
AN INTEGRATED THEORY OF PROBLEMS AS AN ALGEBRAIC

BASE FOR COMPLEXITY UNDERSTANDING AND AUTOMATIC

PROBLEM SOLVING.

Giovanni Guida - Dino M~ndrioli - Amedeo Paci - Marco Somalvico

Milan Polytechnic Artificial Intelligence Project - MP-AI Project

Milan~ Italy.

I. INTRODUCTION

The studies about the theory of problem solving~ to which belong

the results that we shall present in this paper~ are intended to

achieve the following main goals :

- a rather precise understanding of the human behaviour in problem

solving activity;

- a clear definition of what we mean by an Automatic Problem Solver

(APS) ;

- the formulatlon of an Abstract Theory of Problem--Solvin$ which

can clearly point out the theoretical possibilitles and the limits

of an Automatic Problem Solver;

- a proposal of an efficient structume of an Automatic Problem Solver

which can perform the three basic activities of selection~ search

and learning;

- the formulation of a Theory of Problems which can be helpful as

a theoretical base in the design of an Automatic Problem Solver;

- further investigations about Automatic Problem Solvers as non-d E

terministic interpreters of an high-level representation language

and as automatic programmers;

- imp&ications of the developped theories on fields of actual

interest; e.g.~ Industrial Robotics, Computer Aided Medical Dia-

gnosis, Intelligent Data Base Management Syst~ms~ Question Answer-

ing Systems~ etc.

99

These studies are being developped at the Milan Polytechnic

Artificial Intelligence Project since three years.

The purpose of this paper is to present some new results achieved

by the authors in the above mentioned fields of research. The paper

is divided into two Parts.

In part A, which is constituted by the Sections II and III, an Inte-

grated Theory of Problems in presented in a formal way.

In Part B~ which is constituted by the Sections IV and V~ some

implications of the theory and important directions of future research

are described.

More in detail the paper is devoted to present :

- in Section II, the basic definitions and results of the formaliza-

tion of the State-Space Approach to Problem-Solving;

- in Section III, the basic definitions and results of the formaliza-

tion of the Problem-Reduction Approach to Problem-Solving.

- in Section IV, a first cut Theory of Complexity , which constitutes

an unformal base for the definition of a measure of complexity;

- in Section V~ our basic point of view on Problem-Solving and a

detailed unformal structure of an Automatic Problem Solver.

..Wart A - The Formal Theory

In this first part the formalization of the classical State-Space

and Problem-Reduction Approaches to Problem-Solving [6], [9] is

presented.

This formalization is achieved by means of an algebraic tool strictly

connected with the Theory of Graphs [I], [3] and with the Theory of

the AND/OR Graphs. Because of the unitary way in which the two dif-

ferent approaches have been considered during the formalization,the

outcoming theory cam in fact be called an Integrated Theory of Pro-

blems.

II. STATE-SPACE : FORMALIZATION

In this Section we present some basic definitions and results

100

of the formalization of the State Space Approach to Problem-Solving.

A further investigation of these topics may be found in [4] •

The A l g e b r a i c Theory o f Automata [3] and t he Theory of Graphs [1]

were both taken into account in setting up the following theory.

The prooves of the theorems of this Section are emitted for the

sake of brevity and can be found by the reader in [~].

We first present some basic definitions of the Theory of Graphs

which shall be useful for the following investigations.

Definition 2.1

A (directed~ labeled) graph is a triple G = (V,A,R) where :

{Vo,... ~ Vn_if..,lis a set of elements called the vertices V

of G~

- A = { a O, . o . , a m _ l , . . .] i s a se t o f e l e m e n t s c a l l e d t h e l a b e l s o f G;

- R =~, ~ a o , . . . ~ R , . . .] i s a s e t o f functions from V into V.
a
m--1

Definition 2.2

An arc of a graph

such that :

G = (V,A,R) is a couple of vertices u=(Vo,V I)

(~a) ((a (A) A (v o ~a = vl)) ~2.1)

the vertex v is called the initial vertex
O

called the final vertex.

Definition 2.3

v I A loop is an arc u = \Vo~

and the vertex v I is

Definition 2.4

) such that Vo ~ Vl "

[]

[]

A path of a graph G = (V~A~R) from a vertex v ~ V to a vertex
1

Vf ~ V is a finite sequence of vertice ~= (v i..., v I,..., Vk_], vf)

101

such that :

o . . (~) ((x~A+)A(x = all aik)A

(v I = ViRa) ~ ... A(vf = Vk_ IRa)
z 1 z k

where:

(2 . 2)

The string x is called a generating string of b " Moreover we say that

the path ~ has length k.

We can now present the basic definitions of the State-Space

Approach.

Definition 2.5

A (deterministic) problem schema M is a triple M = (S, [, ~)

where :

S = I s o ' Sl ''''~ Sn-1~ ""I is a set of elements called the states

of M;

--~ = I%' ~' "'''Omm-1, "''] is a set of elements called the inputs

of M;

-F = l~Cro,~j ... ~_1,...] is a set of functions of S into S

called the operators of M.

E3
Definition 2.6

A (deterministic) probl~m ~ is a quintuple ~ = (S, Z , P,i , f) :

where (S,~, ~) is a (deterministic) problem schema, and :

- i ~ S is called the initial statel

- f 6 S is called the final state.

[3
Definition 2.7

A (deterministic) extended problem P is a quintuple P=(S,~,P, I,F)

where (S,[,~) is a (deterministic) problem schema and :

102

- I~__ S is called the set of the initial states;

- F.~ c S is called the set of the final states.

Definition 2.8

A solution of the problem P = (S,[, ~,,i, f) is a string :

x =~ ~ ...~ ~ Z* (2.3)
i I i 2 i k

such that :

i d~ = f (2 . 4)

[]

where :

gx -- " ' "

m I i 2 i k

(i.e.fx is made up by the composition of operators), and g~ is

the identify function on S~ if ~ is the null string.

Definition 2.9

A solution of the extended problem P = (S, ~ ~ ~ ,

string x G ~ such that :

(~i) (~f) ((i~ Z) ^ (i~ = f)^ (fE F))

l, F) is a

(2.6)

Definition 2.!O

The solution set of a ~extended) problem P (P) is the set

X ~ Z *(~*) which contains all the solutions of P (~) P X~ff

We outline that the solution set Xp of a problem P is not

necessarily finite. We are now able to introduce some initial formal

properties of these notions.

E]

E]

[3

Theorem 2.1. Given an extended problem ~ : (S,~ ,[~ , I, F) we have :

U (2.7)
x~-- pi~s ~ xpi

103

where :

E~ = { RilPi=(S,Z,P, i , f)~ <i(I) ^ (f F)] (2.8)

0
Although this theorem states a close relation between the

solution of an extended problem and the solution of a set of problem,

there is no irgiication about the methods of how to "reduce" in a gene-

ral case the solution of an extended proD!em ~ to the solutions of

the set of problems E~.

In fact this "reduction" is closely related to the search strate-

gy adopted in the problem solving process.

Conversely, we want to focus our interest in the following pages

only on problems and their properties.

We now outline explicitely the close relation existing between

the definition of problem and the definition of graph.

Definition 2.11

The underlying graph

graph G = (S~Z ,P).

of the problem P = (S,~ , ~, i, f) is the

[]

We assume as well known the concept of lensth of a string x that we

shall denote by i(x).

We outline that if x ~ ~* is the solution of a problem P = (S,~ ,r ,i,f)

l(x) is exactly the number of expansions required to obtain the solu-

tion x, i.e. the number of times that an operator ~ ~ ~ has

to be applied.

Definition 2.12

A (k-step)solution of a problem P = ($9[,C, i~ f) is a solution

x g Z* of P such that l(x) = K.

Definition 2.13 ~3

The (k-step) solution sequence generated by the (k-step) solu-

tion x = ~. O- --. ~ of the problem P (S ~ ,P , i, f) is the se-
11 12 i k

104

quence of states:

G<k)'x = (i~ Sl~S2,..~ ,. Sk_1, f) (2.9)

such that :

s I = i ~ii

$2 = Sl ~O-
1 2

e

i

Sk_ I = Sk_ ~ g
-~ Zk_ I

(2.1o)

It is evident that a (k-step) solution sequence of a problem is in

fact a path of length k from i to f.

Let us now introduce the basic definition of cost.

[]

Definition 2.14

A cost function c on a set [is a measure function of [* into

R (set of real non negative numbers) such that : +

c(xy) = c(x)+ e(y) (Vx) (Vy) ((x~Z*)A (y~X*)) (2.11)

[]
Theor~a 2.2 ~ A cost function c on a set [is completely determined

by its restriction to Z.

Definition 2.15

Given a cost function c on ~ ~ the simple cost C of a solution

x ~ Xp of a probl~ P = (S,[, P , i~ f) is defined as :

c(x) = c(x) (Vx) (x ~ xp) (2.12)

[]

105

Definition 2.16

Given a cost function K on S x ~ the composite cost K of a

solution x ~ Xp of a problem P = (S~ , ~ , i~ f) is defined as :

K(x) = K(~) (2.19)

where :

= (i, ~'il) (S1, ~i2) ... (Sq_l, c 2q) (2.14)

iff :

x =0" c~- ~-- I m Q

i I i 2 i q

and

G (k)- (i 81,s 2, s 2 f) x - ' ''''' Sq-1' (2 . 1 6)

is the (q-step) salution sequence generated by the (q-Sbep) solution

xof P.

D
Definition 2.17

A solution ~ ([* of a problem P = (S,~, ~, i, f

iff :

i(~) ~ min {l(x) l
x{ Xp

Definition 2.18

is minimal

(2.17)

D

A solution [(Z* of a problem P = (S,E ,~, i,f) ms simPlY (c0m-

positely) optimal iff :

10(x)l rain I (2.18) C(~) min
XEXp X~Xp []

We outline that in general neither the existence nor the uniqueness

of a simply (compositely) optimal o r minimal solution of a problem

can be proved.

106

III. PROBLEM-REDUCTION : FOR/WALIZATION

In this Section we present some basic definitions and results

of the formalization of the Problem- Reduction Approach to Problem-

Solving. The adopted fo~alimn is congruent with that one used in

the view setting up an unitary, integrated theory.

We first present some basic definitions of the Theory of Graphs

which shall be useful for the following investigations.

Definition 3.1

A (directed~ labeled AND/OR graph is a quadruple Z~ =(V,A,R,W)

where :

- V = I Vo''''~ Vn_ I''°" I !s a set of elements called the vertices

of ;

A = I ao''''~ am-1'''"] is a set of elements, called the labels

of ;

I R a .~ is set of functions from V into V;
- R = ,.®., R a ~.. a

O m--1 %

w OI~o, ° h l "lis a set of elements called the AND/OR

con~aints of A and associated to the verti-

ces,~

where for each i = O, ...~ n - l ,

have:

... associated to the vertex v , we
i

w~ =]d~ 1, ~i2,-- ' , dik] , Ki>.O (3.1)
1

and for each j = ii~i2,.., ik" :
1

dj = aj a ... aJl 6 A* (3.2)
I J2

such that :

J

where :

dj =IxIx is an element of dj] -~ A

(3.3)

(3.4>

107

I i = I a s I (as~ A) ̂ (v i is an element of the domain of R a)~A
S

We note that :

d= $ iff : dj = ¢
3

Definition 3.2

(3.5)

(3.6)

[]

A (directed, labeled)canonical AND/OR graph /~ is

2% = (V,A,R,W) such that for each i = 0,..., n-l,.., we have :

I i
-,wil = I 9

or

- w i ={d$, d2,... , dj,..., dk 1
1

and for each j = I,..., k :
l

l(dj) = I

an AND/OR graph

(3.7)

(3.8)

If condition (3.7) is met we say that the corresponding vertex Z
1

is an AND-vertex, if condition (3.8) is met we say that the corre-

sponding vertex v is an OR-vertex.
l []

It is obvious that the set V of the vertices of a canonical AND/OR

graph /~ is partitioned into the following two subsets :

~:Iv I (v~v) m (v is~AND-vertexofn)}

~={v I (v~v) A (v is an 0~-vertex of n)]

Moreover an algorithm can be easyly defined which allows to construct

for each (directed, labeled) AND/OR graph A a (directed, labeled) ca
D

nonical AND/OR graph~ which is "equivalent" to /~ . (the meaning of

the word equivalent is now left to the intuition of the reader).

We shall denote by the symbol [~ the concatenation of sequence;

i.e., the associative, non commutative~ operation which associates

to each ordered pair of sequences AI, A 2 the sequence A = AI~] A 2

containing exactly the elements of A 1 followed by the elements of

A 2 •

108

Definition 3.3

An ~ND/0R path fmoma vertex v i to a set of verticesVf = { v ,vf2 ,
fl

...~ Vfh] of and AND/OR graph Zi= (V,A,R,W) is a finite sequence

= (bo~ b I ~o.., bvl) of finite sequences of vertices of Z~ such that:

b : v i)
o

t I)
b I = v11~ v2,oo.~ vpl

®

b =
q

q)
v q q v q v q v ~...~ vr1+r2+"

~ ~ r1+I ''''~ r1+ r 2 ..+r =pq I ~ v 2 ~ ~ rl Pq-1

(39)

®
^k ~,k

bk = (v1''~°~ Vh = Pk

where :

1 I I ~ iff : (3.10)
- b I = (Vl, v2, ~ v ,

Pl

(~I dj) ((d.j E ~o) A (dj = a jla aI) A
3 2 JPl

I = v)a ... /~(Vo%jp = v = vl) (V°RaJ2 Pl (v°~a Jl 1
))

3.11)

- for q = 2,3,...}k

b = Pq-1 ~
q L] I

I

3.12)

where :

%i ~q-1) = tv i

q-1
v ~ Vf 1
m
b = (v q
z r I +, o ,+ri_ I

only if :

q

+I ~ Vr1+, ~.+ri_ I

q

+2 ''''~ vr1+...+ri_1+r i

3.!3)

(3.14)

(3~5)

only if :

109

q-1
(% d j) ((d j (w i { ~dj . . .

/% = a j l a j2 a.jr.) A
l

(vq -IRa
1 Jl

= v q
r1+...+ri_ I

)A...A + I

(v~-IRaj r = v q
ri+.,,+ri_] + ri))

1

(where wq -I denotes the w ~ W associated to the vertex v q-I
1 1

(3.~6)

- bk_ I contains at least one vertex which has not the superscript /~

-b k is a permutation of the elements of Vf.

Moreover we say that the path ~ has length K-I.

[]

We can now present the basic definitions of the Problem-Reduction

Approach. We outline that in our formalization we have defined separa-

tely the syntactic aspects and the semantic ones ,in order to obtain

a better evidence of the theory. In fact the semanticsis presented in

Definitions 3.4 and 3.5, and the syntax in Definitions 3.6, 3.7, 3.9

and 3.10.

We first introduce in a formal and general way, the concept of

relations between problems, on which our formalization of the Problems-

Reduction Approach is based. All the possible relations existing bet-

ween problems which one of any interest for us can be based on the

"comparison" of their solution sets as in the following definitions :

Definition 3.4

An implicant of a problem P is a couple L = (~,h u) where :

-7= { p1,p2,..., Pk] is a finite set of problems;

-~is a mapping of Xplx XP2 x ... x XPk into Xp.

We will write :

> P (3.17)

110

If h u is a mapping onto Xp~ then L is said a full imp!icant of P.

In this case~ we will write :

IT P (3.18)

Some important and usual

found by the reader in [4]. can be

particular cases of this general definition

Definition 3.5

imp!icanoe schwa is a couple ~ = (~, 0) where :

~ = { Po P ~ p~] is a set of prob~s~

and for each j = 0,I~..., M-I,... :

J

is a finite set of implicants of the problem P & O

each i = O~I,..., p~;
o

(3.19)

such that for

TT ~ ~ ~ (3.2o)

D
Definition 3.6

A reduction schema N is a triple N = (~,)", in)

where

- ~ = i Po' P1''''' Pn-1'''"] is a set of problems;

- [= {0"0,. %,..., Crm_1,...] is a set of elements, called the inputs

of N;

-P = I f~, F~ ,'°" ' ~ ' "'" I is a set of function of P into P,

o I m-1 called the operators of N.

Definition 3-7

A constraint on a reduction schema N = (~,Z,~) is a set

Y =~ Yo' YI''''' Yn-1' "'" I

D

111

where for each i = O, ..., n-l,..., associated to the Problem Pi' w e

have :

, . ~ o (3 ,21) Yi =t e I e2, .., ek. ; kit
i t

where for each J = 1,2,..., k :
1

ej = o- mr" ... ~ ~ Z * (3 .22)
Jl J2 l j

such that :

e . c_ T. (3 .23) j it

where :

-- e ~ < r x x an d I = I is element of e_ --~- Z
J

(3 .24)

Ti = { ~s I (~s 6 ~) A (Pi is an element)of the domain of ~)(3.25)
S

we assume that :

e . - - ~ ± f f : ~ - = ¢ (3 .26) J J
[]

Definition 3.8

A constraint Y on a reduction schema N = (~, [, r) is natural iff

there exists an implicance schema = (~, ~) such that, if we

assume :

¢P = ~ po, pl, , Pn_],... I ,

~) = I /ko ' A t ' ' ' ' ' /~m-1''''] ' (3,27)

I
we have :

- I ® I = J Y I

- for each i = 0,i,..., m-l,..., n-l,... :

(3 .28)

112

3-
(3.29)

and for each j -- I~2,...~ k
l

J I 2 !.
J

(3.3o)

iff :

A i = t L 1,L 2 , ~ , , Lk.]
1

(3.3~)

and
l j ~

~[j = U1s i Pi ~/%s]

Definition 3.9

(3.32)

E]

A (deterministic) reduction problem schema is a quadruple

M = (~ ~ ~ ~, Y) where (~, [~) is a reduction schema and Y is

a constraint on (~,Z ~ P).

Definition 3,10

[]

A (deterministic) reduction problem is a sextuple Z = (~, ~ ~ ~

Y~ Pi~) where (~ ~ ~ P ~ Y) is a reduction problem schema and :

- P. ~ ¢P is called the initial problem; !

- ~f~ ~ is called the set of the final problems.

We now outline explicitely the close relation existing between

the definition of reduction problem and the definitions of graph

and AND/OR graph.

Definition 3~11

The __~derlying graph of the reduction problem Z = (~,[, ~ ~ Y,

P i ' ~) iS t h e gl~aph G = (~ , ~ ,P)
[3

D e f i n i t i o n 3,12

The u n d e r l y i n g AND/OR i r a p h of t h e r e d u c t i o n problem Z = (~ ~ ~"

113

f, 3, pi,~) is the AND/OR graphA= (9, Z,r, Y).

[]
It is now clear that~ as we have already pointed out, the for-

m~lism of the reduction problem schemata (or equivalently of the

AND/OR graphs) is just the syntax of the implicance sche-

mata, which on the other side are the semantics of the reduction

problems schemata. We outline that the same reduction problem schema

could have several "interpretations" 9 i.e. associated implicance

schemata~ and viceversa.

Differently from the method followed in Section II for introducing

the concept of solution, we are now going to define first the solu-

tion sequence and then the solution of a reduction problem.

Definition 3.13

A(k-step) solution sequence of a reduction problem Z = (~,Z, ~, Y,

Pi, ?f) is an AND/OR path p of the underlying AND/OR graph (~,Z ,r,Y)

from the vertex Pl to the set of vert ices Vf = ~Pf]~ Pf2~' ' ' :" Pfh such
that :

vf_~ ~f (3.33)
and

l(f) = k (3.34)

Definition 3.14

The (k-step) solution generated by the (k-step) solution sequen-

ce p = (bo, bl,... , bk+ I) of the problem Z = (9,z,r, Y, pi, Tf~

is the string x = ~I ~2 °°. ~k of finite sequences ~. of strings O
~i (~ * such that if :

b ° = (pi)
I I pl

bl = (P ' P2'''''
Pl

) (3.3~)

I -I
.

~
b

I ~
,

~ ~

~
II

I ~
.

~,

~
•

I-
~

I ~
,

ct

0

•
I ~

,
t~

L~

@

I ~
,

0 t~
.

~Q

O

"'
~

~
~J

II

[I
~

Z
,,

|
~

~
~

f ~
"

~
~

N

•
b

.~

i ~
 ,

,

c<
~ ~

N
 ~

o ~
b

~3

~J

0 k
o

e

U ~c
~

I

o o o O
~

v

-F
 v

÷

o e o

-F
 q,

e

+ ÷ e

!

II

115

Moreover we will call the set F = -- the x Pl ' "''' f

Pk+1
covering set determined by the (k-step) solution x of Z.

Definition 3.15

[]

A solution x of a reduction pmob!em 2 = (~,Z,C, Y, Pi' ~f) is

a string of finite sequences of strings of Z * such that x is a

(k-step) solution of Z geenerated by a (k-step) solution sequence ~ of

Z for some nonnegative integer k.

Definition 3.16
[]

The solution set of a reduction problem Z = (~,Z,~", Y, Pi,~f)

is a set X Z such that :

x z = { x I x is a solution of Z I (3.40>

Definition 3.17 []

The total length ~ of x solution x = ~i..°~ of a reduction

problem Z = (~[~, Y, Pi' ~f) is defined as :

~(x) = E
I: I j

[]

We outline that k (y) is exactly the number of expansions required

to obtain the solution x, i.e. the number of times that an operator

~ 6 C had to be applied.

We introduce now the important concept of cost o# a solution of a

r@duction problem.

Definition 3.18

Given a cost function c on ~ the simple cost C of a solu-

tion X = ~I' '''' ~ of a reduction problem Z = (~,~',~, Y, P1'~f)

is defined as :

k I c(~i C (X) = [j I) (~ " [2)
1

116

Definition 3.19

A solution

minimal iff :

A (~) = min { A(x)} (3.43)

x 6 X
z D

D e f i n i t i o n 3 . 2 0

A solution x of a reduction problem Z = Y~ Pi,~f) is

of a reduction problem Z = (~,~-,~, Y, Pi,~f) is

simply optimal iff :

C (x) = min I C (x)] (3.4/+)
x~" X

It is then possibly to define the composite cost of a solution x

and a compositely optimal solution x in a fully analogous way as

that one followed in Section II. We omit these definitions for the

sake of brevity.

Definition 3.21

We say that a problem P = (S,[, ~, i, f) is solved iff a couple

T = (P~ X) is given where :

x £ xp (3.~5)

and

x / ~ (3.46)

If X = X we say that P is fully solved.
P

We conclude this Section by pointing out the close relation exis~

ing between the two different approaches presented in Section II and

III.

Theorem 3.1. Given a reduction problem Z = (~,Z,C, Y, Pi' ~f) and

a solution x ~ X Z of Z if all the final problems of the covering

set F determined by x are solved and if Y is a natural constraint
s

on (~I~C) it is possible to construct a solution ~ 6 Xp of Pi"
!

117

Proof

The proof of this Theorem is directly obtained from Definition

3.8, 3.13, 3.18~ and 3.23.

The algorithm for building up y is also easily defined.

[]

Part B - Topics for Futume Research

In this second part some important directions for further

investigation are presented. Informal bases for the definition

of a measure of complexity inside the above presented Integrated

Theory of Problems and for the design of an Automatic Problem Sol

vet are described in detail.

IV - TOWARD A MEASURE OF COMPLEXITY

In this Section we present some preliminary concepts with the

aim of Netting up an ~nformal base for future definition of a mea-

sure of complexity inside the above presented Integrated theory

of Problems.

The intuitive concept of complexity can be better specified by

splitting it into the following three components :

- complexity of a solution;

- complexity of the algorithm used for finding out a solution;

- complexity of a representation of a problem.

Let us now investigate these three different concepts in more detail.

The complexity of a solution is determined fo~damentally by its

simple (composite) cost and by its length. In fact the cost takes

into account the complexity of the application of each operator

necessary to build up the solution~ and the length takes into account

the number of an operators which must be applied~ i.e. it gives an

estimate of the time spent for the construction of the solution.

This first type of complexity, which we shall call solution complexity

118

is of course related to a solution of a problem in a given repre-

sentation, i.e. it can be useful for compairing different solutions

of a some representation of a problem.

The complexity of the algorithm used for finding out the solution

must take into account the time spent for the research, the memory

occupation, and the number of unsuccessful attempts done in the such

activity.

This type of complexity, which we shall call al~orithm complexity

it therefore related to an algorithm followed in the search of a given

solution of a problem in a given representation.

We can then define for each couple (solution, algorithm) of a given

representation of a problem a ~lobal complexity which takes into

account both the solution complexity and the algorithm complexity

and gives a quite precise estimate of the complexity of the global

solution process of a problem.

Before proceeding further~ we note that 9 as we have already outlined

in Section !II, the solution of a reduction problem Z = (~,Z,r,Y,

Pi' ~f) is conceptually different from the solution of Pi' which is

in fact the problem that we wish to solve. However the solution of

P can be constructed from the solution of Z if the conditions of
l

Theorem 3.1 hold. In this case, which we call the Ibrid Approech,

it is clear that the global complexity of the solution of Pi must

take into account the global complexity of the Problem-Reduction part,

the solution complexity of the State-Space part~ and the complexity

of the construction of the solution of Pi' once the solution of Z

is found.

We conclude this Section by briefly investigating the third

type of complexity we mentioned above, i.e. the complexity of a

representation of a problem~ which we shall call the representation

complexity. If we refer to a given intuitive problem and to a set of

different representations of it, inside the same approach or inside

different approaches (i.e., State-Space, Problem-Reduction, or Ibrid),

we want to define e measure of complexity which clearly points out

which representation is the most suitable (natural) for the giveqin

tuitive probl~n.

119

The repmesentation complexity must therefore take into account

an "average value" of the global complexities of all the possible cou-

ples (solution~ algorithm) of a given representation of a problem.

V - TOWARD THE DESIGN OF AN AUTOMATIC PROBLEM SOLVER

In this Section we present our basic point of view on Problem -
and

Solving F first-cut,tmformal , design of an Automatic Problem Solver.

The standpoint of our considerations is the following one: computer

science is an experimental discipline whidlis centered around an uni-

tary ~nd global goal : man-computer interaction in solving problems.

This interaction can be syntetically represented as a path connecting

the following basic concepts:

- intuitive problem,

- represented problem,

- solved problem.

The path itself is constituted by the three activities of formaliza-

tion~ automatic resolution, and matching.

These concepts are graphically illustrated in Figure I and they will

be widely investigated in the whole Section.

The intuitive problem is an entity which independently faces

the man and can be viewed as an undefined and unlimited source of in-

formation.

From it, through the activity of formalization~ the man operates

an exgraction of a finite and precisely described amount of infor~nation~

namely the represented problem. This information is chosen as valuable

and sufficient in ordem to provide~ through mechanical s or interactive~

computation, the construction of the solved problem (i.e., the solution

of the problem).

It is clear that in principle the solution construction can be

perfommed in an artificial and completely automatic way by means of a

general purpose computational tool that we shall C~II Automatic Problem

Solver.

On the other hand, the activity of formalization belongs exclusi-

120

formalization

/

Represented
problem

ng

automatic 1 Solved
solution problem

Figure I - Problem-Solving activity.

vely to the man.

Let us now investigate in more detail these outlined concepts.

The formalization activity, performed by the man, provides,

as it has been previously exposed, the represented problem~ as an

artificial object which is obtained from the intuitive problem.

The invention of the represented problem consists in the preci-

se description of a finite quantity of information which the man for-

mulates by means of the observation of two distinct entities, namely:

the intuitive problem, and the Automatic Problem Solver.

The invention of the represented problem requires that the man per--

forms two basically different activities, in its formalization pro-

eess.

The first activity is devoted to the specification of the me-

thods and ways which "tune" the Automatic Problem Solver~ considered

as an originally general purpose Tool, into a well precised special

purpose tool -dnich is oriented by the semantic domain from which the

intuitive problem is originated.

The information described by consequence of this first activity,

is called control information and it is the first part of the informa-

tion contained in the represented problem.

The second activity is dedicated to the selection from the in-

tuitive problem of a finite quantity of information which is consi-

dered by the man as useful, and, hopenfully, efficient and sufficient,

121

in order to allow the special Problem Solver to achieve its goal of

providing an automatic solution of the problem,

The information described by consequence of this second activity~

is called problem information and it is the second part of the informa-

tion contained in the represented problem.

It is conceptually important to observe that both the two previou~

ly described activities are done by the man with the conscience of

being faced by ignorances of two different types~ namely :

- what part of the problem information is actually relevant to the

computer and shall be utilized in order to solve the problem;

- what is the actual way in which this relevant information shall be

processed in order to construct the solved problem.

These two types of ignorances are useful to point out two functions

performed by the automatic problem solver~ which are intended to give

artificial answers to these ignorances.

The first~function~ which is devoted to produce an automatic ans-

wer to the first type of ignorance~ consists in an appropriate selec-

tion of one part of the information contained in the represented pro-

blem~ and con sidered~ by the Automatic Problem Solver~ as useful and

relevant for its activity of solving the problem.

This activity is performed by a first part of the Automatic Pro-

blem Solver~ called Selector~ as it is shown in Figure 2~ where all

the block-structure of an Automatic Problem Solver is illustrated.

Therefore we will call $.lobal represented problem the input of

the Selector and selected represented problem the output of the Selec-

tor=

The second f~nction~ which is devoted to produce an automatic

answer to the record type of ginorance~ consists in a skillful search

of the cooperation process~ embracing the already selected information~

which essentially makes up the solution algorithm and~ thus, yields

the solution of the problem.

This activity is performed by a second part of the automatic pr~

blem solver~ called Searcher~ as it is shown in Figure 2o

Therefore~ while the input of the Searcher will be the selected

represented problem~ the output of the Searcher will be the solved

fo
rm

al
iz

at
io

n

~_
~R

ep
~o

~t
ed

!~

Se

ar
ch

er

I
i

P
r
o
b
l
e
m

1
L

I
.

l
L

J

l
.f

iL
_

I
I

So
lv

ed

I
P
R
o
b
l
e
m

I I I
J

[
_~

Fi
gu

re

2

-
St

ru
ct

ur
e

of

an

Au

to
ma

ti
c

P
~
o
b
l
e
m

So

lv
eR

,

123

problem.

As it has been previously illustrated, the control information

is the information which enables the man to specify the special

config~oation of the problem solver oriented towards a particular

semantic domain.

Therefore, by means of the control information~ the stmuctures

of the Selector and Searcher are completely specified.

This definition of the structure of the Selector and of the

Searcher by the man can be considered just as an initial specifica-

tion which, during the ongoing solution process, can possibly be

changed and improved.

This modification and enhancing activity is the typical activity

of learning which is able to provide a dynamic evolution of the struc

ture of the Selector and of the Searcher.

This selfchanging activity is performed by a third part of the

automatic problem solver, called Learner, as it is shown in Figure 2.

Therefore, the inputs of the Learner are constituted by the glo-

bal represented problem, by the selected represented Problem, and by

the solved problem.

The outputs of the Learner are the automatically constructed and

modifiable specifications of the Selector and of the Searcher.

Thus, the kernel of an automatic problem solver appears to be

an artificial metag$stem which is initialized by the man as an ini-

tial system, and, afterwards, can evolve itself~ in a way appropriate

to enhance its artificial performances in solving problems.

Therefore learning can be viewed as the ability of self~rwereness

of the whole automatic problem solver.

Whichever has been the method followed by the man in performing

its formalization task for the construction of the represented problem

it is necessary for him to choose an appropriate formalism apted both

to provide a "good" repmesented problem and to catalyze a "valid"

artificial activity for the automatic problem solver.

We can rightfully call such a formalism the Representation Lan-

guage, which the man needs for cooperating with computer.

124

While the classic programming languages have been conceived to

communicate to the computer algorithms~ the representation languages

can be conceived to channel to the computer represented problems.

Therefore we can also look at an Automatic Problem Solvers as at

the Interpreter of the Representation Language in which the represen-

ted problem have been communicated to the computer~ and~ moreover~ as

at an Automatic P~osrammer.

Let us now present a first-cut design of an Automatic Problem

Solver and a detailed description ofits mode of operation.

These concepts are graphically illustrated in Figure 3.

The control information and the problem information will consti-

tute~ expressed in an appropriate Representation Language~ che Control-

base and the Problem-base.

The automatic problem solver acts on these two bases of informa-

tion as an interpreter and can perform the three basic activities of

selection, search~ and learnin$.

Its activities are controlled and organized by a monitor systhem°

We now examine in detail the above outlined concepts, which are gra-

phically illustrated in Figure 3. Let us begin with the Problem-Base.

The problem-base contains all informations on the problem to be

solved (P) and its environment~ which the man thinks as sufficient

for the solution of P. In fact the problem-base can be built up as

a set which contains: P (possibly many different representations)~

implicants of P, solved prob!ems~ other problems and reduction pro-

blems (having possibly P as their initial problem), simple and/or

composite costs functions for the problems and the reduction problems

of the problem--base~ etc. The problem-base is first submitted to an

ordering process Which glves to the information contained in it an

hierarchic ordering (e.g.~ a discrimination net or a tree) with the

pumpose of allowing an easier and more efficient exploration of it~

whenever it is required by the monitor system.

The basic carachteristic of the problem--base is that it consti-

tutes a dynamic set. In fact whenever the automatic problem solver achi~

yes some useful results during its search activity~ this is inserted

BASE

I

CONTROL BASE

MONITOR

A
O

A 1

e

Ai

'1

125

],

~J

SELECTOR

1
[
11

SEARCHER [

LEARNER

Figure 3. Schema of Automatic Problem Solver.

126

in the problem-base, at its right place, and can be used afterwards

as a datum of the problem.

All problems which are contained in the problem-base may be either

active problems or passive problems.

The active problems are those problems which can be considered as r~

duction operators when a reduction strategy is used in order to con-

struct the solution of a problem.

The passive problem s are the solved problems which constitute the

"terminal nodes" of a reduction strategy.

We want now to emphasize that the man doesn't know exactly if the

informations of the problem--base are enough, short or redundant for

the solution of the problem; which of them are to be used; and, mome-

over, in which way must be organized the cooperation process between

them in order to solve the problem.

We describe now the basic activities of the Monitor.

The Monitor can be considered as a system which can :

- give to the problem-base its appropriate hiemarch~ ordering;

- menage the generated attempts, by means of "interrupt", "activate"

and "call garbage collector" signals.

The global activity of the Monitor system is fixed by the user

of the automatic problem solver by means of the control information.

The ordering activity of the Monitor was already shown; we will

only outline that it also controls the insertion in the problem-base

of the new information arising during the solution of the problem.

The basic activities of the Monitor system are then the genera-

tion and the management of attempts. An attempt A is the set of info~

marion which contains the specifications of the selector and of the

Searche~.

The attempts are generated by G in a temporal sequence, as a co~

sequence of the initial control information and of the precedin~ lea/"

ning activity. In particular it is clear that the first attempt A °

must be entirely specified in the control-base.

The generated attempts, Ao, A I, A2,..., are organized by the mon!

tot in an appropriate hierarchic str~/cture which must allow an easier

management.

127

The attempts must be managed in such a way that they can be

considered as coroutines: old attempts can be activated and new attem~

can be interrupted whenever it is useful. The attempt management is

done by means of the control information. In Particular the "activa-

te" and "interrupt" signals are generated on the basis of the compu-

tational effort done up to a certain point estimated by means of

appropriate complexity measures defined in the control-base.

The attempt management must also provide a garbage-collector which

distroies the old unuseful attempts, whenever it is necessary.

We can now examine in detail the content ofthe control-base.

The control-base contains all informations that the man can draw from

the intuitive problem and from his knowledge of the operating way of

the artificial automatic problem solver in order to initialize the

metasystem and to control its dynamic development.

In other words, the problem-solver, considered as a metasystem,

is an artificial entity, existing outside the user, which has been

provided by the artificial intelligence scientist as a general purpose

tool.

Mowever, the ingenuity and creativity of the user, can be ex-

ploited in order to "tune" such general purpose tool in the direction

of the semantic domain from which the problem arises.

Hence, such initializstion (or specification) of the general pu~

pose metasystem constitutes a way of defining a special purpose system.

In particular the control--base must contain :

- the complete definition of the Monitor system and of the Learner;

- the first attempt A .
o

Now, we can precisely define the basic activities of the Selec-

tor, of the Searcher~ and of the Learner.

The Selector can be considered as a system which can act on the

problem-base and select: either a set of states to be expanded and

a set of inputs for executing the expansions, if an expansion attempt

is active at that time; or a set of passive problems which must take

part to a reduction operation~ and an set of active problems for per--

forming the reduction~ if a reduction attempt is active at that time.

Of course a bidirectional exchange of informations between the Selec-

128

tot and the probl~n-base is provided.

The Searcher can be considered as a system which can act on that part

of th~ problem base selected by the Selector and perform the expansion

or reduction operation.

Of course a bidirectional exchange of information between the

Searcher and the problem-base is also provided.

The Learner can be considered as a system which can pmovide the Monitor

with all the requested information for a correct and efficient genera-

tion and menag~nent of attempts taking into account all the "past

experience" done by the Selector s the Searchem and the Monitor itself,

The mode of operation of the whole system is then now quite easy to e~

plain. By means of the activity of the Selector and of the Searcher

the problem-base is incrementally expanded, i.e. new passive (solved)

problems are constructed by means of the already existing ones and

of the active problems. This process continues ~till the problem P

that we wish to solve ~becomes also a solved one.

The efficiency of the system is provided by means of an adeguate gen~

ration and menagement of attempts~ i.e. by the activity of the Monitor.

129

REFERENCES

I. Berge, C. "Thiorie des Graphes et Ses Applications. Dunod, Pamis,

1958.

2. Coray g. "Additive Features in Positional Games". 0RME-IP-IRIA-

NATO, Nato Advanced Study Institute on "Computer oriented leamning,

processes, Pmocldures infommatique d'appmentissage". Bonas (Gems),

France, August-September, 1974. Imprim4 en Fmance, IRIA, Domaine de

Voluceau.

3. Ginzburg, A. "A!gebmaic Theory of Automata". Academic Press. Inc.

New York. 1968.

4. guida G.~ Mandrioli D., Paci A., and Somalvico M. "A Formal Framework

for an Unitamy Approachto the Theory of Problem-Solving". Proceed-

ings IIASA Workshop on Artificial Intelligence - Question Answeming

Systems. Laxenburg Schloss, Austria. June, 1975.

5. Hartmanis, J. and Steamns, R.E. "Algebraic Structure Theory of

Sequential Machines". Prentice-Hall, "Inc. Englewood Cliffs~ N.Y. 1966.

6. Nilsson, N.J. "Problem-Solving Methods in Amtificiai Intelligence"

Mc Graw-Hi!! Book Company, New York. 1971

7. Pohl,I. "Bi-Directional and Heuristic Search in Path Problems".

SLAC Repomt N. 104. Stanford Linear Accelerator Center. Stanfomd

University. Stanford, California, May, 1969.

8. Sangiovanni Vincentelli, A. and Somalvico M. "State-Space Approach

in Pr6blem-Solving Optimization". Politecnico di Milano. Istituto

di Elettmotecnica ed Elettmonica. Laboratorio di Calcolatomi.

Relazione Interna n. 73-15. MEMO-MP-AIM-12. May, 1973.

9. Minkem J., and Vanderbu/~g g.J. "State-Space, Problem-Reduction,

and Theomem Proving-Some Relationships"~ Communication of the ACM,

Februamy 1975, Volume 18, Numbem 2, pp.I07-115.

