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Abstract: A certain pebble game on graphs has been studied in various con-

texts as a model for time and space requirements of computations [19293q7j-

In this note it is shown that there exists a family of directed acyclic

graphs Gn and constants ci,cz,c3 such that
1) Gn has 1n nodes and each node in Gn has indegree at most 2 .,
2} Each graph Gn can be pebbled with c1¥h pebbles in n moves,
3} Each graph Gn can also be pebbled with cﬁ{n pebbles, cz < e,
¢3n
but every strategy which achieves this has at least 2 noves.,
Let S{k,n) be the set of all directed acyclic graphs with n nodes where

each node has indegree at most k. On graphs G £ S(n,k} the following one

person game is considered, The game is played by putting pebbles on the nodes

of G according to the following rules:

i} an input node {i.e. a node without ancestor) can always be pebbled,
ii) if all immediate ancestors of a node ¢ have pebbles one can put a
pebble on ¢ .,
iii) one can always remove a pebble from a node.

Goal of the game is to put according to the rules a pebble on some output
node {(i.e. a node without successor) of G in such a way, that ihe total

number of pebbles which are simultanecusly on the graph is minimized,

The game models time and space requirements of computations in the following

sense, The nodes of G correspond to operations and the pebbles correspond

to storage locations, If a pebble is on a node this means that the result of
the operation to which the node corresponds is stored in some storage lo~-

cation, Thus the rules have the following meaning:
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i) input data are always accessible.
ii} if all operands of an operation are known and stored somewhere the
operation can be carried out and the result be stored in a new location,
iii) storage locations can always be freed. By the rules a single node can
be pebbled many times, This corresponds to recomputation of inter-

mediate results.

In particular the game has been used to model time and space of Turing ma-
chines [1,2} as well as length and storage requirements for straight line

programs 573.
Known results about the pebble game include

A: Every graph G € S{k,n) can be pebbled with ckn/log n pebbles where
the constant c, depends only on X [2‘:’}.

B: There is a constant ¢ and a family of graphs Gn € s(2,n) such that

for infinitely many n Gn cannot be pebbled with less than cn/log n

pebbles [4].
For more results see {1,3,4,7}.

By putting pebbles on the nodes of a graph G in topological order {(i.e, if
there is an edge from node c¢ to node ¢' then ¢ is pebbled first) one
can pebble each graph G € S{(k,n) with n pebbles and n moves, However
the strategy known to achieve 0{(n/log n) pebbles on every graph uses expo-
nential time., Thus it iz a natural question to ask if there are graphs

Gn & S{k,n) such that every strategy which achieves a minimal number of

pebbles requires necessarily exponential time,This is indeed the case,

Theorem: There exists a family of graphs Gn £ s{2,n); n=1,2,... and con=-

c.<c¢c such that for infinitely many n

stants c¢ c 3 5 1

40 Co c

1) Gn can be pebbled with cifh pebbles in n moves.
2) 6, can also be pebbled with cé{n pebbles,

3) Every strategy which pebbles Gn using only céfn pebbles has at least
¢ 3“;! n
2

rioves

Thus even saving only a constant fraction of the pebbles already forces the

time from linear to exponential,

Proof of the theorem: as building blocks for the graphs Gn we need certain

special graphs: A directed bipartite graph is a graph whose nodes can be
11 N2 suchthat all edges go from nodes
in N, io nodes in Nz. A directed bipartite graph iz an n-i/j~expander if

&

partitioned into two disjoint sets N
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INii = ‘Nai =n (fA{ denotes the cardinality of A) and for all subsets %° of
Nz of size n/i bholda:
!{c‘c € N1 and there is an edge from ¢ to a node in N'il > n/i .

Lemma 1: For big enough n there exist n-8/2~expanders where the indegree

of each node in Nz is exactly 16,

Proof of Lemma 1; With every function f:ﬁi,...,cn} - ;1,...,n} we associate

a bipartite graph Gf &€ S{ec,2n) with n inputs and n outputs in the fol-
lowing way: The inputs and outputs are numbered from 1 to n and if f£(j) =
then there is an edge from input i to output (j mod n). Different func-
tions may produce the same graph, & function f is bad if there is a set I
of n/2 inputs and a set 0 of n/B outputs such that all edges into O
come from I. Ctherwise the function f is called good. Clearly if £ |is

good Gf is an n-8/2~-expander with the desired properties,

In order to prove the existence of a good function we prove that the fraction

of bad functions to all such functions tends with growing n to zero 5,6 .

cn . ] i H 3 n n
There are n functions f:{i,...,¢cn! » {1,..,,n!, There are {n/z)(n/S)
ways to choose n/2 inputs I and n/8 outputs O ., For every choice of I

and O there are (n/Z)cn/8 . n?CBXB functions f such that f is bad

because in G all edges into O come from I . Hence there are at most

£
J(Bg) + (n/2)/8 . qTen/B

n/2 bad functions, Thus the fraction we want to

estimate is
en/8

en/8 _7cn/8, en
}e(n/2) »n /n" = n/2)( /8)/2

(n/z n/8 = 0(1) for e¢= 16 .

E 1 ]
Let En be an n~8/2-expander az in lemma 1. Construct En from En by
replacing for every output node v the 16 incoming edges by a complete
binary tree with 16 leaves, identifying v with the root of the tree and the

ancestors of v with the leaves. Obviously En € 5(2,16n),

3

H be the graph consisting of d copies of Ethé,...,Eg where for
b 2

b,d
i€ 4@ the input nodes of EF are identified with the output nodes of

2 <
iel c »
E " . Thus Hb’d € s(2, (15d+1)b)

The set of output nodes of E; is called the ith level . The input nodes

1
of Eb form level 0O .

Lemma 2: Hb a can be pebbled with 2b+1i6 pebbles and {(15d+1)b moves.
¥
Proof: We say level i ig full if all nodes of level i have pebbles,

The strategy is to fill the levels one after another. Each level is a cut set.

Thus once a new level i bhas been filled all pebbles above level i can be
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removed, Hence at most 2b pebbles have to be kept on two successive levels.
In the process of filling level i+1 if level i is full the 16 extra
pebbles are used on the trees between the levels, Because all trees are dig-

joint except for the leaves each node is pebbled exactly once,

Lemma 3: Hb q can be pebbled with A4d+2 pebbles.
t

Proof: The depth of a node v is the number of edges in the longest path
into v . In a graph G € S{2,n) every node of depth t can be pebbled
with t+2 pebbles (this follows easily by induction on t ). Every node in

H has depth at most 4d ,
bed

The crucial point is

Lemma 4: For all i € %O,l,...,d} holds: If C is any configuration of

at most b/8 pebbles on N is any subset of level i s,t. §N§ = b/,

Hb,ﬁ’
and M is any sequence of moves, which starts in configuration C, uses

never more than b/8 pebbles, and during the execution of this sequence of
moves each node in N has a pebble at least once, then M has at least 2l

moves.,

Proof: by induction on i . For i=0 there is nothing to prove. Suppose
the lemma is true for i-1i. In configuration C at most b/8 pebbles are
on the graph, Thus for at least b/8 of the nodes v in N no pebble is on
v nor anywhere on the tree which joins v with level i~1 except possibly
on the leaves, Let N' be a subset of these nodes of size b/8 and let P
e the set of nodes in level i-1 which are comnected to N', By construc-
tion of ab,d H ?Pi:i b/2 . Because none of the nodes in N' nor any node
of their trees have pebbles except for the leaves, during the execution of M
each node in P must have a pebble at some time (possibly right at the

start).

Divide the strategy M into two parts Ma’Mz at the earliest move such that
during Mi some b/L nodes of P have or have had pebbles and the remaining
b/L4 or more nodes of P have never had a p?bble. For M1 the hypothesis of
the lemma applies, thus M1 has at least 21"1 moves, Because M1 leaves
at most b/8 pebbles on the graph and ¥, also never uses more than ?/8
pebbles the hypothesis also applies to Mg. Hence M2 has at least 21"1

moves too and the lemma follows.

Choose b such that 54d+2=< b/8, e,g. b = 32d + 16 . Then any strategy
which pebbles any b/k output nodes of Hb a using at most 4d+2 pebbles

has at least 2d moves, Thus for at least one of these nodes v pebbling v

alone with A4d+2 pebbles must require zd/(b/h) > 2(1—6)d moves as b=0{(d).

Now n=(15d+1)b is the number of nodes of Hb Hence @=0({n) and

pd *
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b=0{{'n) and the theorem follows.
The above construction also vields:

Corollary: There exists a family of graphs Gn £ s3{2,n) such that for

le~g

every € > 0 holdstany strategy which pebbles Gn using n pebbles

has more than polynomially many moves,

Proof: Choose Gn = H with b:ninl/log log n and d=0(n1/109 leg n).

An interesting open problem is: does there exist a family of graphs
&, s8(2,n)y n=1,2,... such that pebbling the graphs Gn with 0{(n/log n)

pebbles requires more than polynonially many moves ?
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