and A 2 

with different random coefficients, With the new A I and A2, the struc- 

ture of the factorization (27) was exactly repeated; even the degrees 

of the irreducible factors remained the same. 

Let us consider briefly what kinds of theorems are suggested by (27). 

Ignoring primitive parts, D3=discr(res(Ai,A2)), Ri,3=res(discr(A1 ) , 

res(Ai,A2)),R2,3=res(discr(A2 ) , res(Ai,A2)) and R3,4=res(pSCo(Ai,A2 ), 

pscl(Ai,A2)). Note that in each case the general form is a resultant 

ot two psc's with "common ancestors". On the other hand, there are no 

"common ancestors" in the irreducible cases D'=discr(discr(Ai))l and RI,2 

=res(discr(A1),discr(A2)). The cases Ri,4=res(discr(Ai ) , psc1(Ai,A2)) 

appear anomalous. 

A number of other experiments have been performed which tend to 

substantiate the rather vague conclusions suggested by the above re- 

sults. For example, we find that, "in general", res(res(Ai,A2), 

res(A2,A3)) is reducible. These observations suggest very strongly the 

merit of performing basis calculations preceding each projection. How- 
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ever, it is not entirely clear whether a finest or coarsest squarefree 

basis should be used. Note that in the above example the two coincide. 

We have seen now how to reduce substantially the number of polyno- 

mials which arise when the projections are performed, and we have seen 

empirical evidence, though not yet theorems, which indicates that the 

growth of degrees can be controlled somewhat by basis calculations. 

Also, the factorizations which reduce degrees tend to reduce coeffi- 

cient lengths correspondingly. Hence there is some reason for optimism 

regarding the potential applicability of this method. A full implemen- 

tation of the method within the SAC-I computer algebra system [6], is 

still in progress. Nearly all of the necessary algebraic subalgorithms 

are already available, and some parts of the elimination algorithm 

itself exist in preliminary form. The completion of the implementation 

and its application to several non-trivial "real" problems within the 

next year or two is anticipated. 

Ferrante and Rackoff, [261 , have recently published a quantifier 

elimination method for the first order theory of the additive ordered 

group of the real numbers, which they show to have a computing time do- 

minated by 22cN for some unknown constant c. We obtain an alternative to 

their method as the special case of the method above in which every po- 

lynomial occurring in the formula % has total degree I. Setting n=1 in 

Theorem 18, we obtain their result with c=8. Their computing time bound 

is obtained as a function of N, the length of 4, only. Setting n=1 in 
22r+8 2 r+6 3 

Theorem 17, we obtain the more informative bound 2 m d a. 

We can easily improve this result. It is easy to see that in the 

special case we areconsiderin~,we may define proj(~)={res(A.,A ):1<i<j<m} 
" 2 l 3 -- -- 

where ~={AI,..., Am }" Thus proj(~) has at most [~_,_~<m /2 members, and 

the augmented projection is never needed. With m k and d k defined as be- 
% 

fore, we then easily obtain 

mk<2 (m/2) 

dk_< 2 k- I d. 

2k-I 
, (28) 

(29) 

Instead of isolating roots, since they are rational, we now com- 

pute them exactly. If r1<r2<...<rl are all the roots of a set of poly- 

nomials, then for the sample points s i between roots we use the averages 
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(ri+ri+1)/2. If rl<O then we also use the sample point So=2r1<rl; ~f 

r~O then we use instead the sample point So=-1. Similarly we use Sl=2r 1 

or +I as a greatest sample point. The rational number r=a/b is repre- 

sented by the linear integral polynomial bx-a with norm lal+Ibl ; we may 

call this the norm, Irll of r. Note that IsiI1~21ril1"Iri+iI1 , Isoll 

~21r111 andlSl+111~21rll I- 

The result of substituting r=a/b for x I in a polynomial C(Xl,...,x k) 

=ClX1+...+CkXk+Co and then multiplying by b to obtain an integral poly- 

nomial is the same as the resultant of bXl-a and C(Xl,...,x k) with res- 

pect to x I . 

If c k is the number of cells as before, then we have Cl!2mr+1 and 

Ck+1~2Ckmr~k+1, from which it follows that 

Ck!2k+1(m/2) 2r. (30) 

Let d~ be the maximum norm length of the kth coordinate of any 

sample point. Then d~2dr+1 amd d~+1~2(dr_k+d~+d~+...+d~)+1. It follows 

that 

d~2r+kd. (31) 

Using the bounds (28) to (31), it is not difficult to show that 

the computing time of the method is dominated by m2rd2a using classical 

arithmetic algorithms; m2rd I+~ a using fast arithmetic algorithms. 
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