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ABSTRACT, It is well known that the membership question for the
smallest hyper-AFL is NP-complete, One may ask whether this is the
case for the smallest hyper(1)~AFL, too, Thus we study the family

of block-indexed languages. We show that this family is a hyper(1)-
AFL which is not a hyper-AFL and that it is contained in the family
of languages log(n)-tape reducible to the context-free languages, This
implies that the family of block-indexed languages, together with
the smallest hyper(1)-AFL, has a tractable membership question and
tape complexity logz(n). Finally we note that the set {ww / weﬁaﬂﬂ*}

is not a block-indexed language.

1. INTRODUCTION. The notion of substitution has been the subject
of many investigations in mathematics, for example in the algebraic
theory of formal languages [8] and the mathematical theory of
L-systenms [10], 1f L is = language over an alphabet V and T is a
substitution on V¥ , then we define t(“O(L)ztﬂgf‘t(n)(L) as usual
[8] and speak of an iterated substitution., If *eT(«) for each

eV, then ﬁ(ao is called a nested iterated substitution. If P =

tThis work constitutes part of a Ph. D. thesis and is supported by
a German Graduate Fellowship.
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-ft /ieI} is a finite set of substitutions over V with I={1,...,0}

L__m,____)
mq.-lkél T

iterated multiple substitution [5].

then we define P( )(L)- 1...q3ik(L) and speak of an

Now we are able to characterize several well known language fami-
lies using the notion of substitution. For example the context-free
languages are the smallest super-AFL, that is the smallest full AFL
closed under nested iterated substitution [8] and the ETOL langua=
ages are the smallest hyper-AFL, that is the smallest full AFL closed
under iterated multiple substitution [10]. A notion between Super=-
AFL and hyper-AFL is the notion of a hyper(1)-AFL, that is a full
AFL closed under iterated substitution [8].

As mentioned above, nested iterated substitution can be charac-
terized by context-free grammars. Similar iterated multiple substi-
tution can be characterized by indexed grammars [11]. In fact the
family of indexed languages is a hyper-AFL, We restrict the indexed
grammars in a natural way to obtain so called block-indexed grammars
which can be used to characterize iterated substitubtion and which
can be described informally as follows.

It is easily seen that for each indexed grammar one can construct
an equivalent one with only two indices, say f and g, and so that in
thg termipal derivations only indexed nonterminals of the form
Aflqg...flng are used, where n>0 and ikzO for 1¢ksn. Clearly, every
index-block fjg can be interpreted as a counter with actual content
Je If we allow at most m such index-blocks to be attached to a non—
terminal and if we write those indexed nonterminals as A[iq9"$im}
then the indexed grammars restricted in this way give an informal
description of the m~block-indexed grammars. We say that L is a block-
indexed language if there is an m> 1 and an m-block-indexed grammar
which generates L.

The concept of block-indexed grammars turns out to be useful to
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prove several interesting properties concerning the generative capa-
city, and the time and tape complexity. In fact the family of block-
indexed languages is shown to be a hyper(1)-AFPL which does not con-
tain, similar as the context-free languages, the language

{ww/we {a,b}*}. Furthermore each block-indexed language is accepted
by ‘& nondeterministic log(n)-tape bounded auxiliary pushdown automa-
ton in polynomial time, This implies that the family of block-in=-
dexed languages is contained in the family of languages log(n)=-tape
reducible to the context-free languages [12]. Thus the family of block-
indexed languages has polynomial time complexity, that is a tractable
membership question, and tape complexity logz(n), similar as the
context-free languages. These properties indicate that the notion

of a hyper(1)-AFL is more related to the notion of a super-AFL than
to that of a hyper-AFL.In fact the language {ww/w e {a,b}*} is an ele-
ment of the smallest hyper-AFL and the membership question for the
smallest hyper-AFL is NP-complete [1] , [9].

Section 2 introduces the basic notions, where we define hyper(1)=-
AFL's and hyper~AFL's by means of iteration grammars [10] and give
the necessary properties of auxiliary pushdown automata .

In section 3 we define the m~block-indexed grammars, m21, and
present their basic properties. In this section Theorem 3.5 shows
the main result which intuitively means that leftmost derivations
in an m~block~indexed grammar G, m:1, can be simulated by a nonde~
terministic log(n)-tape bounded auxiliary pushdown automaton M. The
fact that we may assume that M accepts in polynomial time is guaran-
teed by Lemma 3.4 which intuitively says that a leftmost derivation
according to G needs not to be too long in relation %o the length

of the generated word.
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2. DPRELIMINARIES., All terms used and not explicitely defined in

the sequel may be found in [1,8,10,11].

Definition. Let b be a guasoide An ¥ -iteration grammar is a 4-
tuple G=(Vy,Vp,8,P), where Vy is the alphabet of nonterminals, Vp
is the alphabet of terminals with VNAVT=Q5, Se VN is the start sym=
bol, and P—-:{'l:'i/ie I} ig a finite set of f-substitutions defined on
Viu Vp and with the property, that for each i€I= {1,...,m} and
NeVNUVT, “c’i(o{)e% is a language over Vi uV,. The language genera=
ted by such a grammar is defined by

()= | Uy eee Ty () N X

fqeeeip eIV

The family of languages generated by X -iteration grammars is deno=
ted by Qfm _ITER® BY ﬁm-ITER’ we denote the subfamily of xw-ICDER'
generated by such grammars, where P consists of at most m elements,

for some m21.

Example, Let &L REG be the family of regular languages and
G=({8,4,B},{a,b},8,{t,,T5,T5}) be an Cppo-iteration grammar, where
T, (8)={aB}, 7, (8)={e},7, (B)= {¢3,T, (a)={a},¥, (b)={b}

To(8)=1fs} ,To(a)=1{aa}, T, (B)={aB} T, (a)={a} ,Tp(b)={b}

T5(s)=1s} )5 (8)={ba} ,'55(}3)={b:8} ,’t’a(a)={a} ,’UE(b)={b}

Then we have L(G)={ww/w e {a,b}*} € (Lppa), TTER®

Theorem 2.,1. (Asveld) xm—ITERz xz-lTER’ for each quasoid 5.

Definition., Let & be a quasoid. & is called a hyper-AFL, if

:6=x2-ITER" and & is called a hyper(1)-AFL, if gﬁ:x’!—ITER’

Example. Let x1=xREG and for i1 let 'xi-k’f:(xi)’l-ITER' Then
<‘Q’D’I)m-ITER is the smallest hyper-AFL and L, ,=L__J 3 ; is the
iz

smallest hyper(1)-AFL [5,1’]] .
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Let xPTIM"E be the family of languages acceptable by determinis=
tic polynomial time bounded Turing machines, S.A.Cook has characte=
rigzed QKPTIME by the nondeterministic log(n)-tape bounded auxiliary

pushdown automata [4].

Definition. A nondeterministic log(n)-bape bounded auxiliary pushe
down automaton, short aux-PDA, is a nondeterministic log(n)-tape
bounded Turing machine which has an additional unbounded pushdown
store. Let Q‘}PPTIME be the family of languages acceptable in poly-

nomial time by nondeterministic log(n)-tape bounded aux-PDA's,

Theorem 2.2. {(Sudborough) xPPTIm=LOG(£ cp)s the family of langu~

ages log(n)-tape reducible to the family of context-free languages.

3, THE FAMILY OF BLOCK-INDEXED LANGUAGES

Here we will study ggm-IND’ the family of block-indexed languages
[2], and prove L_ = —TND e & pppoyye the main result of this pa-

per.

Definition. Let me WN. An m-block-indexed grammar, short m-IND gram-
mar, is a 4-tuple G=(Vy,Vp,8[0,...,0],P) with the following proper-
ties ( N denotes the set of natural numbers and M = Wui{o}):

(1) Vy is the alphabet of nonterminals or variables

(2) Vp is the alphabet of terminals with VynVp = &

(3) Let Vy={A[i,,000,i ]/h € Vy, (iqyeeeriy) €I} e the set of
m~block-~indexed variables, short m-IND variables. Then
8[0,...,0] € T is the start variable.

(4) Let N = {O+,’I+,2+,...} be an infinite set of abstract symbols.
Then ?fN = {a[31/ aevy, jeNull }is the set of metavariables.
Now P is = finite subget of VN X {1,2,00em} x (VNUVT)*. An
element (A[jl.k,&) €P is called a metaproduction and is written

in the form A[j] ——» .

(x)
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Definition. TLet G=(V,Vyp,S [0400.,0],P)be an m~IND grammar. The in-
dexfunction &: (I\Huﬁ) xM-+I0 is defined by

§(,1)=3 , forj ell
§(j+, i) = j +1i , Cfor j+ef\ﬁ .
With a metaproduction pe P of the form p=AO[jO] —_— xOA,![j,]]x,l...

!
eoXy qA [3.]%, where Agkim, Agyh qeeerhyeVy, 30%:],“,,3%51\1[”&”{{
and XO,Xq,...,xteVT* , we associate a set
B = {80[0,000y0, 8(igsi)y Gy pqreneripy] —

XOA,l[O,...,O, g(qui), ik+’|""’im] Xq eee
"X’c-’!At{O,--,O, 5‘(346,5.), Lpgqeeesip]®/(Galy qeeeyi )€ mm'k”}

of productions. P =l_______ T is the set of productions of G.
pe?P

Definition. ILet G=(Vy,Vp,S [0yee.,0],P) be an m-IND grammar and

X e (T u VX Ty (T 0T X, Ye (T uip) ¥, We write X =W, if

X=X, Alig,e0,i 1%, A[i,f,..,im]_.we'f", ¥Y=X,0X, and speak of
the application of the production A[i’i""’im.l"'c‘) in a derivation
step, If in addition X,g € Vék s then we write X ﬁ'}‘f) and speak of
the application of the production A[i,l,..,im]—va) in a leftmost deri-
vation step. A sequence LPO’ LP,I,...,"l’k such that k21, X = ¥y, W=
and \FO=|HJ,|='} cee =>\l"k (¥, =—i;ﬂi? Y, —‘“—‘TE’:} coe T \Pk)
is called a (leftmost) derivation of ¥ from X with k steps. Further-
nore we eictend the relation ===}> (’—f’) to the relation

é_}( =lm=> ) as usual.

Definition. ILet G=(Vy,Vy;,8[0,...,0],P) be an m-IND gremmar and
= ( —_—ﬁ%’ ) the relation according to G, as defined above. Then
we call
X X X 1 =*_—=$

L(G)={we Vo / S{O,..,O]-—’*f—?W}:{weVT / 810,..,0 =" W}
the language generated by G. Furthermore xm_INDr.{L(G)/G is an m-IND
grammar } is called the family of m-block-indexed languages.
Finally, we call mm-IND=L—’Jxm—IND the family of block-indexed

mzl
languages.,
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Exsmple, Consider a 2-IND grammar G,lz({S,A}, {a,aE,b,bE},S,P,I),
where P1={S[O]—>aA[’I]b,A[O+]~—»aA[’I+]b,A[’!+]——»aEA[O—i-] be,a[0]1—»e}
“n & “n @

Then for p=A [1+]—sa [04] b we have T={a {’!+i,j]—>aEA [o+i,3]0" /
i,je 10}, The follgwing leftmost derivation is possible:

800,01 === a4[1,0]b === 22"[0,0]b"b === aa™" .

Finally L, =L(G,|)={wf(w)/w € D,I} € B__1yps where D, < {a,aE }* is the
Dyck set on {a} and f(w):(h(w))R, we {a,aE}*, with a homomorphism
h:{a,aE}%—»{b,bEZ*, n(a)=b, n(a)=p" .

Lemma 3,1 (Albert) Let meIVi. Then -[ww/we {a,b}*}é xm—IND is a
super-ATL with bop by _ryp%e+ $ 80 10 € B na1) -0 580 1w LD
the family of indexed languages. If I,é€ 'xm-IND with Ly, _ﬁ;V,?< for an

. *
alphabet V,, and for each aéV,1 we have Laé ‘Q’am-IND with Las Va

1
for an alphebet V_, then for the substitution ¥ defined by ’t(a):La,
for each aeV,], it is true, that the iterated substitution ’L'(”)

has the property (=) (L)e °73(m+1 )—IID*
Theorem 3.2. & _1yp 1§ & hyper(1)-AFL which is not & hyper-AFL.

Proofe o, _1yp €(Ly 1ip)q_1TER 18 true by definition, For the
proof of ($a-IND)’|-ITER B, _1yp consideran L e (xoouIND)’]—ITER'
By definition L=L(G) foran &fm_IND—ite:c'ation gramnmar G:(VN,VT,S,{'t}).
Because T(¥) € L _1yp= \ _>_Jq &, _typs for each Xe U VVy, there
nE

exists melN, such that ¥(x)eX _yps for each X eV, uV,. Now again
by definition we have for the iterated substitution ’L’(“) that

_2(®) * -
L(@)=v"/({8}) nV; and by Lemma 3.1 L=L(G)e x(mm)_m e 1D
follows,., Thus we have proved 'l?m-IND”(xeo-IND)’I-ITER and $m-IND is
a hyper(1)-AFL by definition. That f__;yp is not a hyper-AFL fol-
lows from the fact, that {wwfwe{a,b}*}¢$@_IND is, as shown in the

Preliminaries, an element of the smallest hyper-AFL (88’])09-ITER'
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J.Engelfriet has shown [5], that {wcwcw/we{a,b}x}ééfw. By the
previous theorem we can improve to {ww/w e{a,b}*} ¢&,"m.

Similar to the case of context-free grammars, a simple normal-
form (see below) for m=IND grammars can be given. This will facili-

tate the proof of xm_IND EggPPTIME'

Definition. An m~IND grammar G=(Vy,Vp,5[0,..,0],P) is called in
normalform, if P contains only metaproductions of the following

form: (1.1) A[0+]—Bl1+] (1.2) a[1+] —>B[0+]
(k) (x)
(1.3) A[O]—E{‘)—’ Blo] (2) A[O+]7)—’B[O+]C[O+]
(3) alo] ——a () slo] ——» ¢
(m) (m)
where A€ Vy, B, CeVy -{8}, aeV; and ke {1,...,n3.

Lemma 3.3. (Albert) For each m-IND grammar

G'=(Vy",Vy',8' [0,...,0],P") there existsan m-IND grammar
G=(VysVpsS[0,...,0],P) in normalform, such that Vp'=Vp and L(G')=
=L(G). Furthermore for each m-IND grammar G=(VN,VT,S[O,...,O],P)
in normalform there is a constant coch(G)e I, such that the follo~-

wing holds true: If weL(G), then there is a leftmost derivation

S[O,...,O]:‘f'o lmﬁ\ Y’I = ... 1m>‘fk=w, where each m-IND vari-
able A[iq,...,im]eX—TN occuring in one of the ‘, ‘f’,l,...,"!’ke V,J;k VN*
has the property {iq,...,im} £{1,2,000,05 101} .

Lemma 3.4%. Ife & L=L(G)e & _1yps where G=(VsVpsS[04..,01,P) is a
m-IND grammar in normalform, then there exists a constant
°1=C’I(G)€ I such that for ecach we L{G) we have a leftmost deriva-

tion

5 A
S[O,.-.,O]= ?O Tm 7 ?/l Tm ' *ee =1&__:=37' ?_t = W

with tsc,[.lwlm+2 and where each m-IND variable A[il,...,im] e VN

occuring in one of the ?O’ ?,?,....., ‘Pte VT* ?N* has the property
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figreeesi 38{1,2,000,0 0 9]}

-

Proof. (Sketch) The proof is based on the following observations:
Let G:(VN,VT,S [O,..,O] ,P) be the given m~-IND grammar in normalform.
By Lemma %.3 there exists a constant coch(G)EJN, such that for
each we L(G), |wl=n there exists a leftmost derivation.
i A LY
(’k) S[O,..,O]:l'})o Tm LP,] Tm = *°* Tm \Pk = W 4

where each m-IND variable Ali,,..,i ] EVN occuring in one of the

Yos Froeees Wkevg VN* has the property

%) {ijyee,ipdc{142500500m} .
Because G=(VN,VT,SEO,..,O] ,P) is in normalform, in (X) exactly n-1
expanding productions, that is productions associated with meta-
productions of the form A[0+] _T’l-_’ Blo+] ¢lo+]l, are used. This

fact is indicated by the following "decomposition" of (X) :
*x N \ X \
s[0,..,0]= &%)ro-s-’i Im ' ki)r,| im’ kf)::*,]+’i 11:?'\}) Im’ &{Jr2+’l in ..

* L \ X, _x *
im ¢ \Prj im’ \Vrj-z—’l im Tm Lprn_,[ Tm T, gt lm: "Prn=

o LR

=Y X where To==T, O.Sr,l 5...$rn=k and expanding productions are used

only in the derivation steps “Pr ﬁ%’ ‘Fr 1 J=T4eey n=1, In all
J x 3

other "intermediate" derivations ‘i‘r +’l==]? \l’r sy 3=0415e4,0~1,

31
only productions associated with metaproductions of the form

A[O+]—T§)—*B[’}+] , A {1+]—‘(3—)—>B[0+], Afo] —(-33—”3[01 . alol —(m-b a
where A€Vy, B, CeVy ~{8}, aeV; and ie {1,..,m},are applied. The
suitable "shrinkage" of these derivations, using property (¥%), is
the intuitive idea to find the desired leftmost derivation

8[0,00y0l= Y= Fom ¥ =5 - W = e T Bem W e

where tic,- lw|m+2,{r

qreesTp} s {8095410038,3210,7,.0,k} and each
n-IND variable A{i,l,..,im] € Vy occuring in one of the ?O’ ‘P,],..

cey ‘FteV;< VN* has the property {i ,..,i }c11,2,..,c,-n}. The de-

tails about this "shrinkage" may be found in [6].
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Theorem 5.5, $ 35 IND" PPTIME

Proof. 3By Theorem %.2 it suffices to prove Z ~IND ‘xPPTIME and
by the definition of &L o IND '{;:1) ‘Zm IND the proof is complete,
if we can show xm-INDExPPTIIVE’ for each melN, We consider only
the case m=2., Then the reader will be gble to see how the general
case me N can be shown,

Thus let L & sz IND*
some 2-IND grammar G=(VN,VT,S [0,0],P) in normalform with

s5[0]—7z*€ € P. Note that £ ¢ 1(8)e &L ppppyy implies L=L(G) v L€} ¢

Then by Lemma 3.1 and 3.3 L -{e}=L(G), for

S:gP?TIME’ because iﬁ}éxPPTIME is closed under union [7].We design
anondeterministic log(n)=-tape bounded aux-PDA M which accepts L(G) .

Given as input word w=g, M reaches a dead state, that is a state
from which we could never reach an accepting state. Given an input
word w, |wl=n>1, M intuitively traces out (nondeterministically)
each leftmost derivation according to G of the form:

&) sfo,0]- % = b= ... Y= o=t - 2f

with r<t el and each 2-IND variable A[i,j] EVN occuring in one of

=X .
the ‘FO, ‘P,l,..., ‘Ptev,j._\k Vg has the property {1,3}5{1,2,..,c1-n§,

where C,]=C,[(G)é N is the constant of Lemms 3.4 corresponding to G.
To simulate a leftmost derivation of the form (k) M stores Xre_\?n*,
the nonterminal part of the current sentential form ‘F =

= u X, ev¥ VN ) U, eV*, on its pushdown tape P , where each A[l,g]ev
is encoded as Af gfag, f,g¢ NUVT. M's input head guarantees that
v, is consistent with the input w, that is u, is an initial subword

of w. To simulate a derivation step lm ? 13 such that only

r
2-IND variables Af*gfdg with {i,3}¢c _{1,2,...,(:,1-:1} appear on :PO
(during the simulation), M uses five log(n)-tape bounded suxiliary
tapes \ﬁ‘,f,é‘}é,...,ﬁq’s, where elements from {’3,2,...,c,i-n§ are stored
in binary notation. Suppose, M has reached the end of the simulation

process for (X). Then M may decide to enter an "end-check phase,
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examining whether ‘Pt=w or ‘Pt#W.

Let us make more precise how M simulates derivation step

P =7

r Im r+1°
S[O]——(é—j—* £4&P, each production applied in (%) is associated with

Because G=(VN,VT,S{O,O],P) is in normalform with

a metaproduction of the form (1.1) A[O+]WB[1+]
(1.2) A[4+JWB[O+] (1.3) afo] WB[O}
(2) alos]—pzy* Blolclor]  (3) alo] —zy+a

where A €V, B,CeVy -{si, aeVy and ke {1,23}. We assume, that each

N?
metaproduction of G is “"embedded" in M's finite control.

At the start of M's computation with the input word w, where
W=8 0008, is of length n, :PO is empty, dﬂq,éﬁé,...,g}B consist of
blanks only, the finite control is in the initial state and the in-

3

put head scans the blank to the left of 8. First M stores ¢yt in
5#5. This may be realized by a standard technique for log(n)-tape
bounded aux-PDA's., That is, M's input head makes a sweep from left
(the blank to the left of aq) to right (the blank to the right of
an), such that for each symbol ae {aq,...,anl scanned by the input
head, M adds ¢, to Jﬂé. After this, the input head moves back over
8, Then M pushes Sgg, the encoding of S[0,0 in the top region of
1 ? ]
Pge

Suppose, M has simulated of (X) the segment

A A hY
slo,0l- ¥y == & = %0

where r<t, P =u X, u, éV,_E‘K .

X=ALli,,3, 1% eV with A 3,5, eVy, {i,3,3¢{1,2,..,0,-n}, and
X'revgk. That is, we assume that &,{,5‘}2,‘@ ,‘W4 consist of blanks
only, \93’5 contains Cqrn, that the input head has scanned of w the
initial subword u,, and that X, is on PO’ in the encoding mentioned
above. In other words, in the top region of PO we have Aflrgfarg,
where A:Ar.

Now M nondeterministically chooses by its finite control a meta~



241

production with A on the left side (if no such metaproduction exists,
we reach the dead state). Then M simulates the derivation step
‘F;’*T ?r-;-’i in (X), according to the type of metaproduction, with

which the production to be applied in this step is associated, as

follows:
type (1.1): A[O+]_(k—)’.B[’H_-], ke (1,23
1 1

For k=2 we replace  Af rgfarg by Bf.rgf?r+1g and check {ir,jr+1} <
s{ﬁ,2,..,cqan}. To do this M pops Aflrgfarg from the top region of
:PO and stores ir in éﬁﬁ and jr in 9}2. Then M adds 1 to 9?2 and
checks whether the content of &ﬂé is not greater than the content of
Jﬁé. If this is not the case, M reaches the dead state. Otherwise M
pushes Bflrgf3r+1g in the top region of :PQ, using the contents of
391 and 5$2, which at the end of this simulation phase consist of
blanks only. Type (1.1) for k=1 and the types (1.2),(1.3) are omit-
ted, but should be clear from the considered types.

type (2): alo+s]—y>Blos] closl. o

We have to rep}ace.the word Aflrgfarg by Bflrgfarnglrgfarg. To do
this M pops Aflrgfarg from the top region of ;6 and stores ir in
dﬂa,éﬂé and jr in dﬁz,éﬂh. Then M pushes Cflrgfjrg in the top region
of P, using the contents of «SQ’Q,SQ’Z{_. After this M pushes Bflrgfarg
in the top region of 330, using the contents of é}q,SQg. At the end
of this simulation phase dﬂa,uﬂé,éﬂé,\ﬂﬁ.consist of blanks only,
type(3): afo] T)#a

We have to check, whether Agg is in the top region of ?b and "con~-
sistent" with the symbol scanned by the input head. Thus first A is
popped from fb. Then, if a g is on the top of :PO’ it is popped,
and if again a g is on the top of ?O and the symbol scanned by the
input head is a, then the last g is popped, too and the input head
moves one cell right on the input tape; otherwise we reach the dead

state,
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Suppose, M has reached the "end" of the simulation process for
a derivation of the form (%), S[0,0]=%§f% ?t’ for some >0, Now M
may decide to enter the "end-check phase", examining, whether ?t=w.
This phase is realized by M's finite control, the input head and.?o.
it 3’0 is empty and the input head scans the blank (right of an), M
accepts. Otherwise we reach the dead state.

‘o prove the Theorem we still have to show, that M accepis in
polynomial time. It is easily seen, that by construction the num-
ber of computation steps needed by M - given as input word w,
lwi=n21 - for the simulation phase of an initial sweep to store
cqen in éﬂé and of the derivation step according to type (1) - (3)
is at most cg-na, with some constant c2=c2(G)e]N, depending only on
G and not on n. Thus by Lemma 3.4 for each input word we L(G),
lwi=n21, M has an accepting sequence of computation steps with a

length s, where
4 2 6
8% (’].{.C/]ol‘]_ )chvn seaon ) 03= 2'01((})‘02((}) -

Problem. Let L1=L(G1)={wf(w)/w51%§, where G,I is the 2-IND grammar
as defined above. Can you prove that L,e xw—IND - %m or even that
Li€ Ly _myp = (&40 _17ER?

Acknowledgement. I wish to thank J.Albert for many useful dis-

cussions.

REFERENCES »

1 Aho,A.V., Hoperoft,J., Ullman,J., The Design and Analysis of

Computer Algorithms, Addison Wesley Publishing Company,
Massachusetts, 1974.

2 Albert,J., Uber indizierte und m-Block~indizierte Grammatiken,
Dissertation, Universitdt Karlsruhe, 1976,

3 Asveld,P.R.J., Rational, Algebraic and Hyper-Algebraic Exten-

sions of Families of Languages, Memorandum Nr., 90, Technische



10

11
12

243

Hoogeschool Twente, Onderafdeling der Toegepaste Wiskunde, 1976.
Cook,S.4., Characterization of Pushdown Machines in Terms of
Time-Bounded Computers, Journal of the Association for Computing
Machinery, 18 (1971) #4-18.

Engelfriet,J., Iterating Iterated Substitution, Memorandum

Nr. 143, Technische Hoogeschool Twente, Onderafdeling der Toe=
gepaste Wiskunde, 1976.

Erni, W., Thesis to appear at the Institut fiir angewandte Infor-
matik und formale Beschreibungsverfahren, Universitit Karls-
ruhe, 1977.

frni ,W., Some Further Languages Log-Tape Reducible to the Cone
text-Free languages, Research Report of the Ingtitut fiir ange-
wandte Informatik und formale Beschreibungsverfahren, Universi-
tdt Karlsruhe, 1976,

Ginsburg,S., Algebraic and Automata-Theoretic Properties of

Formal Languages, North-Holland Publishing Company, Amsterdan,
1975.

Leeuwen,J,van, The Membership Question for ETOL-Languages is

Polynomially Complete, Information Processing Letters 3 (1975)
138-1432,

Rozenberg,G., Salomaa,A., L-Systems, Lecture Notes in Computer
Science 15 (1974),

Salomaa,A., Formal Languages, Academic Press, New York, 1973,
Sudborough,I.H,, On Languages Log-~Tape Reducible to Context-—
Free Languages, Proceedings of 1976 Conference on Information

Sciences and Systems at Johns Hopkins University.



