Preview
Unable to display preview. Download preview PDF.
Bibliographie
BERSTEL J. Contribution à l'étude des propriétés arithmétiques des langages formels; Thèse Sc. Math., Univ. Paris VII, 1972.
CHOMSKY N., SCHUTZENBERGER M.P., The algebraic theory of context-free languages; in “Computer programming and formal languages” (P. Brafford & D. Hirschberg, edit.) p. 118–161, North-Holland, Amsterdam, 1963.
EILENBERG S. Automata, languages and machines; Academic Press, vol. A (1974) New-York, London.
FLIESS M. Deux applications de la représentation matricielle d'une série rationnelle non commutative; J. Algebra 19 (1970) 344–353
FLIESS M. Séries reconnaissables et algébriques; Bull. Sc. Math. 94 (1970)
FLIESS M. Matrices de Hankel; J. Math. Pures Appl. 53 (1974)
JACOB G. Sur un théorème de Shamir; Inf. Control, 27 (1975) 218–261.
JACOB G. Un théorème de factorisation des produits d'endophismes de KN; J. Algebra, à paraître.
JACOB G. Un algorithme calculant le cardinal des demi-groupes de matrices sur un corps commutatif; Theoretical Computer Science, à paraître.
JACOB G. La finitude des représentations linéaires est décidable; soumis au Journal of Algebra.
KOPYTOV Solvability of the problem of occurence in finitely generated soluble groups of matrices over the field of algebraic numbers; Algebra and logic, 7 (1968) 388–393. Translated from Russian.
MC NAUGHTON R. and ZALCSTEIN Y. The Burnside théorem for semigroups; J. Algebra 34 (1975) 292–299.
NIVAT M. Transductions des langages de Chomsky; Ann. Inst. Fourier, 18 (1968) 339–456.
RAMSEY F. P. On a problem of formal logic; Proc. London Math. Soc. 30 (1930) 264–286.
SALOMAA A. Formal Languages; Acad. Press, (1973) New-York, London.
SCHUTZENBERGER M.P. On the definition of a family of automata; Inf. Control 4 (1961) 245–270.
SCHUTZENBERGER M.P. On a theorem of Jungen; Proc. Amer. Math. Soc. 13 (1962) 885–890.
SCHUTZENBERGER M.P. Finite counting automata; Inf. Control 5 (1962) 91–107.
SHAMIR E. A representation theorem for algebraic and contextfree power series in non commuting variables; Inf. Control 6 (1963) 246–264.
SOITTOLA M. Positive rational sequences; Theoretical Computer Science, 2 (1976) 317–322.
ZALCSTEIN Y. Syntactic semigroups of some classes of starfree languages; in Automata, Languages and Programming (Nivat M. edit.) North-Holland, Amsterdam, 1973.
MANDEL A. and SIMON I. On Finite Semigroups of Matrices; Instituto de Matematica e Estatistica, Universidade de Sao Paulo, Sao Paulo, Brasil. part of the results of this paper were presented at the IV Escola de Algebra, Sao Paulo, July 1976.
Rights and permissions
Copyright information
© 1977 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jacob, G. (1977). Decidabilite de la finitude des demi-groupes de matrices. In: Theoretical Computer Science. Lecture Notes in Computer Science, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-08138-0_22
Download citation
DOI: https://doi.org/10.1007/3-540-08138-0_22
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-08138-8
Online ISBN: 978-3-540-37389-6
eBook Packages: Springer Book Archive