Abstract
In this paper we give some new results about context-free sets of infinite words. The presentation will be a generalization of McNaughton's approach in [7], where he analyzed regular sets of infinite words. However, our extension to the regular case is not straightforward and thus distinguishes from the approach given in [4].
Some of the results given below originate from two papers by Nivat [9,10], others are unpublished supplementary results due to Nivat and Boasson.
We recall from [9] that to each context-free grammar G one can associate an operator Ĝ, which has a unique fixed point over finite words and a greatest fixed point over finite and infinite words, each of them being the vector of languages generated by the non-terminals of G.
We then show that any context-free set of infinite words can be obtained by a substitution of some context-free languages into a regular set of infinite words.
In the sequel the notions of adherence and center of context-free languages are introduced and analyzed to establish a link between the infinite words and the language generated by a grammar.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
-A. Arnold et M. Nivat: Non deterministic Recursive Program Schemes. Fundamentals of Computation Theory Lecture Notes in Computer Science No56 p. 12–21 — Springer Verlag (1977)
-J.W. de Bakker: Semantics of Infinite Processes Using Generalized Trees dans Mathematical Foundations of Computer Science Lecture Notes in Computer Science No 53, p. 240–246 — Springer Verlag (1977)
-L. Boasson: Un langage algébrique particulier. A paraître dans la R.A.I.R.O. — Informatique Théorique.
-R. Cohen et A. Gold: Theory of ω-Languages — Part. I: Characterization of ω Context-Free Languages. J. Comp. Syst. Sciences, 15 (1977), p. 169–184.
-S. Greibach: Theory of Program Structures: Schemes, Semantics, Verification. Lecture Notes in Computer Sciences no 36 — Springer Verlag (1975).
-M. Hennessy et E.A. Ashcroft: On Proofs of Programs for Synchronization. dans Automata, Languages and Programming — 3rd International Colloquium ed. S. Michaelson et R. Milner, p. 478–493 (1976).
-R. McNaughton: Testing and Generationg Infinite Sequences by a Finite Automaton. Inf. and Control, 9 (1966), p. 521–530.
-M. Nivat: On the Interpretation of Recursive Polyadic Schemes. Symposia Mathematica — Vol. 15 — Bologne (1975).
-M. Nivat: Mots Infinis Engendrés par une Grammaire Algébrique. R.A.I.R.O. Informatique Théorique, 11, No 4 (1977), p. 311–327.
-M. Nivat: Sur les Ensembles de Mots Infinis Engendrés par une Grammaire Algébrique. A paraître dans R.A.I.R.O. Informatique Théorique.
-M.P. Schützenberger: Push-down Automata and Context-Free Languages. Inf. and Control, 6 (1963), p. 246–264.
Editor information
Rights and permissions
Copyright information
© 1979 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Boasson, L. (1979). Context-free sets of infinite words. In: Weihrauch, K. (eds) Theoretical Computer Science 4th GI Conference. Lecture Notes in Computer Science, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-09118-1_1
Download citation
DOI: https://doi.org/10.1007/3-540-09118-1_1
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-09118-9
Online ISBN: 978-3-540-35517-5
eBook Packages: Springer Book Archive