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INTRODUCTION

The studies about the theory of problem solving, to which belong

the results that we shall present in this paper, are intended to

achieve the following main goals :

a rather precise understanding of the human behaviour in problem
solving activity;
a clear definition of what we mean by an Automatic Problem Solver

(APS);

the formulation of an Abstract Theory of Problem=Solving which

can clearly point out the theoretical possibilities and the limits
of an Automatic Problem Solver;

a proposal of an efficient structure of an Automatic Problem Solver
which can perform the three basic activities of selection, search
and learning;

the formulation of a Theory of Problems which can be helpful as

a theoretical base in the design of an Automatic Problem Solver;
further investigations about Automatic Problem Solvers as non-de
terministic interpreters of an highw-level representation language
and as automatic programmers;

imphications of the developped theories on fields of actual
interest; e.g., Industrial Robotics, Computer Aided Medical Dia-
gnosis, Intelligent Data Base Management Systems, Question Answer—

ing Systems, efc.
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These studies are being developped at the Milan Polytechnic
Artificial Intelligence Project since three years.

The purpose of this paper is to present some new results achieved
by the authors in the above mentioned fields of research. The paper
is divided into two Parts.
In part A, which is constituted by the Sections II and ITI, an Intg-

grated Theory of Problems in presented in a formal way.,

In Part B, which is constituted by the Sections IV and V, some
implications of the theory and important directions of future research
are described.

More in detail the paper is devoted to present :
- in Section II, the basic definitions and results of the formaligza-

tion of the State-gpace Approach to Problem-Solvings

- in Section III, the basic definitions and results of the formaligpa-

tion of the Problem-Reduction Approach to Problem~Solving.

~ in Section 1V, a first cut Theory of Complexity, which constitutes

an unformal base for the definition of a measure of complexity;
= in Section V, our basic point of view on Problem~Solving and a

detailed unformal structure of an Automatic Problem Solvern,

Part A = The Formal Theory

In this first part the formalization of the classical State~Space
and Problem-Reduction Approaches to Problem—Solving‘fé}, [91 is
presented.

This formalization is achieved by means of an algebraic tool strictly
connected with the Theory of Graphs [1], f3] and with the Theory of
the AND/OR Graphs. Because of the unitary way in which the two dif-
ferent approaches have been considered during the formalization,the

outcoming theory can in fact be called an Integrated Theory of Pro-

blems.

II. STATE~SPACE : FORMALIZATION

In this Section we present some basic definitions and results
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of the formalization of the State Space Approach to Problem=~Solving.
A further investigation of these topics may be found in [43 .
The Algebraic Theory of Automata [3] and the Theory of Graphs [1}
were both taken into account in setting up the following theory.

The prooves of the theorems of this Section are omitted for the
sake of brevity and can be found by the reader in [h].

We first present some basic definitions of the Theory of Graphs

which shall be useful for the following investigations.

Definition 2.1

A (directed, labeled) graph is a triple G = (V,4,R) where :

-V = {Vo""’ v 1,.,.,,kis a set of elements called the vertices

of Gj;

]

- A {a y esey & ..% is a set of elements called the labels of Gj
o m=1? ———

- R =£ R ags sres R ,,..}is a set of functions from V into V.

a,
m=1

O

Definition 2.2

An arc of a graph G = (V,A,R) is a couple of vertices u=(vo,v1)

such that :

@a) ((a ¢ )N (v Ra=v1)) £2.1)

the vertex Vo is called the initial vertex and the vertex v1 is

called the fingl vertex.

Definition 2.3

A loop is an arc u = {vo, vq) such that v = v, .

Definition 2.4 []

A path of a graph G = (V,A,R) from a vertex Vi & V to a vertex

vf £ V is a finite sequence of vertice ft= (vi..., v1,..., Vk-1’ vf)
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such that :

Fx) ({(xe A" IN{x = a eee aik)/\
1

(2.2)
1 1 k-1 "a

i

(v =vRa‘)/\.../\(vf=v- R )
].,l k

where:

A" = ax {E}

The string x is called a generating string of r\ . Moreover we say that

the path ,.4 has length k.

O

We can now present the basic definitions of the State-Space

Approach.

Definition 2.5

A (deterministic) problem schema M is a triple M = (S, % ,I)

where :

- S ={ so, s1 yesey Sn--1’ ..‘.} is a set of elements called the states
of M;

...,%_1, ..,} is a set of elements called the inputs
of M3

-7 = 1(\/’3‘0’ XO,I‘, e b/?-n—i"”} is a set of functions of S into §

called the operators of M,

o 1?7

O

Definition 2.6

A (deterministic) problem D is a quintuple P = (s,Z2,M,i, £):

where (S,Z,0") is a {deterministic) problem schema, and :

-~ i & S is called the initial state;

- f € S is called the final state.

O

Definition 2.7

A (deterministic) extended problem P is a quintuple P=(S,Z,M", I,F)

where (S,Z,[") is a (deterministic) problem schema and :
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- I2 S is called the set of the initial states;

- F& S is called the set of the final states.

Definition 2.8

A soluticn of the problem P = (5,Z,07,.i, £) is a string :

x=9 9. .9 € 7% (2.3)
1 2 k

such that :
iy =t (2e4)

where :
g(x = é/g gi ...a/g. (2.5)
1 2 k
(i.e,Xx is made up by the composition of operators), and Xs is
the identify function on S, if £ is the null string,

O

Definition 2.9

A solution of the extended problem P = (s, ,M, I,F)isa
string x € Z%* such that :
(31) (Bf) (eI} N By = E)N(FEF)) (2.6)

O

Definition 2.10

et
The solution set of a ({extended) problem P (P} is the set
~
XpS b3 *(XT)-SZ*) which contains all the solutions of P (P).
We outline that the solution set Xp of a problem P is not
necessarily finite. We are now able to introduce some initial formal

properties of these notions.

lard
Theorem 2.1. Given an extended problem P = (S,¥ ,I", I, F) we have :

U ,
X:D‘ = D € B~ Xp‘ (2.7)
i P i
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where 3

By = {Ri’Pi=(S,Z,r', i, )A€ A(s B)) (2.8)

)

Although this theorem states a close relation between the

P

solution of an extended problem and the solution of a set of problem,
there is no inmdication about the methods of how to "reduce" in a gene-—
ral case the solution of an extended problem 5 to the solutions of
the set of problems Eﬁ'

In fact this “reduction" is closely related to the search strate=
gy adopted in the problem solving process.

Conversely, we want to focus our interest in the following pages
only on problems and their properties.

We now outline explicitely the close relation existing between

the definition of problem and the definition of graph.

Definition 2411

The underlying graph of the problem P = (S,Z N L £) is the
graph G = (8,Z ,),

We assume as well known the concept of length of a string x that we

shall denote by 1(x).

We outline that if x € Z* is the solution of a problem P = {(S,¥ ,{,i,f)
1(x) is exactly the number of expansions required to obtain the solu—
tion %, i.e. the number of times that an operator 33_ Er has

to be applied,

Definition 2.12

A (k-step)solution of a problem P = (S,% ,f, i, £) is a solution
% € Z* of P such that 1(x) = K.

O

Definition 2413

The (k-step) solution sequence generated by the (kestep) solu-

tion x = O, 07 ... O, of the problem P (S ,Z ,[7, i, £) is the se-

11 12 k



104

quence of states:

G = (1, S3Sg5000s Sy ) (2.9)
such that
sp =1 Yo,
1
= [en
So 513/ i
2
= o
Spet1 T Pkez Xil,” (2.10)

F= s K”}_k

0

It is evident that a (k-step) solution sequence of a problem is in
fact a path of length k from i to f.

Let us now introduce the basic definition of cost.

Definition 2.14

A cost function ¢ on a set 2 is a measure function of Z* into

R+ {set of real non negative numbers) such that :

clxy) = o(x) + c(v¥) (Vx) (Vy) ((x¢Z*)A (y€5%)) (2411)
O

Theoren 2.2 » A cost function ¢ on a set & is completely determined

by its restriction to Z.

O

Definition 2,15

Given a cost function ¢ on Z', the simple cost C of a solution

x € X, of a problem P = (5, ,", i, £) is defined as :

C(x) = olx) (Yx) (x € Xp) (2.12)

3



Definition 2.16

Given a cost function K on S x Z the composite cost K of a

solution x € X

B(x) = K(%)

where :

p

105

of a problem P = (S,Z , M,

¥ o= (1,97 ) (5,5 9 ) eae (S_5 7,
2 a

1

= (i, 8,,S,, Syyeeey S

g1’ £)

i, f) is defined as

(2.19)

(2.14)

(2.16)

.
.

is the (qm~step) selution sequence generated by the (g=5hep) solution

x of P,

Definition 2.17

A solution X & I* of a problem

iff
1(x)

Definition 2,18

min {1(x)§

€
b4 XP

A solution X € £* of a problem

positely) optimal iff :

c(x)

We outline that in general neither the existence nor the uniqueness

of a simply (compositely) optimal o r minimal solution of a problem

can be provéd.

min | c(x)} (x(%))

xeXP

P=(S,¥,, i, £) is minimal

P

]

(2.17)

[

[

= (S,Z,I", i,f) is simply (com=
min | x(x)}) (2.18)
XGXP

0
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ITII. PROBLEM=REDUCTION : FORMALIZATION

In this Section we present some basic definitions and results
of the formalization of the Problem— Reduction Approach to Problemw
Solving. The adopted formalism is congruent with that one used in
the view setting up an unitary, integrated theory.

We first present some basic definitions of the Theory of Graphs

which shall be useful for the following investigations.

Definition 3.1

A (directed, labeled) AND/OR graph is a quadruple A =(V,A,R,W)

where :

-V = ivo,.,., Voqroee }is a set of elements called the vertices

of
- A =i Bysssss B 1,...} is a set of elements, called the labels
of
- R ={ R se0sy Ra ,..% is a set of functions from V into Vj;
ao M=
- W ={ Wosesss Wo o ,...lis a set of elements called the AND/OR

consgraints of A and associated to the verti~

CeSae,

where for each i = 0, ..., =1, ... associated to the vertex Vi’ we

have:

“da. . . % ]
W, -{dlq, digseess dlki l s K, 70 (3.1)

and for each j = 11,12,... lku
i
d. = a. a. ess a & A% (3.2)
J J1 J2 Jl
such that :

Ej < fi (3.3)

where :

d =gx9x is an element of d }QA (3e4)

J
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g i = {as l(asé A)/\(vi is an element of the domain of R )XEA (3.5)
s

We note that :
a,-§ iff : d. =@ (3.6)

d

Definition 3.2

A (directed, labeled)canonical AND/OR graph (2 is an AND/OR graph

A = (V,A,R,W) such that for each i = O,sss, n=1,... Wwe have :

“lw] =1, (3.7)
i

or

b Wi ={d,1.’ dzycn-, dj,co., dki}

and for each J = T,e00y ki :

l(dj) =1 (3.8)

If condition (3.7) is met we say that the corresponding vertex v,
is an AND-vertex, if condition (3.8) is met we say that the corre—

sponding vertex A is an QR~vertex. []

It is obvious that the set V of the vertices of a canonical AND/OR

graph 2 is partitioned into the following two subsets :

-V - iV l (vev) A (v is an AND=vertex of {1 )}
- ¥ =i v 1 (v € V) A(v is an OR-vertex of o }

Moreover an algorithm can be easyly defined which allows to construct
for each (directed, labeled) AND/OR graph A a (directed, labeled) ca
nonical AND/OR graph L which is "equivalent" to A . (the meaning of
the word equivalent is now left to the intuition of the reader).

We shall denote by the symbol LJ the concatenation of sequence;
i.e., the associative, non commutative, operation which associates

to each ordered pair of sequences A1, A, the sequence A = A1LJ A

2 2

containing exactly the elements of A, followed by the elements of

A

1
2.
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Definition 3.3

An AND/OR path froma vertex v, toc a set of verticesvf =% Ve 2Ve
seny Vg } of and AND/OR graph A= (V,A,R,W) is a finite sequence

P = (bo, b1,..., bV ) of finite sequences of vertices of A such that:
1

% W%) 1 1
b1 = (vq, Voseses Vp1}
a q q q q
b o= (Vv , V2 3 eeey V.. 5 V yeeoy V yesay V )
q 1 2 r1 r1+1 r1+ T, r1+r2+...+rp =pq
a1
(3.9)
k AR
b, = (¥ yeee, ¥ B )
k 1 h = Pp
where :
;1 1 1 .
- b1 = (Vs Vgr eees Vp?) iff {(3.10)
Ad, d.€ wIA(G, =a. a, «sa 2, A
By ((aye w)Aley —a ) ona; )
1 (3.11)
1 1 i
vR . =v.) (VR . =vV)ANees N(¥ o=V ))
( o a31 1 oajy 2 oR&Jp1 o
~ for g = 2,303k
ety (3.12)
b = T b, 3.12
q [ ]
1
where :
': ’\q—1 . B ( 13)
b, (v ) only if 3.1
1 1
o=t (3.14)
vi € Vg
b, = (v3 ) , v oo w21ttt Ve e ap) (3415
i r1+.m.+fi_1+1 r1+,e. ri~1 gHeeed P4ty

only if :
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-1

J J1 Iz r.
i
a-1 g
Ra. = v i PR
( i aJ Todepetr, 4+ 1 ) A A
1 1 e
g1 g (3.16)
(Vi Raj = Vr.+...+r. + r.))
T, i Gt i
i
- -1
{where w? ! denotes the w &€ W associated to the vertex vg )
- bk 1 contains at least one vertex which has not the superscript N

_bk is a permutation of the elements of Vf.

Moreover we say that the path fD has length K-1.

We can now present the basic definitions of the Problem=Reduction

Approach. We outline that in our formalization we have defined separaw
tely the syntactic aspects and the semantic ones ,in order to obtain

a vetter evidence of the theory. In fact the semanticsis presented in
Definitions 3.4 and 3,5, and the syntax in Definitions 3.6, 3.7, 3.9
and 3.10.

We first introduce in a formal and general way, the concept of
relations between problems, on which our formalization of the Problemse-
Reduction Approach is based, All the possible relations existing bet~
ween problems which one of any interest for us can be baselon the

"comparison" of their solution sets as in the following definitions :

Definition 3.4

An implicant of a problem P is a couple L = (1T,¥) where :
| g {P1,P2,..., PR} is a finite set of problems;

-¥is a mapping of qux sz X eee X ka into X,

We will write :

W
T —> p (3.17)
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If Y is a mapping onto Xp, then L is said a full implicant of P.

In this case, we will write :

Wy
M o==>p (3.18)

0

Some important and usual particular cases of this general definition

can be found by the reader in [ 4).

Definition 3.5

An implicance schema is a couple = = (B @) where :

- 9?: {Po, P,i,..., Pn_1,.,..§ is a set of problems;

—@35/\0,/\1,...,/\ ,....} is a set such that |®‘£!P‘

e}
and for each J = O;1 000y M=1,0a4e &

AJ = { LO’ L,I,uc-, Lp } (3-19)
J
is a finite set of implicants of the problem Pjé P such that for

each 1 = O;15084ey pj;

m, s P (3.20)

O

Definition 3.6

A veduction schema N is a triple N = (B, Z,1™)

where

-?:fPO, P,l,,.., Pn_ﬁ,.,,}i,s a set of problems;

-2 = %5 s T, 50005 O ,...} is a set of elements, called the inputs
LI e] 1 i~ ——

of Nj;
- = {XU’ Xc o0 3 A/U y see 1 is a set of function of P into P,
© ! m=1 called the operators of N,
Definition 3.7
A constraint on a reduction schema N = (P,Z,I') is a set

Y =y Vyreees Yo_qs eee |
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where for each i = 0, sesy N=1,44s, associated to the Problem P.,, w e

i
have :
= P/
v, —{e,‘, €pranes eki} k, 70 {3.21)
where for each J = 1,2,¢04, ki :
= O o o £ * (3 22)
e . - cse e J Z -
J 3, Iy 1J.
such that :
e, & T, (3.23)
3 i
where 3
— ){’ N
e ={X , x is an element of e; } &z (3e24)
J

T. x{c’s l ( G'SG ZI)IA (Pi is an element>of the domain of &/c' 1(3.25)
s

we assume that :
e. = ¢ iff 2 e, . =¢ (3.26)

O

Definition 3.8

A constraint Y on a reduction schema N = (B,Z,") is natural iff

there exists an implicance schema = (P, ®) such that, if we
assune :

‘P = i po, P1’ s eey pn_,‘,..‘ } s

®= {AO’ /\,l,t-c, Am_1’-¢-]’ (3.27)
Y z{ yO"..., yn—,l,-oc }

we have :

- 1®! =17l (3.28)

- for each 1 = 0,71,000y M=T,00s, Nl

gees
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v, = { €15 Sproens eki % (3.29)
and for each J = 1;2,50s5 K.
1
e, = Ty, T, oglj (3.30)
iff
N L= {L“LZ,“Q, L. \ (3.31)
1
and
13 ,
TT. = U.s P }
i 17 1 f"js (3.32)

Definition 3.9

A (deterministic) reduction problem schema is a quadruple

M= (P,Z,M, Y) where (P,T,M) is a reduction schema and Y is

a constraint on ($,Z,MM).

[

Definition 3,10

A (deterministic) reduction problem is a sextuple 2z = ($,5,r,

Y, Pi,?) where (P,Z,M, Y) is a reduction problem schema and :

- P € P is called the initial problem;

- Pee P is called the set of the final problems. D

We now outline explicitely the close relation existing between
the definition of reduction problem and the definitions of graph

and AND/OR graph.

Definition 3,11

The underlying graph of the reduction problem z = (T,2,0, 7,
P.s ¥ ) is the grapn ¢ = (P, I ,M")

Definition 3.12

The underlying AND/OR graph of the reduction problem Z = (®,s,
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r, v, pi,‘Pf) is the AND/OR graph A= (P, 2,1, v).
U

It is now clear that, as we have already pointed out, the for-
melism of the reduction problem schemata (or equivalently of the
AND/OR graphs) is just the syntax of the implicance sche~
mata, which on the other side are the semantics of the reduction
problems schemata., We outline that the same reduction problem schema
could have several "interpretations", i.e. associated implicance

schemata, and viceversa.
Differently from the method followed in Section II for introducing
the concept of solution, we are now going to define first the solu-—

tion sequence and then the solution of a reduction problem.

Definition 3.13

A(k—step) solution sequence of a reduction problem z = (B,Z, I, vV,
P, ‘Pf) is an AND/OR path P of the underlying AND/OR graph (P,Z ,M,Y)

from the vertex P, to the set of verticesV, = P_. , P. ;4003 P such
1 £ f1 f2 fh
that
[
Ve s Ty (3.33)
and
Hp)=x (3.34)

O

Definition 3.14

The (k—step) solution generated by the (k-step) solution sequen=—
ce P o= (b, byyees, b, .,) of the problem z = (P,Z,I", 7, Pi,‘?f}.
is the string x = £ L of finite sequences éﬁj of strings

1 2..' k
§ i € 7 * such that ig 2

{p.)
T 1
(91, 92,..., P pq)

(3.35)
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q G 4 ad g q
b = P e e p ¢ e LR
a ( 17 Fos » P Proyge * Pr g P 1 et =p )
1 172 1772 a
. Qo1
k+1 k+1
by g = <p1 s omees P )
k+1

we have :

17 (§511)
L,-08°,% ... 67 (3.36)

1

&6

&6

T

Qe

;E k = ( g}k1: °°*’é%k )

Pr
where :

1
- %’1 is exactly the dj referred to in (3.11)

~ for g = 2,3;s0e5; kK ¢

Dq_1

£,-u,D, (3.37)
1

where

D, -® (3.38)

-

iff in (3.12) b, is obtained as in (3413)

R . =1(a) £3.39)

where dj is exactly the string referred to in (3.16) iff in (3.12)

b, is obtained as in (3.15).
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2 k+1 2 k41
Moreover we will call the set F_ ={ p 3 eass P ‘ = qu the

1
P
. . +
covering set determined by the (k=step) solution X of Z.

O

Definition 3.15

A solution x of a reduction problem 2 = (P,Z,1, v, Pi,st) is
a string of finite sequences of strings of ¥ ¥ such that x is a
{k-step) solution of Z geenerated by a (k-step) solution sequence p of

Z for some nonnegative integer k.

0J

Definition 3.16

The solution set of a reduction problem zZ = (P,Z,l, ¥, Pi,T})

is a set XZ such that :
XZ = {x | x is a solution of Z } (3.40)

Definition 3,17

The total length X of x solution x = :Fq...ffk of a reduction

problem z = (9,2, ¥, P, ?f) is defined as :

k P. .
L] i
Mx) = T, 2718 (3u41)
i J J
b O
We outline that X( y) 1is exactly the number of expansions required
to obtain the solution x, i.e., the number of times that an operator
o € ™ had to be applied.
We introduce now the important concept of cost of a solution of a

reduction problem.

Definition 3.18

Given a cost function c on Z the simple cost C of a solu~
tion x = 361, eses l; of 2 reduction problem 7 = (¥,Z,I, 7, P1,¥})
is defined as :

LR J
clx) = Z; 257 (1) (3.42)
1

1
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Definition 3.19

A solution ¥ of a reduction problem 7z = (B,Z,F, v, Pi,?f) is
minimal iff :
A (%) = min % >\(x)} (3.43)
X & Xz D

Definition 3,20

A solution x of a reduction problem z = (B,Z,F, ¥, pi’i?f) is
simply optimal 1iff :

c(x) =min | c(x)] (3akh)
x € XZ

O

It is then possibly to define the composite cost of a solution x
and a compositely optimal solution x in a fully analogous way as
that one followed in Section II. We omit these definitions for the

sake of brevity.

Definition 3.21

We say that a problem P = ( $8,Z,f", i, £f) is solved iff a couple

T = (P, X} is given where :

C
e, (3.45)
and
X £ 9 (3446)
If X = ¥ we say that P is fully solved.
P S O

We conclude this Section by pointing out the close relation exist
ing between the two diffgrent approaches presented in Section II and

IIT.

Theorem 3.1. Given a reduction problem z = (%£,Z,I", Y, Pi,ﬂ?f) and

a solution x € XZ of 7 if all the final problems of the covering

set Fs determined by x are solved and if Y is a natural congstraint

on (ﬁxZ,P) it is possible to construct a solution y € Xp of pi.
i
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Proof

The proof of this Theorem is directly obtained from Definition

3.8, 3.13, 3.18, and 3.23.
The algorithm for building up y is also easily defined.

O

Part B -~ Topics for Future Research

In this second part some important directions for further
investigation are presented. Informal bases for the definition
of a measure of complexity inside the above presented Integrated
Theory of Problems and for the design of an Automatic Problem Sol

ver are described in detail.
IV - TOWARD A MEASURE OF COMPLEXITY

In this Section we present some preliminary concepts with the
aim of metting up an unformal base for future definition of a mea—
sure of complexity inside the above presented Integrated theory
of Problems,

The intuitive concept of complexity can be better specified by
splitting it into the following three components ¢
- complexity of a solution;

- compléxity of the algorithm used for finding out a solution;

~ complexity of a representation of a problem.

Let us now investigate these three different concepts in more detail,
The complexity of a solution is determined foundamentally by its
simple {composite) cost and by its length. In fact the cost takes
into account the complexity of the application of each operator
necessary to build up the solution, and the length takes into account
the number of an operators which must be applied, i.e. it gives an
estimate of the time spent for the construction of the solution.

This first type of complexity, which we shall call solution complexity
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is of course related to a solution of a problem in a given repree-
sentation, i.e. it can be useful for compairing different solutions
of a some representation of a problem,

The complexity of the algorithm used for finding out the solution
must take into account the time spent for the research, the memory
occupation, and the mumber of unsuccessful attempts done in the such
activitye

This type of complexity, which we shall call algorithm complexity

it therefore related to an algorithm followed in the search of a given
solution of a problem in a given representation.
We can then define for each couple (solution, algorithm) of a given

representation of a problem a global complexity which takes into

account both the solution complexity and the algorithm complexity
and gives a quite precise estimate of the complexity of the global
solution process of a prcblem.

Before proceeding further, we note that, as we have already outlined
in Section III, the solution of a reduction problem Z = (P,Z,0,7Y,
Pi, ?f} is conceptually different from the solution of Pi’ which is
in fact the problem that we wish to solve. However the solution of
Pi can be constructed from the solution of Z if the conditions of

Theorem 3.1 hold. In this case, which we call the Ibrdid Approech,

it is clear that the global complexity of the solution of Pi must
take into account the global complexity of the Problem-~Reduction part,
the solution complexity of the State-Space part, and the complexity
of the construction of the solution of Pi, once the solution of Z
is found.

We conclude this Section by briefly investigating the third

type of complexity we mentioned above, ieee the complexity of a

representation of a problem, which we shall call the representation
complexity. If we refer to a given intuitive problem and to a set of
different representations of it, inside the same approach or inside
different approaches {i.e., State~Space, Problem-—Reduction, or Ibrid),
we want to define e measure of complezxity which clearly points out

which representation is the most suitable {(natural) for the givenin

tuitive problem,
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The representation complexity must therefore take into account
an "average value" of the global complexities of all the possible cous

ples (solution, algorithm) of a given representation of a problem.

V ~ TOWARD THE DESIGN OF AN AUTOMATIC PROBLEM SOLVER

In this Section we present our basic point of view on Problem =
an
Solving,ﬁ‘first-cut,unformal, design of an Automatic Problem Solver.
The standpoint of our considerations is the following one: computer

geience is an experimental discipline whidhis centered around an uni-

tary and global goal : man~computer interaction in solving problems.

This interaction can be syntetically represented as a path connecting
the following basic concepts:

- intuitive problem,

- pepresented problem,

- solved prcblem.

The path itself is constituted by the three activities of formaliza-—

tion, automatic resolution, and matching.

These concepts are graphically illustrated in Figure 1 and they will

be widely investigated in the whole Section.

The intuitive problem is an entity which independently faces

the man and can be viewed as an undefined and unlimited source of in-
formation,

From it, through the activity of formalization, the man operates
an exptraction of a finite and precisely described amount of information,

namely the represented problem, This information is chosen as valuable

and sufficient in order to provide, through mechanical, or interactive,

computation, the construction of the solved problem (i.e., the solution

of the problem,
It is clear that in principle the solution construction can be
performed in an artificial and completely automatic way by means of a

general purpose computational tool that we shall e¢nll Automatic Problem

Solver.

On the other hand, the activity of formalization belongs exclusim
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Figure ] = Problem=Solving activity,

vely to the man,

Let us now investigate in more detail these outlined concepts,

The formalization activity, performed by the man, provides,
as it has been previously exposed, the represented problem, as an
artificial object which is obtained from the intuitive problem.

The invention of the represented problem consists in the preciw
se description of a finite quantity of information which the man forwe
mulates by means of the observation of two distinct entities, namely:
the intuitive problem, and the Automatic Problem Solver.

The invention of the represented problem requires that the man per-
forms two basically different activities, in its formalization pro-
cess.

The first activity is devoted to the specification of the me=
thods and ways which "tune" the Automatic Problem Solver, considered
as an originally general purpose tool, into a well precised special
purpose tool which is oriented by the semantic domain {rom which the
intuitive problem is originated.

The information described by consequence of this first activity,

is called control information and it is the first part of the informa-—

tion contained in the represented problem.
The second activity is dedicated to the selection from the in-
tuitive problem of a finite quantity of information which is CON Sim

dered by the man as useful, and, hopenfully, efficient and sufficient,
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in order to allow the special Problem Solver to achieve its goal of
providing an automatic solution of the problem,
The information described by consequence of this second activity,

is called problem information and it is the second part of the informa=

tion contained in the represented problem,

It is conceptually important to observe that both the two previous
ly described activities are done by the man with the conscience of
being faced by ignorances of two different types, namely :

- what part of the problem information is actually relevant to the
computer and shall be utilized in order to solve the problem;

- what is the actual way in which this relevant information shall be
processed in order to construct the solved problem,

These two types of ignorances are useful to point out two functions
performed by the automatic problem éolver, which are intended to give
artificial answers to these ignorances,

The first:function, which is devoted to produce an automatic anse
wer to the first type of ignorance, consists in an appropriate seleCw
tion of one part of the information contained in the represented pro=
blem, and considered, by the Automatic Problem Solver, as useful and
relevant for its activity of solving the problem,

This activity is performed by a first part of the Automatic Prow
blem Solver, called Selector, as it is shown in Figure 2, where all
the block=structure of an Automatic Problem Solver is illustrated.

Therefore we will call global represented problem the input of

the Selector and selected represented problem the output of the Selec—

tor,.

The second function, which is devoted to produce an automatic
answer to the record type of ginorance, consists in a skillful search
of the cooperation process, embracing the already selected information,
which essentially makes up the solution algorithm and, thus, yields
the solution of the problem,

This activity is performed by a second part of the automatic pPro
blem solver, called Searcher, as it is shown in Figure 2.

Therefore, while the input of the Searcher will be the selected

represented problem, the output of the Searcher will be the solved
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problem,

As it has been previously illustrated, the control information
is the information which enables the man to specify the special
configuration of the problem solver oriented towards a particular
semantic domaine

Therefore, by means of the control information, the structures
of the Selector and Searcher are completely specified.

This definition of the structure of the Selector and of the
Searcher by the man can be considered Jjust as an initial specificaw
tion which, during the ongoing solution process, can possibly be
changed and improved,

This modification and enhancing activity is the typical activity
of learning which is able to provide a dynamic evolution of the struc
ture of the Selector and of the Searchenr.

This selfchanging activity is performed by a third part of the
automatic problem solver, called Learner, as it is shown in Figure 2.

Therefore, the inputs of the Learner are constituted by the glo~
bal represented problem, by the selected represented problem, and by
the solved problem.

The outputs of the Learner are the automatically constructed and
modifiable specifications of the Selector and of the Searcher.

Thus, the kernel of an automatic problem solver appears to be

an aptificial metasystem which is initialized by the man as an inim

tial system, and, afterwards, can evolve itself, in a way appropriate
to enhance its artificial performances in solving problems.

Therefore learning can be viewed as the ability of selfawereness
of the whole automatic problem solver.

Whichever has been the method followed by the man in performing
its formalization task for the construction of the represented problem
it is necessary for him to choose an appropriate formalism apted both
to provide a "good" represented problem and to catalyze a "valid"
artificial activity for the automatic problem solver.

We can rightfully call such a formalism the Representation Lane

age, which the man needs for cooperating with computer.
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While the classic programming languages have been conceived to
communicate to the computer algorithms, the representation languages
can be conceived to channel to the computer represented problems.

Therefore we can also look at an Automatic Problem Solvers as at

the Interpreter of the Representation Language in which the represen-

ted problem have bheen communicated to the computer, and, moreover, as

at an Automatic Programmer.

Let us now present a first—cut design of an Automatic Problem
Solver and a detailed description ofits mode of operation.

These concepts are graphically illustrated in Figure 3.

The control information and the problem information will constie
tute, expressed in an appropriate Representation Language, che Control-
base and the Problem-base.

The automatic problem solver acts on these two bases of informa=
tion as an interpreter and can perform the three basic activities of

selection, search, and learning.

Tts activities are controlled and organized by a monitor systhem.

We now examine in detail the above outlined concepts, which are gra-
phically illustrated in Figure 3. Let us begin with the Problem-Base.

The problem~base contains all informations on the problem to be
solved (P) and its environment, which the man thinks as sufficient
for the solution of P. In fact the problem-base can be built up as
a set which contains: P (possibly many different representations),
implicants of P, solved problems, other problems and reduction pro-—
blems (having possibly P as their initial problem), simple and/or
composite costs functions for the problems and the reduction problems
of the problem=base, etc. The problem~base is first submitted to an
ordering process which gives to the information contained in it an
hierarchic ordering (e.g., a discrimination net or a tree) with the
purpose of allowing an easier and more efficient exploration of it,
whenever it is required by the monitor system.

The basic carachteristic of the problem—base is that it constim
tutes a dynamic set. In fact whenever the automatic problem solver achie

ves some useful results during its search activity, this is inserted
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in the problem-base, at its right place, and can be used afterwards
as a datum of the problem,

All problems which are contained in the problem~base may be either
active problems or passive problems.

The active problems are those problems which can be considered as re

duction operators when a reduction strategy is used in order to conm
struct the solution of a problem.

The passive problems are the solved problems which constitute the

"terminal nodes" of a reduction strategy.

We want now to emphasize that the man doesn't know exactly if the
informations of the problem—base are enough, short or redundant for
the solution of the problem; which of them are to be used; and, more~
over, in which way must be organized the cooperation process between
them in order to solve the problem.

We describe now the basic activities of the Monitor.

The Monitor can be considered as a system which can :

- give to the problem~base its appropriate hierarcht:ordéring;
- menage the generated attempts, by means of "interrupt", "activate”
and "call garbage collector" signals.

The global activity of the Monitor system is fixed by the user
of the automatic problem solver by means of the control information.

The ordering activity of the Monitor was already shown; we will
only outline that it also coentrols the insertion in the problem=~base
of the new information arising during the solution of the problem.

The basic activities of the Monitor system are then the generam
t+ion and the management of attempts. An attempt A is the set of infoer
mation which contains the specifications of the selector and of the
Searcher.

The attempts are generated by G in a temporal sequence, as a con
sequence of the initial control information and of the preceding lear
ning activity. In particular it is clear that the first attempt Ao
must be entirely specified in the control-base.

The generated attempts, AO, Ai’ AZ""’ are organized by the moni

tor in an appropriate hierarchic structure which must allow an easier

management .
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The attempts must be managed in such a way that they can be
considered as coroutines: old attempts can be activated and new attempgs
cen be interrupted whenever it is useful. The attempt management is
done by means of the control information. In Particular the "activa-
te" and "interrupt" signals are generated on the basis of the compu~
tational effort done up to a certain point estimated by means of
appropriate complexity measures defined in the control-base.

The attempt management must also provide a garbage~collector which
distroies the old unuseful attempts, whenever it is necessary.

We can now examine in detail the content of the control-base.
The control-base contains all informations that the man can draw from
the intuitive problem and from his knowledge of the operating way of
the artificial automatic problem solver in order to initialize the
metasystem and to control its dynamic development,

In other words, the problem—solver, considered as a metasystem,
is an artificial entity, existing outside the user, which has been
provided by the artificial intelligence scientist as a general purpose
tool,

However, the ingenuity and creativity of the user, can be ex-—
ploited in order to "tune® such general purpose tool in the direction
of the semantic domain from which the problem arises.

Hence, such initializstion (or specification) of the general pur
pose metasystem constitutes a way of defining a special purpose system.
In particular the control-base must contain :

—~ the complete definition of the Monitor system and of the Learner;
- the first attempt Ao'

Now, we can precisely define the basic activities of the Selec-—
tor, of the Searcher, and of the Learner.

The Selector can be considered as a system which can act on the
problem=base and select: either a set of states to be expanded and
a set of inputs for executing the expansions, if an expansion attempt
is active at that time; or a set of passive problems which must take
part to a reduction operation, and an set of active problems for per—
forming the reduction, if a reduction attempt is active at that time,

0f course a bidirectional exchange of informations between the Sélec—



128

tor and the problem=base i1s provided,

The Searcher can be considered as a system which can act on that part
of th. problem base selected by the Selector and perform the expansion
or reduction operation,

Of course a bidirectional exchange of information between the

Searcher and the problem~base 1s also provided.

The Learner can be considered as a system which can provide the Monitor
with all the requested information for a correct and efficient genera-
tion and menagement of attempts taking into account all the "past
experience® done by the Selector, the Searcher and the Monitor itself.
The mode of operation of the whole system is then now quite easy to ex
plain. By means of the activity of the Selector and of the Searchenr
the problem~base is incrementally expanded, i.e. new passive (solved)
problems are constructed by means of the already existing ones and

of the active probléms. This process continues untill the problem P ,
that we wish to solve jbecomes also a solved one.

The efficiency of the system is provided by means of an adeguate geng

ration and menagement of attempts, i.e. by the activity of the Monitor.
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