Skip to main content

A new recursion induction principle

  • Vorträge (In Alphabetischer Reihenfolge)
  • Conference paper
  • First Online:
Theoretical Computer Science 4th GI Conference

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 67))

Abstract

In this paper, a new recursion induction principle is formulated, by means of the "parallel outermost" computation rule, which allows us to validate a scheme of transformations and a method for proving strong equivalences.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. G. BOUDOL & L. KOTT — "Recursion Induction Principle Revisited", Rapport du LITP, LA 248, CNRS & Univ. Paris VII (1978).

    Google Scholar 

  2. R. BURSTALL — "Proving Properties of Programs by Structural Induction", Computer J. 12 (1969) 41–48.

    Google Scholar 

  3. R. BURSTALL & J. DARLINGTON — " A Transformation System for Developping Recursive Programs", JACM 24 (1977) 44–67

    Article  Google Scholar 

  4. B. COURCELLE — "On Recursive Equations Having a Unique Solution", 19 th FOCS (1978).

    Google Scholar 

  5. B. COURCELLE & M. NIVAT — "Algebraic Families of Interpretations", 17th FOCS (1876).

    Google Scholar 

  6. B. COURCELLE & M. NIVAT — "The Algebraic Semantics of Recursive Program Schemes", 7th MFCS, Zakopane, Poland (1978).

    Google Scholar 

  7. B. COURCELLE & J. VUILLEMIN — "Completeness Results for the Equivalence of Recursive Schemes", JCSS 12 (1976) 179–197.

    Google Scholar 

  8. J. de BAKKER & D. SCOTT — "A Theory of Programs", unpublished notes (1969).

    Google Scholar 

  9. P.J. DOWNEY & R. SETHI — "Correct Computation Rules for Recursive Languages", 16th FOCS (1975) 48–56.

    Google Scholar 

  10. J. GOGUEN, J.W. THATCHER, E. WAGNER & J.B. WRIGHT — "Initial Algebra Semantics and Continuous Algebras", JACM 24 (1977) 68–95.

    Article  Google Scholar 

  11. I. GUESSARIAN — "Semantic Equivalence of Program Schemes and its Syntactic Characterization", 3rd ICALP, Edinburgh (1976) 189–200.

    Google Scholar 

  12. G. HUET — "Confluent Reductions: Abstract Properties and Applications to Term Rewriting Systems", 18th FOCS (1977).

    Google Scholar 

  13. L. KOTT — "About a Transformation System: a Theoretical Study", in "Program Transformations" (B. Robinet, Ed.), 3RD International Coll. on Programmation, Paris (1978) 232–247.

    Google Scholar 

  14. Z. MANNA, S. NESS & J. VUILLEMIN — "Inductive Methods for Proving Properties of Programs", CACM 16 (1973) 491–502.

    Google Scholar 

  15. R. MILNER — "Models of LCF", Stanford AI Labo Memo — AIM 184 (1973).

    Google Scholar 

  16. J.H. MORRIS — "Another Recursion Induction Principle", CACM 14 (1971) 351–354.

    Google Scholar 

  17. M. NIVAT — "On the Interpretation of Recursive Polyadic Program Schemes", Symposia Matematica XV, Bologna (1975) 255–281.

    Google Scholar 

  18. M. NIVAT — "Interprétation Universelle d'un schéma de programmes récursif", Informatica VII, Supp. al no 1 (1977) 9–16.

    Google Scholar 

  19. B.K. ROSEN — "Tree-Manipulating Systems and Church-Rosser Theorems", JACM 20 (1973) 160–187.

    Article  Google Scholar 

  20. J. VUILLEMIN — "Correct and Optimal Implementation of Recursion in a simple Programming Language", JCSS 9 (1974) 332–354.

    Google Scholar 

Download references

Authors

Editor information

K. Weihrauch

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Boudol, G. (1979). A new recursion induction principle. In: Weihrauch, K. (eds) Theoretical Computer Science 4th GI Conference. Lecture Notes in Computer Science, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-09118-1_10

Download citation

  • DOI: https://doi.org/10.1007/3-540-09118-1_10

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09118-9

  • Online ISBN: 978-3-540-35517-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics