Skip to main content

On the additive complexity of polynomials and some new lower bounds

  • Vorträge (In Alphabetischer Reihenfolge)
  • Conference paper
  • First Online:
Theoretical Computer Science 4th GI Conference

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 67))

Abstract

For each w ∈ N we establish polynomials Rw,j j ∈ N with (w+1) (w+2) / 2 variables and degRw,j≤2wj+1 such that the coefficient vectors (aj | j ∈ N) of all polynomials Σjaj(x-η)j which can be computed with ≤w additions/subtractions and arbitrarily many mult./div., are contained in the image of (Rw+1,j | j ∈ N). As a consequence we prove c t0,1 (n)≥n/ (8ld(n)+4)−1 (this bound is sharp up to a constant factor), \(c_{O, 1}^{ns} \left( n \right) \geqslant \tfrac{1}{4}\sqrt {{n \mathord{\left/{\vphantom {n {(ld(2n))}}} \right.\kern-\nulldelimiterspace} {(ld(2n))}}} - 2\) and \(c_{O, 1}^ + \left( n \right) \geqslant {{\sqrt n } \mathord{\left/{\vphantom {{\sqrt n } {\left( {4ld n} \right)}}} \right.\kern-\nulldelimiterspace} {\left( {4ld n} \right)}}\). Hereby c t0,1 (n), c ns0,1 (n) and cc +0 (n) are the maximal number of arithmetical operations, non-scalar operations and add./sub. respectively that are necessary to evaluate n degree polynomials with 0–1 coefficients. We specify n-degree polynomials with algebraic coefficients that require n additions/subtractions no matter how many mult./div. are used. As a first non-trivial lower bound on a single specific polynomial with integer coefficients we prove \(L_{ns} \left( {\sum _{i = 1}^k x_i^n y^i } \right) \gtrsim {{k ld n} \mathord{\left/{\vphantom {{k ld n} {(ld k + ld ld n)}}} \right.\kern-\nulldelimiterspace} {(ld k + ld ld n)}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Belaga, E.G.: (1958) Some problems involved in the computation of polynomials. Dokl. Akad. Nauk. 123, 775–777

    Google Scholar 

  2. Borodin, A. and Cook, S.: (1976) On the number of additions to compute specific polynomials, Siam J. Comput. 5, 146–157

    Article  Google Scholar 

  3. Borodin, A. and Munro, I.: (1975) The complexity of algebraic and numeric problems. American Elsevier, New York

    Google Scholar 

  4. Heintz, J.: (1978) A new method for proving lower bounds for polynomials which are hard to compute. This symposium

    Google Scholar 

  5. Hyafil, L. and Van de Wiele, J.P.: (1976) Bornes Inférieures pour la complexité des polynomes à coefficients 0–1. IRIA Rapport No. 192

    Google Scholar 

  6. Lipton, R.J.: (1975) Polynomials with 0–1 coefficients that are hard to compute. in: Proceedings of the 16th Annual IEEE Symposium on the Foundations of Computer Science, New York

    Google Scholar 

  7. Lipton, R.J. and Stockmeyer, L.J.: (1978) Evaluation of polynomials with super-preconditioning. Journal of Comp. and System Sciences 16, 124–139

    Article  Google Scholar 

  8. Motzkin, T.S.: (1955) Evaluation of polynomials and evaluation of rational functions Bull. Amer. Math. Soc. 61, 163

    Google Scholar 

  9. Paterson, M.S. and Stockmeyer, L.J.: (1973) On the number of non-scalar multiplications necessary to evaluate polynomials. Siam J. Comput. 2, 60–66

    Article  Google Scholar 

  10. Savage, J.E.: (1974) An algorithm for the computation of linear forms. Siam J. Comput. 3, 150–158

    Article  Google Scholar 

  11. Schnorr, C.P.: (1977) Improved lower bounds on the number of multiplications/divisions which are necessary to evaluate polynomials. in: Proceedings of the 6th International MFCS Symposium, High Tatras. Springer: Lecture Notes in Computer Science 53, 135–147. to appear in TCS (1978)

    Google Scholar 

  12. Schnorr, C.P.: (1978) On the additive complexity of polynomials. preprint Universität Frankfurt

    Google Scholar 

  13. Strassen, V.: (1974) Polynomials with rational coefficients which are hard to compute. Siam J. Comput. 3, 128–149

    Article  Google Scholar 

  14. Van de Wiele, J.P.: (1978) An optimal lower bound on the number of total operations to compute 0–1 polynomials over the field of complex numbers. Proceedings of the 19th Annual Symposium on Foundations of Computer Science

    Google Scholar 

  15. Winograd, S.: (1970) On the number of multiplications necessary to compute certain functions. Comm. Pure Appl. Math. 23, 165–179

    Google Scholar 

  16. Strassen, V.: (1973) Die Berechnungskomplexität von elementarsymmetrischen Funktionen und von Interpolationskoeffizienten. Numerische Mathematik 20, 238–251

    Article  Google Scholar 

  17. Schnorr, C.P. and Van de Wiele, J.P.: On the additive complexity of polynomials. To appear in TCS.

    Google Scholar 

Download references

Authors

Editor information

K. Weihrauch

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Schnorr, C.P. (1979). On the additive complexity of polynomials and some new lower bounds. In: Weihrauch, K. (eds) Theoretical Computer Science 4th GI Conference. Lecture Notes in Computer Science, vol 67. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-09118-1_30

Download citation

  • DOI: https://doi.org/10.1007/3-540-09118-1_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09118-9

  • Online ISBN: 978-3-540-35517-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics