Skip to main content

Decidabilite de la finitude des demi-groupes de matrices

  • Vorträge In Der Reihenfolge Des Programms
  • Conference paper
  • First Online:
Theoretical Computer Science

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 48))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliographie

  1. BERSTEL J. Contribution à l'étude des propriétés arithmétiques des langages formels; Thèse Sc. Math., Univ. Paris VII, 1972.

    Google Scholar 

  2. CHOMSKY N., SCHUTZENBERGER M.P., The algebraic theory of context-free languages; in “Computer programming and formal languages” (P. Brafford & D. Hirschberg, edit.) p. 118–161, North-Holland, Amsterdam, 1963.

    Google Scholar 

  3. EILENBERG S. Automata, languages and machines; Academic Press, vol. A (1974) New-York, London.

    Google Scholar 

  4. FLIESS M. Deux applications de la représentation matricielle d'une série rationnelle non commutative; J. Algebra 19 (1970) 344–353

    Article  Google Scholar 

  5. FLIESS M. Séries reconnaissables et algébriques; Bull. Sc. Math. 94 (1970)

    Google Scholar 

  6. FLIESS M. Matrices de Hankel; J. Math. Pures Appl. 53 (1974)

    Google Scholar 

  7. JACOB G. Sur un théorème de Shamir; Inf. Control, 27 (1975) 218–261.

    Article  Google Scholar 

  8. JACOB G. Un théorème de factorisation des produits d'endophismes de KN; J. Algebra, à paraître.

    Google Scholar 

  9. JACOB G. Un algorithme calculant le cardinal des demi-groupes de matrices sur un corps commutatif; Theoretical Computer Science, à paraître.

    Google Scholar 

  10. JACOB G. La finitude des représentations linéaires est décidable; soumis au Journal of Algebra.

    Google Scholar 

  11. KOPYTOV Solvability of the problem of occurence in finitely generated soluble groups of matrices over the field of algebraic numbers; Algebra and logic, 7 (1968) 388–393. Translated from Russian.

    Google Scholar 

  12. MC NAUGHTON R. and ZALCSTEIN Y. The Burnside théorem for semigroups; J. Algebra 34 (1975) 292–299.

    Article  Google Scholar 

  13. NIVAT M. Transductions des langages de Chomsky; Ann. Inst. Fourier, 18 (1968) 339–456.

    Google Scholar 

  14. RAMSEY F. P. On a problem of formal logic; Proc. London Math. Soc. 30 (1930) 264–286.

    Google Scholar 

  15. SALOMAA A. Formal Languages; Acad. Press, (1973) New-York, London.

    Google Scholar 

  16. SCHUTZENBERGER M.P. On the definition of a family of automata; Inf. Control 4 (1961) 245–270.

    Article  Google Scholar 

  17. SCHUTZENBERGER M.P. On a theorem of Jungen; Proc. Amer. Math. Soc. 13 (1962) 885–890.

    Google Scholar 

  18. SCHUTZENBERGER M.P. Finite counting automata; Inf. Control 5 (1962) 91–107.

    Article  Google Scholar 

  19. SHAMIR E. A representation theorem for algebraic and contextfree power series in non commuting variables; Inf. Control 6 (1963) 246–264.

    Article  Google Scholar 

  20. SOITTOLA M. Positive rational sequences; Theoretical Computer Science, 2 (1976) 317–322.

    Article  Google Scholar 

  21. ZALCSTEIN Y. Syntactic semigroups of some classes of starfree languages; in Automata, Languages and Programming (Nivat M. edit.) North-Holland, Amsterdam, 1973.

    Google Scholar 

  22. MANDEL A. and SIMON I. On Finite Semigroups of Matrices; Instituto de Matematica e Estatistica, Universidade de Sao Paulo, Sao Paulo, Brasil. part of the results of this paper were presented at the IV Escola de Algebra, Sao Paulo, July 1976.

    Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1977 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jacob, G. (1977). Decidabilite de la finitude des demi-groupes de matrices. In: Theoretical Computer Science. Lecture Notes in Computer Science, vol 48. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-08138-0_22

Download citation

  • DOI: https://doi.org/10.1007/3-540-08138-0_22

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-08138-8

  • Online ISBN: 978-3-540-37389-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics