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Abstract : A class C of interpretations ia algebraic if, roughly speaking, for every 

two recursive program schemes # and @', the equivalence of ~ and @' with respect to O 

can be proved by an induction on the length of computation [9] if it holds. Classes 

of interpretations can be defined by logical, and/or order theoretical conditions. We 

examine several cases of algebraicity (for ckasses defined by first-order conditions) 

and non-algebraicity. 

1 - Introduction 

The equivalence between programs is an essential concept in the mathematical theory 

of computation and programming, but very difficult to study for well-known theoretical 

reasons. Program schemes have been introduced to overcome these difficulties as much 

as possible. 

A program P is splitted into a program scheme ~(i.e. a program where the domain of 

computation and the base functions are left unspecified) and an interpretation I (i.e. 

k ÷ DI for each k-ary base func- the specification of a domain D I and a function fl = DI 

tion symbol). We denote by ~I the function computed by ~ under I i,e. the function 

computed by the program P. 

We only consider in this paper recursive program schemes without assignments. The cor- 

responding schemes have no interpreted base functions. The conditional operator if... 

th~n...else...is replaced by a 3-adic symbol h(..., ....... ) which can be interpreted 

by an arbitrary 3-adic function. 

The corresponding equivalence relation on schemes, namely ~ e ~' iff ~I = ~I for every 

interpretation I, is very restrictive, and does not help very much for the study of 

interesting equivalences between real programs. 

In order to get more concrete results~ we use the notion of a class of interpretations 

C ; the associated equivalence between program schemes is then : 

E C ~' iff ~I = ~I' for every I c C, 

A similar concept has been introduced by other authors. In [3] a system is described 

which uses pairs of program schemes which are equivalent under conditions, i.e. with 

respect to a certain class of interpretations. In [14] a program scheme is given with 

a first-order formula ~ and one only considers interpretations which validate ~ . 

The order ~I of an interpretation is extended to functions as usual and still denoted 

~I' We also define ~ ~C ~' iff ~I ~I ~i for all I ~G, 
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Clearly ~ ~C ¢' if ¢ ~C~' and $' ~C~. 

Let ~ be a R.P.S (i.e. a recursive program scheme), let I be an interpretation and 

for each positive integer n let ~n) be the approximation of ~I which can be computed 

with at most n nested recursive calls. This function can be defined by a finite term 

(written with base function symbols only) which we denote by @(n). 

Let ~ and ~' be R.P.S's, let C be a class of interpretations such that , 

(|) Vn3m VI~Cj ~n) <l~m) 

equivalently, 

(2) Vn3m , ~(n)~c~<m) ; 

then, since ~I is the least upper bound of the ~n)'s, we obtain that : 

(3) VlcC, ¢I ~I ¢I 

or equivalently : 

(4) ~ ~C ¢' 

Thi~ situation precisely Gccurs when (4) is provable by induction on the computation 

[9] . Many induction principles (including "Scott's induction principle'~) reduce to 

that one. An actual proof requires that, for every n, 

3m , $(n+l) ~C¢~(m) 

can be deduced from : 

3m , ¢(n)~ C ~(m) 

which may be technically difficult to prove. But the main point for us is whether (2) 

holds or not. 

A class C of interpretations is algebraic if for every two RPS's ~ and ~', (4) implies 

(2). Hence, for an algebraic class of interpretations C, it is reasonable to search 

for proofs by induction on the computation. 

In nonalgebraic classes, other proofs are required. 

Exan~le I : Let C be the class of interpretations of the form 

I = <DI, NI' I, PI' fl' hi' al' bl > such that 

]. D I contains the truth values truej false 

2. Pl is a contir~aous mapping : D I ÷{±,true, false}, and Vm, pl(f~(al))#1 

3. hl(X,y,z) = ~f x then y else z 

4. 3n eN such that pl(f~ (al)) = true 

(The reader is refered to the main text for the missing details). 

Let E be the following RPS : 



556 

I 
~ = ~ (a) 

~(Vl) = h (p(v]), b, ~(f(v]))). 

One is easily convinced that ~ EC b, that ~(n)~ C b holds (and can be proved by induc- 

tion on n) but b NC ~(n) does not hold for any n. Hence b ~C ~ cannot be proved by in- 

duction on the computation. An ad hoe proof by induction on the integer n of condition 

2 above is possible but is not of a great theoretical interest.~ 

= ' by an induction "on the domain". It is often possible to prove a valid equation ~I #I 

If D I = n~ D~ n), it suffices to prove by induction on n that for all ne ~ : 

V d l ,  . . . ,  h e  D n ) ,  , i ( d  1 . . . . .  dk) = * I  (d]  . . . . .  d k ) .  

T h i s  i s  c a l l e d  a s tructural  induction i n  [ 2 ]  . 

But  s u c h  a p r o o f  i s  o n l y  v a l i d  f o r  one i n t e r p r e t a t i o n .  On t h e  o t h e r  h a n d ,  p r o o f s  by 

i n d u c t i o n  on t h e  c o m p u t a t i o n ,  w h i c h  o n l y  u se  relat ions  between base functions,  a r e  

valid for every interpretation which satisfiesthoserelations hence are of more general 

interest. 

Hence, in this approach, the relevant questions about a given family C of interpreta- 

tions are the following ones : 

(I) Is it algebraic ? 

(2) If it is, find some characterization of t !C t' (for finite terms t and t') 

In this paper, we relate the algebraicity of classes of interpretations with their 

definition by logical conditions, properties of programs etc... 

Our two main results are the following ones : 

(I) a first-order class of discrete interpretations is algebraic (theorem 2), 

(2) the intersection of an algebraic class with a relational class of inter- 

pretations is not neeessarly algebraic (theorem 5). 

2 - Recursive Program Schemes 

We recall quickly a few basic notions. (See [4] and [JO] for more details). 

Let F be a finite set of function symbols with arity (fcF has arity p(f)->0) which 

contains a special symbol ~ of arity 0. Let V k = {v], ...,v k} for k >- I and V = VK(for 

some fixed large enough K)be the set of variables. 

Let M(F,V) denote the set of finite well formed terms written on F UV according to 

arities. This set is ordered by -~ , the least order relation such that : 

(I) fl -~ t for any t ~M(F,V) 

(2) f(t l,...,tk) -~ f(t~ .... ,t~) if ti- ~ t!l for i : l ..... k 

A recursiNe program scheme is a set of equations or a context-free tree grammar of 

the form : 
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I ~i(vl .... 'Vki) = ti + i 

I ~ i ! n, k i = p(@i ) t i ~ M(FU~,Vk.) 
i 

= {~1,...,~n } is the set of function variables. 

Let L(Z,~]) = M(F,V) be the tree language generated by E with a xiqm 

~i(Vl, . . . .  Vkl)- 
Lemma 2 (Nivat [10]) : L(E,@]) is direated w.r.t. ~ . 

In order to consider such systems as program schemes, we must define their semantics. 

Definition 1 : An interpretation I is an object 

I = < DI' ~ I' ~ '< fl > f~ F > (also called a complete ordered F-ma@rna) 

such that 

I. ~I is a partial order with least element ±and ±= ~I" 

k 
2. for each k-ary f~ F, fl is an increasing mapping : D I ~ D I 

3. Every directed subset A of D I has a least upper bound Sup(A). 

4. Each fl is continuous, i.e. fl(SUp(A]),..., Sup(Ak)) = Sup (fl(A1 ,...,Ak)) 

for directed AI,...,A kC D I. 

K D I which is increasing and Every t e M(F,V) clearly defines a function t I : D I ÷ 

continuous. 

The function computed by (Z, ~i ) in I is (E, ~i)i also denoted by @II if there is 

no ambiguity,defined by : 

~li(dl ..... dK) = Sup { tl(dl,...,dK)/ t c L(Z, ~i)} 

This value does exist since the mapping t ~ ~ tl(d],...,dK) is increasing and hy 
lemma I. 
This semantics coincides with the classical definition by fixed-points used for ins- 

tance in Milner [8] . See [13],[10] for the proof. 

In fact we will only consider RPS's (E, @) such that p(~) = 0. Hence ~I is an element 

of D I and not a function. This is not a loss of generality. Let (Z, #) with p(#) = k 

and I be an interpretation. Add the new constants cl,..., c k to F, a new 0-ary func- 

tion symbol ~' to O, the equation ~' = #(cl,...,Ck) to E. instead of studying 

~I : Dlk + DI we will study ~j where J ranges over { < I, cij ,...,ckJ > / cij £ D I }. 

We denote by M (F,V) the set of"infinite well formed"terms.They can be formally defined 

as least upper bounds of directed subsets of M(F,V) or, more intuitively, as infinite 

trees. 

Example : The least upper bound of 

= {e,f(vl,~) , f(v~,f(g(vl),e)) .... } 
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is f / \  
Vl f 

/ \ 
f / / \  

vl / g  

/ 
v t 

O 
O 

O 

Hence, by lemma ! there exists T(E, 41) = Sup (L(E, 41)) in M=(F,V). The semantics of 

(E, ~i ) is completely defined by T(E, ~i ). If p(¢i ) = 0 then T(E, ¢]) ~ M=(F). For 

Simplicity we will consider in this paper any element of M~(F) as defined by a R.P.S., 

i.e. we will give definitions relative to arbitrary elements of M~(F) and not to those 

which are associated with RPS's. 

3 - Families of interpretations 

We call family or class of interpretations a class of interpretations in the sense of 

set-theory. 

Let C be a class of interpretations. For T, T' ~ M~(F) we define T NC T' iff T I ~I Ti 

for all I £ C, and T SC T' iff T ~C rland T' ~C T. Hence (E,$I) and (E',#~) are C-equi- 

valent iff T(E,¢I) ~C T(E', ~). 

A class C is algebraic (see [4] for a justification of the terminology) if for all 

t £M(F), and T' = sup(t~) e M=(F) (where t' ~ M(F) for n e 0), t ~C T' iff t ~C t' 
n~O n n 

for some n. 

The class I of all interpretations is algebraic since ~I is exactly-~ (see [4] , [13]) 

More generally, let R be a possibly infinite subset of M(F,V) x M(F,V) and C R = {I/I 

is an interpretation and t I ~I tl for all (t,t') c R}. For example, the class of inter- 

pretations such that some binary function is commutative is of that form. C R is called 

a relational class. 

Proposition I ([4]): Every relational class is algebraic 

An interpretation I is discrete if (DI, ~i ) satisfies the following : 

V x, y ~ D I, xN I y ~=~ x = & or y = x. 

Most concrete examples of R.P.S.'s use discrete interpretations. Many papers on reoar- 

sive program schemes only consider discrete interpretations. See section 4 for a preci- 

se correspondance between these definitions and ours. 

The family D of discrete interpretations is proved to be algebraic in [I]. We will 

extend this result in section 4. 

Let us note that for I~D, and T E M~(F) : 

(i) either t I = ± , for all t-~T, then T I = ~ (divergence) 
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(ii) or t I = d z ± for some t~ T and T I = d (termination) 

Proposition ~ : If C and C' are algebraic, C U C' is alEebraic. 

Proof : Let t ~C c,T for t E M(F) T E M~(F) then t ~C T hence t sCtl~ T for some 
U 

t I e M(F) since C is algebraic. Similarly t ~C' t2"< T. Let t 3 be the least upper 

bound of t] and t 2 in M(F). Then t3- ~ T, t] ~C t3" hence t Nct3. Similarly , t ~C' t3 

hence t ~C U C' t3" ~ 

Theorem 5 will show that C N C' need not be algebraic. But theorem 4 defines a class F 

of algebraic families which is closed by intersection. 

4 - First-order classes fo interpretations 

The family I of all interpretations is the class of all models of a certain second- 

order theory. This is clear by the definition of an interpretation. In fact second - 

order theories are very powerful and define algebraic as well as nonalgebraic classes 

(see the end of section 5). 

We will consider classes defined by first-order conditions. 

Let A be a set of first-order closed formulas on a set of function symbols including F 

and a set of predicate symbols including ~. Let us define : 

Mod (A) to be the set of models of A (Schoenfield [12]) 

Int (A) = I N Mod (A), the class of interpretationswhich are models of A. 

Since I is not flrst-order definable, Int (A) need not be Mod (A') for any 

first-order theory A'. 

Definition 2 : A class of interpretations C is first-order if C = Mod(A) for some 

first-order theory A. 

EzGJ~ple : D is a first-order family. In fact, conditions I and 2 of definition ] are 

first-order. Let A 0 be a (finite) set of first-order formulas expressing them. Let F D 

be the following closed formula : 

Vx Vy Ix ~ y ~=~ x = S or x = y] , 

and ~ = A 0 U {FD}. It is fairly easy to prove that conditions 3 and 4 of definition | 

are implied by ~ hence D = Mod (~). 

For a first-order theory A, let D(A) = D ~ Mod(A). Then D(A) = Mod (A U ~) hence is 

a first-order class. 

We state and prove two theorems ; the second one is positive an d will have several 

interesting corollaries. 

Theorem 1 : For a first-order theory A, Int (A) is not aIEebraic in general. 

Theorem 2 : For a first-order theory A, D(A) is algebraic. 
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Proof of theorem I : Let F = {a, f} with p(a) = 0 and p(f) = I • 

Let A consist of the followLng formula : Vx /f(x) = x~ a~x] 

Let T = Sup {fn(~)/n e O} be the least fixed point of x = f(x) 

in M~(F) and C = Int (A). Then a ~C T follows from A since fi(Ti) ~ T I in every inter- 

pretation I e C. But there is no n £ N such that a ~C fn(~). To see that, it suffices 

to take I with D I = { ±,~,Bl,...,Bm,...,~} ordered as follows : 

I 

I 
81 

I 

with fl(±) = fl(~) = 81 , fl(~i) = ~i+l ' fl (m) = ~ and a I = ~. 

Proof of  theorem 2 : This proof will be based on the compactness theorem for first- 

order logic. 

Assume that C = D(A) = Mod(A') is not algebraic, that t' e M(F) and 

T = Sup { t /n = 0,1 } ~ M=(F) with t0-~ tl-~ t2-~ -~tn- ~ such that : 
n '''" "'" "'" 

(1) t' ~C T, 

(2) t' ~C tn for each n. 

By (2), each of A' U { ] (t' ~ tn)} has a model In E C. In fact, In is a model of 

A' U { ] (t' ~ to), ] (t' ~ t I) ..... ] (t' 5 tn)} since for each i = 0,...,n,ti~ tn; 

' < would imply t' I < • hence t I - til - tni 
n n n n 

By the compactness theorem for first-order logic [12], 

A' U { ] (t' ~ t0),7 (t' ~ tl),..., ] (t' 5 tn),...} has a model I. Hence I c Mod(A') 

= D(A). Since I is discrete there exists n such that T I = ~ Hence t' I N ~ibY 

hypothesis (I). But this contradicts the definition of I. D 

As a first application, we consider classes of discrete interpretations with interpre- 

ted conditionals. 

Let F contain a special triadic symbol h, special constants true and false and a set 

of special functions called predicate symbols (p, p', q, q', r, r' will be reserved 

to predicate symbols). The domain D I of an interpretation I contains the truth values 

true I and false I which are assumed to be distinct and not ±. For simplicity we will 

omit the subscript I. 
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Let Dcond be the class of discrete interpretations satisfying the following conditions : 

(|) true ~ ~ and false ~ ~ and true ~ false. 

(2) Vx I ..... x k [p(x] .... Xk) = ~ or P(Xl,...,Xk) = true or p(x] .... Xk) = false] 

for each k-dry predicate p. 

(3) V x, y, zj[x ~ true and x ~ false ~ h(x,y,z) = ~ 

(4) V x, y [h(true,x,y) = x and h(false,x,y) = y] 

Then Dcond is clearly first-order and 

Corollary I : DcondiS first-order and algebraic 

In fact most papers on program schemes use only interpretations of DcondWith, possibly 

some extra conditions. Let us take [ O] as an example. A typical R.P.S. is 

~(x) = if p(x) then (if q(x) then f(x) else $(g(~(x)))) else x 

An interpretation is some I = < D, PI' ql' fl' gl > where PI' ql are total functions : 

D ÷ {true, false} and fl' gi are total functions : D + D 

We write the same scheme : 

$(x) = h(p(x), h(q(x), f(x), $(g(~(x)))),x) and take the discrete 

interpretation: 

J = < D U { ±, true, false}, ±, ~, pj, qj, fj, gj, hj > 

where p j(±) = pj(true) = pj(false) = i 

pj(d) = Pl(d) if d ~ D 

and similarly for qd, fj, gj. The function hj is defined by (3) and (4) above. (The 

meaning of ± is : u~defined). Clearly, J ~ Dcond. The function ~l(defined as in [ Oj) 

is related with ~d by the following : 

~j(d) = ~l(d) if ~l(d) is defined 

~j(d) = ± if d = ± or ~l(d) is undefined 

We now consider discrete interpretations defined by relations. 

Let R c M(F,V) x M(F,V) and CR be the relational class associated with R as defined 

in section 3. Let D(R) = D ~ C R. Then D(R) =-D(AR) where A R is the set of formulas 

V vl,...,v K It ~ t'] 

for all (t,t') ~ R. 

2 
Corollary 2 : For R = M(F,V) , D(R) = D n CRie algebraic. 

This partially answers to a question of [6]. This result can be slightly extended. 

Let B be the least family of classes of interpretations which contains the relational 

classes (i.e. the CR'S) , the first-order classes of discrete interpretations 
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(i.e. the D(A)'s) and is closed by finite union and finite intersection. Then 

Theorem 3 : Every C E B is algebraic 
n 

Proof : Let G ~ B. Then C = U C. where each G is the form : 
i=l i I 

%1 n %2 fl ... N CRk N D (A])[I ,.. n O(Az) 

If £ = 0 then C i = CR! U ... U R k is ~algebraic (proposition I) 

If £ e ! then C i = CRI U . . .  U ~ q D ( A  l 0 - - .  U A£,) 

= D(A I U ... U A£ U ARI U .-. U R k) and is algebraic by theorem 2. By proposi- 

tion 2, C is algebraic. 

5 - Families defined by properties of programs 

It has been proved in [4] that the family of all interpretations in which two given 

program schemes are equivalent is not algebraic. 

We now consider the class of discrete interpretations in which a given program termi- 

nates. This class is not algebraic in general. 

Let ~ be a RPS, let D~ = {I e D / ~I ~ ±} and Dcond,~ = { I £ Dcond/ ~I ~ ± }" Then 

Theorem 4 : D~ and Dcond,~ are not algebraic in general. 

p(a) = p(b) = 0, p(g) = ], p(f) = 2. Proof : 1. Let F = {a, b, f, g} with 

Let (E,#) be the following lIPS : 

I ~ = f(~,~(a)) 
~(Vl) = f(vl, ~(g(vl))) 

Then T = T(E,~) = Sup { tn/n E ~ } 

t I ~ 
n 

where t = f(~ tn) and 
n 

f 
/ \  

a 
g/f \ 

".° 
/ ,, 

a f 
S / \ 

a 

Let also T' = Sup { t~/n z O } . 

Let C = D~ and t = f(b,~). We first prove that t NC 

then t I ~ T I . If t I = d ~ ± and fl(±,±) ~ i then 

Then T = f( ~, T') . 

T . Let I E C . If t I = ± 

d = t I = fl(l,l) = T I. 

= d'; ± by definition of C. If t I = d z ± and fl(±,±) = I then T I 
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Hence d' = fl(i,d") where d" = T I' ~ i .  Since I is discrete, d = f(bl,i)~ ± and 

d' = f(i,d") ~ ± imply that d = f(bl,d") = d' ; hence t I = T I. 

We now prove that t ~C tn for each n. For n e ~ let I be the discrete interpretation 

with domain D = {±,Co,Cl,...,Cn+ I} such that : 

a I = c o 

b I = Cn+] 

gi(ci) = ci+ ] for i = 0, I,..., n 

gi(±) = ± 

gl(Cn+1) = Cn+ I 

fl(l,d) = c if d = c 
n n 

= ± otherwise 

fl(Ci,d) = c n if d = c n for i = O,],..~,n 

=i otherwise 

fl(Cnel,d) = c n 

One easily checks that I e D 

[gi(a)] I c i i = O,l,...,n+], , 

t ! = T = 
[ n+1]l c n T I c n , 

T I = c ~± I £ C 

[t~] I = ± = ± 

t I = 

Hence this shows that t ~C tn" Hence D~ is not algebraic 

That Dcond,~ is not algebraic follows from example ] of the introduction. It is not 

difficult to see that Dcond,~ ~ C N D (¢ and C are defined in example ;). For every 

n, one can easily build an interpretation I e C n D such that ~(~)= ±,b I ~ ± . Hence 

b ~C' ~ but b ~C' ~(n) for no n e ~ where C' = D • 
cond,~ 

R~mark : I. Theorem 4 entails that D~ and Deond,~ are not D(A) for any first-order 

theory A. This has already been proved by Kfoury and Park [73 (for Dcond and flowcharts). 

for all d ~ D 

and that : 

for 

and 

, hence 

and [tn] I 

fl(en+l,±) = c n 
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nd 
2. Powerful logical calculi such that 2 -order-logic, ~-ealculus or L ml~ (see Park 

[]|] ) allow to express properties of programs such that equivalence or termination. 

It is clear from theorem 4 that classes of interpretations which are definable by 

such calculi are not algebraic in general. 

6 - Intersection of algebraic classes 

It is known from [6] that the algebraieity of classes is not preserved under intersec- 

tion. One could suspect that the algebraieity is preserved by intersection with a re- 

lational class C R since this holds in two eases : 

Q C R, fl C R = C R U R' (algebraic by proposition ] ) 

@ D n C R = D(R) (algebraic by corollary 2) 

This is not the ease : 

Theorem 5 : There exists an algebraic class of discrete interpretations C and 

R = {(t,t')} such that C N C R is not ~l~ebraic. 

E~oof : let F = {f,g,a,b,~} with p(f) = 2 , p(g) = I , p(a) = p(b) = 0 . 

Let A be the set of first order formulas consisting of : 

F0 : b ~  

F l : g(~) = 

F2, n : gn(a) ~ fl for n = 0,1,2,... 

F 3 : Vx [f(fl,x) = ~] 

F 4 : V x [x ~ ~ ~ f(x,b) ~ ~] 

Let D O = D(A) and C = { I E D O / [f(gn(a),~)] I # ± for some integer n} 

The proof uses the following lemma which will be proved later : 

Le~na 2 : The order relations <-C and <_Do~d the same 

The class D O is algebraic by theorem 2 and so is C by le~m~a 2. Let R = {(f(vl,b),b)} 

and C t = CR C R . Hence C' is the class of interpretations I of C satisfying : 

R : Vd e D I , fl(d,bl) -< b I 

which we will refer to in the sequel as eondition R. We claim that C' is not algebraic. 

Let T = T(E,~) where E is following scheme : 

I, = ,(a) 
E @(vl ) = f(vl,,(g(vl))) 
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Hence T = S~p(t n) where t n is 

/ f ~ f ~ ~ f  n + 1 

a/g g/ ~ 

g/ \ 

a / 
J/ 0 

/ / n occurrences of g 

/g / 

occurrences of f 

Technically, we define 

t = f(gn(a),~ ) , 
n,n 

tn, m = f(gm(a),tn,m+l) 

for n = 0,],2,... 

for 0 -< m < n 

and 

Hence tn= tn, 0 . 

Let I e $t and n such that~n,~l ~ I Since I is discrete, f(gn(a),b)l 

and the common value is b I by condition R. By F 4 and F 2 Err,n_±] I ~ ± 

value must be b I by condition R again. By the same argument, we get that 

=~n,~ I 

and the 

Hence b 

Let n > 

b I = [tn,n_]] I = [tn,n_2] I = .... = [tn,0] I 

Ec,T . If C' is algebraic, there exists an integer m such that b ~C,tm. 

m and I be the following interpretation : 

I = <D,N,±, f,g,...> 

D = {±,~0,~l,~2,...,~n,~> 

a I = s 0 

b I = 

gi(±) = gi(~) = 

gl(~i ) = ~i+I if 0 ~ i < n 

gl(~n) = a n 

fl(d,d') = 8 if d = a n 

= ± otherwise 

or (d ~ ± and d' =~) , 
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A straight forward verification shows that I e C' . In particular t = B but 
n,n I 

4 . Hence [tm,m_1]l= f(gm-](a),tm,m)l = fl(~m_1,±) = ± and similarly ~m,m]l = 

[tm,m_]] I = Etm,m_2] I = . . . = [tm,0]i = 4 ~ Hence b I ~ Jim]land b ~Ct t m : 

this shows that C'is not algebraic.D 

Before starting the proof of lemma 2, we describe a construction on interpretations 

which has been introduced in []]. We redefine it in order to have a self-contained 

proof. 

Let I a D o . We associate with I a discrete interpretation J which is defined as follows 

Dj = {<d,t> ~ D I X M(F) / t I 

4j = <±,~> , 

aj = <al,a> ; bj = <bl,b> 

= d} , 

gj(<d,t>) = <±,~> if gl(d) = ± 

= <gl(d) , g(t)> otherwise , 

fj(<dl,tl > , <d2,t2>) = <4,~> if fl(dl,d2) = ± , 

= <f(dl,4) , f(t],~)> if fl(d],4)~ 4 

= <f(dl,d2) , f(t],t2)> otherwise 

The interpretation J is in fact the SP-free interpretation associated with I of [1]. 

We denote it here by f(I). 

Lem~a 3 : Let t e M(F) 

[. There exists t' e M(F) such that : 

(~) tj = <tl,t'> 

(~) t I = t' I 

(~) t'-< t 

2. tj = ±j if and only if t I = 41 , 

3. tj = gn(a)j if a~ only if t = gn(a). 

Proof : We prove (I) by induction on t. If t e {~,a,b} then (~), (B) and (y) 

follow from the definition of J. Assume now that t = g(u). If gl(Ul) = 4, then 

tj = <4,~> , this case is trivial. If gl(Ul) = t I ~ 4 , then u I ~ ±I by condition__ 

F| and uj = <Ul,U'> with u'--~ u and ul = u I. Then tjm<gl(Ul), g(u')> and 
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(a), (S), (y) are satisfied. If t = f(ul,u 2) the proof is similar. 

(2) The only if direction is obvious. The other one follows from the definition of 

and (I). 

n (3) If tj = g (a)j = <gn(a)l, gn(a)> then gn(a)~ t by (I) and this implies gn(a) 

=t.D 

Le~na 4 : The interpretation J belongs to D O . If I ¢ C then J¢ C 

Proof : We only verify F 4. If <d,u> ~ Dj - {<±,~>} then fl(d,bl) = d' ~ ±I since 

I ~ D O . Then bj = <bi,b> and fj(<d,u>,bj) = <d',f(u,~)> if fi(d,±) ~ i (hence 

fl(d,±) = d') 

= <d',f(u,b)> otherwise 
by our definition of J. 

If f(gn(a),~)l = d ~ ±I' then f(gn(a),~)j = <d,f(gn(a),~)> ~<±,~> . Hence, if I e C 

then J ~ C.O 

Proof of len~a 2 : In order to prove that ~D and ~C colnclde on M (F), we need only 

prove for all t c M(F) and T' ~ M~(F), t !C TQ iff t ~D T'. Since CcD O the if direc- 
. . . .  ! 0 ! 

tlon is trlvlal. We will prove that if t I ~ T I for some I ~ DO, then tj ~ Tj for some 

J c C which will complete the proof. 

First case : t I = d ~ ± and T~ = ti= d'j {±,d} for some t'--~T'. Let n be a positive 

integer such that gn(a) is not a subtern of t or t'. Let I' = P(1) and J = l(n) he the 

discrete interpretation defined as follows : 

Dj = DI, 

±J = ±I' , aj = al, , bj = bl, ' gJ = gl' 

fj(dl,d 2) = fl,(d],d2) if d I z gn(a)l, 

= 6 if dl= gn(a)l, , where ~ is some fixed element of 

Dj - {<±,~>} 

The verification that fjis increasing w.r.~ the discrete ordering is left to the rea- 

der. It suffices to prove that J is a discrete interpretation . Furthermore, J e D O 

We only verify that F 4 is satisfied, the other verifications being similar.Let 

d I E Dj - {±j~ . If d I = gn(a)l , then fj(d],bl) = 6~ ±j . If d I ~ gn(a)l , , then 

n fj(dl,b I) = fl,(dl,bl) ~ ±j since I' ~ D O . Clearly f(gn(a),~)j = fj(gj(aj),±) 

n 

= fj(gl,(al,),±) = 6 ~ ±j hence J £ C. 

' ~ tj. Finally we prove that tj z ± and tj 

Let u £ M(F) such that : 

(1) for every subterm u' of u , ul, ~ gn(a)i ,. 
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An easy inductive argument shows that uj = Ul,. By lemma 3, ul, = gn(a)l, , if and 

only if u' = gn(a), hence, by our choice of n, tj tl, and tj tl,. From the in±- 

' and tj ~ ' Similarly, t I ~ ± implies tial assumption that t I ~ tl, we get tl, ~ tl, tj. 

tl, ~ ± and tj ~ ±. The same holds for t'. Hence tj ~ Tj. Q.E.D. 

Second case : Let I ~ D O such that t I ~ ± and t~=± ~r all t'~ M(F) such that t L~T'.We 
n 

' Choose an integer n such that g (a) is not a aim to define J ~ Csuch that tj ~ Tj. 

subterm of t.Let l(n) be associated with I and n as in the first case. If tl(n) = ± 

for every t'-~ T', then we can take J = l(n) and we are done since tl(n) ~ ± as in 

the first case. Otherwise, if t'l(n) ~ ± for some t'~T' let us take J = F(l(n)) 

This interpretation belongs to C since l(n) e C and by lemma 4. Clearly, tj ~ ± and 

' ' Assume that tj ' = <d,u> for some d ~ Dl(n) tj ~ I. Let us prove that tj ~ tj. = tj 

and u £ M(F). By lerama 3, u--~t and u has no subterm of the form gn(a) by our choice 
! 

of n. Hence Ul(n) = Ul,. Also u--~t' and t I = ±. This implies u I = ± and Ul, = ± 

(since I' = F(1)). Hence d = Ul(n) = ± by lemma 3 again, but d = tl(n) and we get a 

contradiction since tl(n) ~ ±, by the proof of the first case. Hence we have proved 

that tj ~ T}. D 

7 - Conclusion 

1. Most classes of interpretations which naturally occur when one considers reeursive 

program schemes are of the form D(A), hence are algebraic by theorem 2. In order to 

perform proofs of valid relations ~ ~D(A)#' by computation induction, one needs a 

characterization of t ~D(A)t' for t,t' e M(F). In most cases, t ~D(A)t' will be unde- 

cidahle but a semi-decidability result is still of interest for proofs about programs. 

2. To summarize, algebraic classes are essentially of the following types : 

l) C R (relational) , 

2) D(A) (first-order discrete). (*) 

Most other definitions yield nonalgebraic classes. 
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