
ON THE TIME AND TAPE COMPLEXITY

(I t

Wilhelm J. Erni

Inst. f. Angew. Informatik

Universit~t Karlsruhe

D-75OO Karlsruhe

Kollegium am Schlo8, Bau IV

Fed. Rep. Germany

Inst. f. Angew. Mathematik

Universit~t Heidelberg

D-6900 Heidelberg

Im Neuenheimer Feld 5

Fed. Rep. Germany

ABSTRACT. It is well known that the membership question for the

smallest hyper-AFL is NP-complete. One may ask whether this is the

case for the smallest hyper(1)-AFL, too. Thus we study the family

of block-indexed languages. We show that this family is a hyper(1)-

AFL which is not a hyper-AFL and that it is contained in the family

of languages log(n)-tape reducible to the context-free languages. This

implies that the family of block-indexed languages, together with

the smallest hyper(1)-AFL, has a tractable membership question and

tape complexity log2(n). Finally we note that the set {ww / wE(a,b~)

is not a block-indexed language.

I. INTRODUCTION. The notion of substitution has been the subject

of many investigations in mathematics, for example in the algebraic

theory of formal languages [8] and the mathematical theory of

L-systems [10]. If L is a language over an alphabet V and • is a

substitution on V ~ then we define ~(~)(L)=t---D~(n)(L) as usual
, n ~ l

[8] and speak of an iterated substitution. If ~ ~(~) for each

e V, then ~(~) is called a nested iterated substitution. If P =

%This work constitutes part of a Ph.D. thesis and is supported by

a German Graduate Fellowship.

231

= {~i/i & I} is a finite set of substitutions over V with I={1,...,~

then we define P(~)(L)= [J q~il...qSik(L) and speak of an il..ikeI +

iterated multiple substitution [5].

Now we are able to characterize several well known language fami-

lies using the notion of substitution. For example the context-free

languages are the smallest super-AFL, that is the smallest full AFL

closed under nested iterated substitution [8] and the ETOL langua=

ages are the smallest hyper-AFL, that is the smallest full AFL closed

under iterated multiple substitution [10]. A notion between super-

AFL and hyper-AFL is the notion of a hyper(1)-AFL, that is a full

AFL closed under iterated substitution [8].

As mentioned above, nested iterated substitution can be charac-

terized by context-free grammars. Similar iterated multiple substi-

tution can be characterized by indexed grammars [11]. In fact the

family of indexed languages is a hyper-AFL. We restrict the indexed

grammars in a natural way to obtain so called block-indexed grammars

which can be used to characterize iterated substitution and which

can be described informally as follows.

It is easily seen that for each indexed grammar one can construct

an equivalent one with only two indices, say f and g, and so that in

the terminal derivations only indexed nonterminals of the form
i I i n

Af g...f g are used, where n>0 and ikZ0 for l~k~n. Clearly, every

index-block fig can be interpreted as a counter with actual content

j. If we allow at most m such index-blocks to be attached to a non-

terminal and if we write those indexed nonterminals as A[il,..,im]

then the indexed grammars restricted in this way give an informal

description of the m-block-indexedgrammars. We say that L is a block-

indexed language if there is an m ~ 1 and an m-block-indexed grammar

which generates L.

The concept of block-indexed grammars turns out to be useful to

232

prove several interesting properties concerning the generative capa-

city, and the time and tape complexity. In fact the family of block-

indexed languages is shown to be a hyper(1)-AFL which does not con-

rain, similar as the context-free languages, the language

{ww/w~ ~a,b}~. Furthermore each block-indexed language is accepted

by a nondeterministic log(n)-tape bounded auxiliary pushdown automa-

ton in polynomial time. This implies that the family of block-in-

dexed languages is contained in the family oflanguages log(n)-tape

reducible to the context-free languages [12]. Thus the family of block-

indexed languages has polynomial time complexity, that is a tractable

membership question, and tape complexity log2(n), similar as the

context-free languages. These properties indicate that the notion

of a hyper(1)-AFL is more related to the notion of a super-AFL than

to that of ahyper-AFL. In fact the language {ww/w a {a,b~ ~} is an ele-

ment of the smallest hyper-AFL and the membership question for the

smallest hyper-AFL is NP-complete [1] , [9] •

Section 2 introduces the basic notions, where we define hyper(1)-

AFL's and hyper-AFL's by means of iteration grammars ~0] and give

the necessary properties of auxiliary pushdown automata .

In section 3 we define the m-block-indexed grammars, m~1, and

present their basic properties. In this section Theorem 3.5 shows

the main result which intuitively means that leftmost derivations

in an m-block-indexed grammar G, m~1~ can be simulated by a nonde-

terministic log(n)-tape bounded auxiliary pushdown automaton M. The

fact that we may assume that M accepts in polynomial time is guaran-

teed by Lemma 3.4 which intuitively says that a leftmost derivation

according to G needs not to be too long in relation to the length

of the generated word.

233

2. PRELIMINARIES. All terms used and not explicitely defined in

the sequel may be found in [1,8,10,1q].

Definition. Let ~ be a quasoid. An ~ -iteration grammar is a 4-

tuple G=(VN,VT,S,P) , where V N is the alphabet of nonterminals, V T

is the alphabet of terminals with V N~VT=~ , S 6 V N is the start sym=

bol, and P={~i/i e I] is a finite set of ~-substitutions defined on

V NU V T and with the property, that for each ie I= {d,...,m} and

e VNuVT,~i(~) e~ is a language over VNUV T. The language genera=

ted by such a grammar is defined by

j " " k (s)
il...i k • I +

The family of languages generated by ~-iteration grammars is deno=

ted by <-ITER" By ~m-ITER' we denote the subfamily of ~-ITER'

generated by such grammars, where P consists of at most m elements,

for some mZl.

Example. Let ~REG be the family of regular languages and

G=({S,A,B]~{a,b},S,{Td,~2~5})be an ~REG-iteration grammar, where

TI(S)={AB},~I(A)={£},~I<B)={~},~I(a)={a},~I(b)=(b~

~2(S)=~S) ,~2(A)=[aA~(U2(B)=~aB~,~2(a)={a~,~2(b)={b~

~3(s)={s} ,~3(A)={bA},~3(B)=[bB}J3(a)={a],~3(b)=(b]
Then we have L(G)={ww/w ~{a,b} ~} ~ (gREG)~_ITER.

Theorem 2.1. (Asveld) ~=_ITER=~2_ITER, for each quasoid ~.

Definition. Let ~ be a quasoid. ~ is called a hyper-AFL, if

= ~2-ITER' and ~ is called a hyper(J)-AFL, if ~=2~I_ITER.

Examole. Let ~I=~REG and for i.~fl let ~i+I=(~i)I_ITER . Then

(~I)~_ITER is the smallest hyper-AFL and ~=| J ~i is the
ikl

smallest hyper(d)-AFL [5,11].

234

Let ~PTIME be the family of languages acceptable by determinis=

tic polynomial time bounded Turing machines. S.A.Cook has characte=

rized ~PTIME by the nondeterministic log(n)-tape bounded auxiliary

pushdown automata ~).

Definition. A nondeterministic log(n)-tape bounded auxiliary push-

down automaton, short aux-PDA, is a nondeterministic log(n)-tape

bounded ~ring machine which has an additional unbounded pushdown

store. Let ~PPTIME be the family of languages acceptable in poly-

nomial time by nondeterministic log(n)-tape bounded aux-PDA's.

Theorem 2.2. (Sudborough) ~PPTIME=LOG(~cF), the family of langu-

ages log(n)-tape reducible to the family of context-free languages.

5. THE FAMILY OF BLOCK-INDEXED LANGUAGES

Here we will study ~-IND' the family of block-indexed languages

[2], and prove ~ ~-IND e~PPTIME' the main result of this pa-

per.

Definition. Let m~E~.An m-block-indexed grammar, short m-IND gram-

msm, is a 4-tuple G=(VN,VT,S[0,...,0] ,P) with the following proper-

ties (N denotes the set of natural numbers and ~I = ~u{O~):

(I) V N is the alphabet of nonterminals or variables

(2) V T is the alphabet of terminals with V N ~V T =

Let VN={A[il,...,im]/AeVN, (il,...,im)~i~ m} be the set of (3)

m-block-indexed variables~ short m-IND variables. Then

S[0,...,O] e~N is the start variable.

(4) Let ~ = [O+~I+~2+,...} be an infinite set of abstract symbols.

Then ~N = {A[j~/ A&VN, j ml~u~}is the set of metavariables.

Now P is a finite subset of V N x {1,2,...,m} x (~N~VT)~. An

element (A[j],k,~)mP is called a metaproduction and is written

in the form A[j] ~ 6~.
(k)

235

Definition. Let G=(VN,VT,S [0,...,0] ,P) be an m-iND grammar. The in-

dexfunction ~ : (~o~) x ~-~i~ is defined by

g(j , i) = j , for j ~i~

g(j+, i) = j + i , for 0+~ •

With a metaproduction pg P of the form P:Ao[Jo] (k) ~ XoAl[Jl]Xl"'"

. .Xt_lAt [Jt]xt, where l~_k<_m, Ao,A 1 ,... ,A t eVN, jO,j I , ..., jt ~u~[

and Xo,Xl,...,xt~VT ~, we associate a set

: [Ao[O,...,0 , ~(Jo,i), ik+l,--.,im]

XoA 1[o,...,o, ;(Jl ,i), i~+l,...,im] ~I "'"

. .Xt_lAt [0, .. ,0, ~(Jt,i), ik+ I ,.. ,im]Xt/(i,ik+1,.. ,im)6 H m-k+1}

of productions. T = [~ is the set of productions of G.
pep

Definition. Let G=(VN,VT,S [0,...,0] ,P) be an m-IND grammar and

e (VNUVT)~VN(VN UVT)~ , Te(V N UVT)*. We write X ~u?, if

X= X I A[il,..,im]X2, A[il,..,im]-~CO~ , V=Xld~Z 2 and speak of

the application of the production A [i I ,...,im]-~ 6~ in a derivation

step. If in addition ~1 e V:, then we write ~6 .~ ~ and speak of
Im

the application of the production A[il,..,im]-~60 in a leftmost deri-

vation step. A sequence TO, ~l,...,~k such that k~_l~ Z = u/0,~=~k

and ~O~Ul ~ ... ~T k (~u 0 l~m Tq Im=; "'" lm ~" Wk)

is called a (leftmost) derivation of h u from 9(with k steps. Further-

~m more we extend the relation < () to the relation
~g% (~) as usual.

lm

Definition. Let G=(VN,VT,S[O,...,O] ,p)be an m-IND grammar and

--.% (~) the relation according to G, as defined above. Then

we call

the language generated by G. Furthermore ~m_IND=(L(G)/G is an m-IND

grammar} is called the family of m-block-indexed languages.

Finally, we call ~_IND=h__J ~m-IND the family of block-indexed
mkl

language s.

236

Examp!e. Consider a 2-iND grammar GI=({S,A],~a,aE,b,bE],s,P1) ,

~ [~] b,A [o+]-~b+] b,A[l+] ~a~A[0+] bE,A[0] where P1 = {s [o] (1) (1) (1) (2) ~}"

Then for p=A[l+] ~aEA[0+] b E we have ~={A[l+i,j] baEA[o+i,j]b E /
(1)

i,j~ ~]. The following leftmost derivation is possible:

S [0,0] ~ aA[1,0]b l~m aaEA[0,o]bEb l~m aaEbEb •

Finally L1=L(G1)={wf(w)/w ~ DI] m ~-IND' where D 1 ~_ {a,aE} ~ is the

Dyck set on {a} and f(w)=(h(w)) R, w~ {a,aE~ with a homomorphism

h:{a,aE]~--~{b,bE~ ~, h(a)=b, h(aE)=b E .

Lemma ~.I. (Albert) Let me~. Then ~ww/wg {a,b]~@ ~m-IND is a

super-AFL with ~GF =* ~I-IND ~'" ~ ~m-IND ~ Z(m+i)-IND ~" "$~=-IND ~IND'

the family of indexed languages. If Lj ~ ~m-IND with L 1 _~ V 1~ for an

V * alphabet V1, and for each a~V 1 we have Lae ~m-IND with Lag a

for an alphabet Va, then for the substitution ~ defined by ~(a)=La,

for each a eV1, it is true, that the iterated substitution ~(~)

has the property ~(~) (L 1) ~ ~(m+I)-IND"

Theore~ll~ll'12" ~--!ND is a hyper(1)-AFL which is not a hyper-AFL.

Proof. ~-IND-~(~-IND)I-ITER is true by definition. For the

proof of (~_IND)I_ITER -~®-IND consider an L ~ (~ _IND)I_ITER .

By definition L=L(G) for an ~_iND-iteration grammar G=(VN,VT,S , {~}).

Because T(~) ~ ~_IND = ~ ~m-IND' for each c~ ~ VN VVT, there
m~-I

exists me~, such that ~(~) ~m-IND' for each ~ ~V NoV T. Now again

by definition we have for the iterated substitution q~(~) that

L(G)= T(~) ({S]) a VJ and by Lemma 3.1 L=L(G) ~ ~(m+l)-IND ~- ~ -IND

follows. Thus we have proved <_IND=(~_IND)I_ITER and ~-IND is

a hyper(1)-AFL by definition. That ~-IND is not a hyper-AFL fol-

lows from the fact, that {ww/w~{a,b]~]@~_iN D is, as shown in the

Preliminaries, an element of the smallest hyper-AFL (~I)~-ITER"

237

J.Engelfriet has shown [5~, that {wcwcw/w~{a,b}~ ~ ~. By the

previous theorem we can improve to (ww/wE{a,b}~) @ ~.

Similar to the case of context-free grammars, a simple normal-

form (see below) for m-IND grammars can be given. This will facili-

tate the proof of ~m-IND ~PPTIME"

Definition. An m-IND grammar G=(VN,VT,S~,..,O],P) is called in

normalform, if P contains only metaproductions of the following

form: (1.1) A[o+] bB[l+] (1.2) A[I+] bB[O+]
(k) (k)

(1.3) A[o] ~ ~[o] (2) A[o+] b~[o+]c[o+]
(k) (1)

(3) A [o] ~ a (4) s [o] ~
(m) (m)

where Ae VN' B, C aV N -{S}, aeV T and k6 {q , . . . ,m} .

Lemma 3.3. (Albert) For each mllND grammar

G'=(VN',VT',S'[O,...,O],P') there exists an m-IND grammar

G=(VN,VT,S[O,...,O],P) in normalform, such that VT'=V T and L(G')=

=L(G). Furthermore for each m-iND grammar G=(VN,VT,S[O,...,O]~p)

in normaiform there is a constant Co=Co(G)~ ~ such that the follo-

wing holds true: If w ~ L(G)~ then there is a leftmost derivation

• ~ where each m-iND vari- S~,.. ,0]=~ 0 l~m ~ 1 ~ "'" Im'~k =w'

able A[il,...,im]eV N occuring in one of the ~0' ~I ''''~k ~VJVN ~

has the property ~il,...,im~ &~l,2,...,Co. lWl} .

Lemma >.4. Ira ~ L=L(G)e ~m-IND' where G=(VN,VT,S[O,..,O],p) is a

m-IND grammar in normalform, then there exists a constant

c1=c1(G)g ~ such that for each w6L(G) we have a leftmost deriva-

tion

s 1:o,...,o]-- fo ~ 71 ~ "'° ~ 1~t : w

with t!Cl.lWl m+2 and where each m-IND variable A[il,...,im]a V N

~'0 ~1 ~V]~ occuring in one of the , , , ~t e V T has the property

238

{i 1,...,i~} =_ {1,2,...,c 1. lwl ~ .

Proof. (Sketch) The proof is based on the following observations:

Let G=(VN,VT,S[O,..,O],P) be the given m-IND grammar in normalform.

By Lemma 3.3 there exists a constant Co=Co(G)a~, such that for

each wE L(G), l wI=n there exists a leftmost derivation.

(~) S[0,..,0]= u@ 0 im ~ ~1 im ~" "'" ~ ~k = w ,

where each m-iND variable A[i I,..,i m] e ~N occuring in one of the

~0' ~1''''' ~k aVT VN ~ has the property

(~) {il,..,im]_C{1,2,..,c0"n} •

Because G=(VN,VT,S~O,..,O] ,P) is in normalform, in (~) exactly n-1

expanding productions, that is productions associated with meta-

productions of the form A[0+] ~ B[O+] C [0+], are used. This
(I)

fact is indicated by the following "decomposition" of (g) :

"" Im ~ ~r I im S~0, ,0L- %0+~ '~ > ~r~+l~r2 ~ "~r2+~ imp..

.. Vr * } ?r ~ Im !m P ?rn_1+1 ... im o ~rj+l ~-1

= ~k where to=-1 , O.~r1_~..._~rn=k and expanding productions are used

only in the derivation steps ~rj lm '~" ~rj+l' j=l,.., n-to In all

other "intermediate" derivations ~r~+l im z ~rj+l , j=0,1 ,..,n-l,

only productions associated with metaproductions of the form

A[0+]--TV-~B[~+]' A[~+] (i) ~B[0+], A[0]--Zv-*B[0], A[0]--F~a

where A~VN, B, C~V N -{S], a~V T and i~ {1,..,m~,are applied. The

suitable "shrinkage" of these derivations, using property (~), is

the intuitive idea to find the desired leftmost derivation

S[O,..,O]= ~0 = ~0-- ?So~ f~= TSl lm ~ ~ ~t-- %t:~ =w

where t.~c I lwlm+2,{rl _ _ , • ,..,rn} ~ {So,S 1,..,st]~ {0,~ ..,k] and each

m-IND variable A[il,..,im]~V N occuring in one of the ~0' ~9''"

..,~t~VT V has the property {il,..,im]_~{1,2,..,cl-n]. The de-

tails about this "shrinkage" may be found in [6].

239

Theorem 3.5- <~ ~_INDg~PPTIME

Proof. By Theorem 3.2 it suffices to prove ~®-IND &~PPTIME and

by the definition of ~-IND =~J ~m-IND the proof is complete,
mid

if we can show ~m-IND~PPTIME' for each m~. We consider only

the case m=2. Then the reader will be able to see how the general

case me~ can be shown.

Thus let L ~ ~2-IND" Then by Lemma 3.1 and 3.3 L -{~}=L(G), for

some 2-IND grammar G=(VN,VT,S [0,0] ,P) in normalform with

S[O]--~ ~ P. Note that ~ L(G)~ ~PPTIME implies L=L(G)v {~} _c

~- PPTIME' because {a]6~PPTIME is closed under union [7].Wedesign

a nondeterministic log(n)-tape bounded aux-PDA M which accepts L(G) .

Given as input word w=~, M reaches a dead state, that is a state

from which we could never reach an accepting state. Given an input

word w, ~wl=n~_l, M intuitively traces out (nondeterministically)

each leftmost derivation according to G of the form:

(~<) S [0,0]= % l=T~m < Im}''" l ~ ~r ~r+l lm lm

with r<t~ and each 2-IND variable A[i,j] ~N occuring in one of

the ~0' ~I''''' ~t ~VT~v~has the property {i,j]c ~1,2,..,01.n~,

where c1=c1(G)E ~ is the constant of Lemma 3.~ corresponding to G.

To simulate a leftmost derivation of the form (~) M stores Xre ~n ~,

the nonterminal part of the current sentential form ~r =

- ~ e VT~, on = urXreVTV N , u r its pushdown tape ~0' where each A[i,j]~V N

is encoded as AfigfJg, f,gSVNuV T. M's input head guarantees that

u r is consistent with the input w, that is u r is an initial subword

of w. To simulate a derivation step % l~m ~r+l' such that only

2-1ND variables Afigf~g with {i,~} c_ {1,2,...,01.n] appear on]~0

(during the simulation), M uses five log(n)-tape bounded auxiliary

tapes C~1,~2,...,~5, where elements from [1,2,...,cl.n } are stored

in binary notation. Suppose, M has reached the end of the simulation

process for (~). Then M may decide to enter an "end-check phase",

240

examining whether ~t=w or ~t@w.

Let us make more precise how M simulates derivation step

f r ~ ~r+1" Because G=(VN,VT,S[0,0],P) is in normalform with

S[O]~ £~P, each production applied in (~) is associated with

a metaproduction of the form (1.1) A[O+]--~B~+]

(1.2) AU+]--7~B[O+] (1.3) A[O]-7~B[O]
(2) A[O+]--~B[0+]CD+] (3) A[0J--~a

where A~VN, B,C~V N -{S~, a~V T and ke {fl,2}. We assume, that each

metaproduction of G is "embedded" in M's finite control.

At the start of M's computation with the input word w, where

w=al...a n is of length n, ~0 is empty, ~I,3~2,...,~ 5 consist of

blanks only, the finite control is in the initial state and the in-

put head scans the blank to the left of a I. First M stores cl.n in

~5" This may be realized by a standard technique for log(n)-tape

bounded aux-PDA's. That is, M's input head makes a sweep from left

(the blank to the left of al) to right (the blank to the right of

an) , such that for each symbol a~ {al,...,an~ scanned by the input

head, M adds c I to ~5" After this, the input head moves back over

a I. Then M pushes Sgg, the encoding of SIC,O], in the top region of

~O"
Suppose, M has simulated of (~) the segment

sEo,o]
where r~t, ~r=UrXr, u r ~V~,

x~=Ar[ir,4]x ~ ~V~ + with Ar [ir,4] ~ V~, {it, 4} ~ [I ,2,.. ,el.n], and
X' r e V~ . That is, we assume that ~I ' ~2' ~3' 6@~ consist of blanks

only, ~9~" 5 contains cl.n , that the input head has scanned of w the

initial subword u r and that X r is on ~0' in the encoding mentioned

above. In other words, in the top region of ~0 we have Afirgf~rg,

where A=A r.

Now M nondeterministically chooses by its finite control a meta-

241

production with A on the left side (if no such metaproduction exists,

we reach the dead state). Then M simulates the derivation step

~rl-~m %+1 in (~), according to the type of metaproduction, with

which the production to be applied in this step is associated, as

follows:

type (1.1): A[O+]----~iB~J, k~ ~,2]
i r j +1

For k=2 we replace Af rgf rg by Bf gf r g and check {ir,Jr+l~

~{1,2,..,cl.n3. To do this M pops AflrgfJrg from the top region of
~0 and stores i r in ~1 and Jr in ~2" Then M adds 1 to ~2 and

checks whether the content of ~2 is not greater than the content of

~5" If this is not the case, M reaches the dead state. Otherwise M
• °

pushes BflrgfJr+lg in the top region of ~0' using the contents of

~1 and ~2' which at the end of this simulation phase consist of

blanks only. Type (1.1) for k=l and the types (1.2),(1.3) are omit-

ted, but should be clear from the considered types.

tyDe (2): A[O+]~B[O+] C[O+].

Bflr fir cfir fJr We have to replace the word Aflrgf3rg by g g g g. To do

Aflr ~r . the top region of ~0 and stores i r in this M pops g~ g zrom

~1 ~2 and Jr in ~5' ~4" Then M pushes Cf Irgfjrg in the top region

of ~0' using the contents of ~2,~A. After this M pushes BfirgfJrg

in the top region of ~0' using the contents of ~1,~3. At the end

of this simulation phase ~1,~2,~3,~ ~ consist of blanks only.

t e(3 : A[o]

We have to check, whether Agg is in the top region of ~0 and "con-

sistent" with the symbol scanned by the input head. Thus first A is

popped from ~0" Then, if a g is on the top of ~0' it is popped,

and if again a g is on the top of ~0 and the symbol scanned by the

input head is a, then the last g is popped, too and the input head

moves one cell right on the input tape; otherwise we reach the dead

state.

242

Suppose, M has reached the "end" of the simulation process for

a derivation of the form (~), S[O,O]~m ~t' for some t~O. Now M

may decide to enter the "end-check phase", examining, whether ~t=w.

This phase is realized by M's finite control, the input head and ~0"

If ~0 is empty and the input head scans the blank (right of an) , M

accepts. Otherwise we reach the dead state.

• o prove the Theorem we still have to show, that M accepts in

polynomial time. It is easily seen, that by construction the num-

ber of computation steps needed by M - given as input word w,

lwl=n~l - for the simulation phase of an initial sweep to store

in ~ and of the derivation step according to type (1) - (3) cl-n

is at most c2-n2 , with some constant c2=c2(G)~ ~, depending only on

G and not on n. Thus by Lemma 3.~ for each input word w e L(G),

jwi=n~l, M has an accepting sequence of computation steps with a

length s, where

s ~ (1+cl-n~).c2-n2~c3-n6 ~ c3= 2-Cd(G)-c2(G) .

Problelm. Let Ll=L(G1)=~wf(w)/w ~ DI~ , where G fl is the 2-IND grammar

as defined above. Can you prove that L lm~_IND -~ or even that

Acknowledgement. I wish to thank J.Alber~ for many useful dis-

cussions.

REFERENCES.

1 Aho,A.V., Hopcroft,J., Ullman,J., The Design and Analysis of

Com~uter Alggrithms , Addison Wesley Publishing Company,

Massachusetts, 197~.

2 Albert,J., Sber indizierte und m-Block-indizierte Grammatiken,

Dissertation, Universit~t Ka~lsruhe, 1976.

3 Asveld,P.R.J., Rational, Algebraic and Hyper-Algebraic Exten-

sions of Families of Languages, Memorandum Nr. 90, Technische

243

Hoogescheol Twente, Onderafdeling der Toegepaste Wiskunde, 1976.

Cook,S.A., Characterization of Pushdown Machines in Terms of

Time-Bounded Computers, Journal of the Association for Computing

Machinery, 18 (1971) ~-18.

5 Engelfriet,J., Iterating Iterated Substitution, Memorandum

Nr. 143, Technische Hoogeschool Twente, Onderafdeling der Toe-

gepaste Wiskunde, 1976.

6 Erni, W., Thesis to appear at the Institut fGr angewandte Infor-

matik und formale Beschreibungsverfahren, Universit~t Earls-

ruhe, 1977.

7 Erni ,W., Some Further Languages Log-TapeReducible to the Con-

text-Free Languages, Research Report of the Institut fGr ange-

wandte informatik und formale Beschreibungsverfahren, Universi-

t~t Karlsruhe, 1976.

8 Ginsburg,S., Algebraic andlliAutomata-TheoRetic Propertille s of

Formal Languages, North-Holland Publishing Company, Amsterdan,

1975.

9 Leeuwen,J.van, The Membership Question for ETOL-Languages is

Polynomially Complete, Information Processing Letters 3 (1975)

138-143o

10 Rozenberg,G°, Salomaa,A~, L-Systems, Lecture Notes in Computer

Science 15 (1974).

11 Salomaa,A., Flolrmal Languages, Academic Press, New York, 1973.

12 Sudborough,I.H., On Languages Log-Tape Reducible to Context-

Free Languages, Proceedings of d976 Conference on Information

Sciences and Systems at Johns Hopkins University.

