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Abstract: A certain pebble game on graphs has been studied in various con- 

texts as a model for time and space requirements of computations [I~2s3~7~o 

In this note it is shown that there exists a family of directed acyclic 

graphs G n and constants cl,c2, c 3 such that 

1) G has n nodes and each node in G has indegree at most 2 . 
n n 

2) Each graph G can be pebbled with c1~n pebbles in n moves. 
n 

~) Each graph G can also he pebbled with c~\~n~ pebbles~ c 2 < 
n 

Cj~n 
but every strategy which achieves this has at least 2 moves. 

Let S(k,n) be the set of all directed acyclic graphs with n nodes where 

each node has indegree at most k . On graphs G E S(n~k) the following one 

person game is considered. The game is played by putting pebbles on the nodes 

of G according to the following rules: 

i) an input node (i.e. a node without ancestor) can always be pebbled. 

ii) if all immediate ancestors of a node c have pebbles one can put a 

pebble on c . 

iii) one can always remove a pebble from a node. 

Goal of the game is to put according to the rules a pebble on some output 

node (i.e. a node without successor) of G in such a way, that the total 

number of pebbles which are simultaneously on the graph is minimized. 

The game models time and space requirements of computations in the following 

sense. The nodes of G correspond to operations and the pebbles correspond 

to storage locations. If a pebble is on a node this means that the result o£ 

the operation to which the node corresponds is stored in some storage lo- 

cation. Thus the rules have the following meaning: 
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i) input data are always accessible. 

ii) if all operands of an operation are known and stored somewhere the 

operation can be carried out and the result be stored in a new location. 

iii) storage locations can always be freed. By the rules a single node can 

be pebbled many times. This corresponds to reeomputation of inter- 

mediate results. 

In particular the game has been used to model time and space of Turing ma- 

chines [I,2~ as well as length and storage requirements for straight line 

program [~] 
Known results about the pebble game include 

A: Every graph G q S(k,n) can be pebbled with ckn/iog n pebbles where 

the constant ~ depends only on k [2 7. 

B: There is a constant c and a family of graphs G 6 S(2,n) such that 
n 

for infinitely many n G cannot be pebbled with less than cn/Iog n 
n 

pebbles [~J. 

F o r  m o r e  r e s u l t s  s e e  [1,3,&,7]. 

By putting pebbles on the nodes of a graph G in topological order (i.e. if 

there is an edge from node c to node ¢' then c is pebbled first) one 

can pebble each graph G 6 S(k,n) with n pebbles and n moves. However 

the strategy known to achieve O(n/Iog n) pebbles on every graph uses expo- 

nential time. Thus it is a natural question to ask if there are graphs 

G 6 S(k,n) such that every strategy which achieves a minimal number of 
n 

pebbles requires necessarily exponential ~ime.This is indeed the case. 

Theorem: There exists a family of graphs G £ S(2sn), n=1,2,..o and con- 
n 

grants ci, c2, c3, c 2 < cl such that for infinitely many n 

1) G n can be pebbled with c1~-n 

2) G can also be pebbled with 
n 

3) Every strategy which pebbles 

2c3~ I n moves. 

pebbles in n moves. 

~c 
c2,; n pebbles. 

G n using only c2~rn pebbles has at least 

Thus even saving only a constant fraction of the pebbles already forces the 

time from linear %o exponential. 

Proof of the theorem: as building blocks for %he graphs G n we need certain 

special graphs: A directed biparti% 9 graph is a graph whose nodes can be 

partitioned into two disjoint sets Nl, N 2 suchthat all edges go from nodes 

in N I to nodes in N 2. A directed bipartite graph is enn-ny~j-expander if 
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IN11 = IN2i = n (IA! denotes t h e  cardinality of A) and for all subsets N~ of 

N 2 of ~ize n/i holds; 

l { c l c  ~ "1  a n d  t h e r e  i s  a n  e d g e  f r o m  c t o  a n o a e  i n  N ' } t  > n / j  . 

Lemma 1: For big enough n there exist n-g/2-expanders where the indegree 

of each node in N 2 is exactly 16. 

Proof of Lemma I: With every function f:{1, .... cn! -- ii .... ,n} we associate 

a bipartite graph Gf ~ S(c,2n) with n inputs and n outputs in the fol- 

lowing way: The inputs and outputs are numbered from i to n and if f(j) = £ 

then there is an edge from input i to output (j mod n). Different func- 

tions may produce the same graph. A function f is bad if there is a set I 

of n/2 inputs and a set 0 of n/8 outputs such that all edges into 0 

come from I . Otherwise the function f is called good. Clearly if f is 

good Gf is an n-8/2-expander with the desired properties. 

In order to prove the existence of a good function we prove that the fraction 

of bad functions to all such functions tends with growing n to zero 5,6 . 

There  a r e  ncn f u n c t i o n s  f : i ! , . . . , c n  i , i l  . . . .  ,n}  . There  a re  ( n ~ 2 ) ( n ~ 8 )  

ways to choose n/2 inputs I and n/8 outputs O . For every choice of I 

and O there are (n/2) cn/8 * n 7cn/8 functions f such that f is bad 

because in Gf all edges into O come from I . Hence there are at most 

(n~2)(n~8) - (n/2) cn/8 • n 7cn/8 bad functions° Thus the fraction we want to 

estimate is 

(n~2)(n~8 )'(n/2)cn/8"n7cn/8/ncn = (n~2)(n~8)/2cn/8 = °(I) for c ~ 16 . 

! I 

Let E n be an n-8/2-expander as in lemma 1 . Construct E n from E by 
n 

replacing for every output node v the 16 incoming edges by a complete 

binary tree with 16 leaves, identifying v with the root of the tree and the 

ancestors of v with the leaves. Obviously E ~ S(2,16n). 
n 

Let Hb~ d be the graph consisting of d copies of Eb:E ~...~E b where for 
i 

2 ~ i ~ d the input nodes of E b are identified with the output nodes of 

i-I Thus E S(2,(15d+l)b) . E b • Hb, d 

i is called the i th level. The input nodes The set of output nodes of E b 

of ~b form level O . 

Lemma 2: Hb, d can b e  pebbled with 2b+16 pebbles and (15d+1)b moves. 

Proof: We say level i is full if all nodes of level i have pebbles° 

The strategy is to fill the levels one after another. Each level is a cut set. 

Thus once a new level i has been filled all pebbles above level i can be 
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Lemma ~: 

Proof: 

into v . 

with t+2 

Hb, d has depth at most ~d . 

The crucial point is 

Lemma ~: For all i q IO~I ..... d} 

at most b/8 pebbles on Hb, d , N 

removed. Hence at most 2b pebbles have to be kept on two successive levels. 

In the process of filling level i+l if level i is full the 16 extra 

pebbles are used on the trees between the levels. Because all trees are dis- 

joint except for the leaves each node is pebbled exactly once. 

Hb, d can be pebbled with ~d+2 pebbles. 

The depth of a node v is the number of edges in the longest path 

In a graph G E S(2,n) every node of depth t can be pebbled 

pebbles (this follows easily by induction on t ) . Every node in 

holds: If C is any configuration of 

iS any subset of level i s.t. IN1 = b/~ 

and M is any sequence of moves~ which starts in configuration C , uses 

never more than b/8 pebbles, and during the execution of this sequence of 

moves each node in N has a pebble at least once, then M has at least 2 i 

moves. 

Proof: by induction on i . For i=O there is nothing to prove. Suppose 

the lemma is true for i-I . In configuration C at most b/8 pebbles are 

on the graph. Thus for at least b/8 of the nodes v in N no pebble is on 

v nor anywhere on the tree which joins v with level i-1 except possibly 

on the leaves. Let N t be a subset of these nodes of size b/8 and let P 

~ the set of nodes in level i-I which are connected to NI . By construc- 

tion of ~,d : IPI ~ b/2 . Because none of the nodes in N' nor any node 

of their trees have pebbles except for the leaves~ during the execution of M 

each node in P must have a pebble at some time (possibly right at the 

start). 

Divide the strategy M into two parts MI,M 2 at the earliest move such that 

during M 1 some b/~ nodes of P have or have had pebbles and the remaining 

b/A or more nodes of P have never had a pebble. For M 1 the hypothesis of 

the lemma applies~ thus M s has at least 2 i'1 moves. Because M I leaves 

a t  m o s t  b / 8  p e b b l e s  on  t h e  g r a p h  a n d  M 2 a l s o  n e v e r  u s e s  more  t h a n  b / 8  

pebbles the hypothesis also applies to M 2 . Hence M 2 has at least 2 i-i 

moves too and the lemma follows. 

Choose b such that ~d+2 ~ b/8, e.g. b = 32d + 16. Then any strategy 

which pebbles any b/A output nodes of ~,d using at most Ad+2 pebbles 

has at least 2 d moves. Thus for at least one of these nodes v pebbling v 

alone with Ad+2 pebbles must require 2d/(b/~) ~ 2 (l-~)d moves as b=O(d). 

Hence d=O~n) and Now n=(15d+1)b is the number of nodes of Hb, d . 
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b=O(~Tn) and the theorem follows. 

The above construction also yields: 

Corollary: There exists a family of graphs G n q S(2,n) such that for 
1-C 

every e > 0 holds :any strategy which pebbles G using n pebbles 
n 

has more than polynomlally many moves. 

Proof: Choose G = with b=n1-1/log log n and d=O(nl/log log n) 
n Hb, d o 

An interesting open problem is: does there exist a family of graphs 

G S(2, n), n=I,2,.., such that pebbling the graphs G with O(n/log n) 
n n 

pebbles requires more than polynomially many moves ? 
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