Skip to main content

Factoring univariate integral polynomials in polynomial average time

  • 8. Algorithm Analysis
  • Conference paper
  • First Online:
Symbolic and Algebraic Computation (EUROSAM 1979)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 72))

Included in the following conference series:

Abstract

Let A be a primitive squarefree univariate integral polynomial of degree n. An irreducible factor of A can be found by forming products of lifted modulo p factors of A for a suitable small prime p. One can either form first the products consisting of the smallest numbers of lifted factors (cardinality procedure) or form first the products with smallest degrees (degree procedure). Let ∏ be the partition of n consisting of the degrees of the irreducible factors of A. The average number of products formed before finding an irreducible factor of A is a function of ∏, C(∏) or D(∏) respectively. Let C*(n) (D*(n)) be the maximum of C(∏) (D(∏)) for all partitions, ∏, of n. Subject to the validity of two conjectures, for which considerable evidence is presented, it is proved that C*(n) is dominated by n2 whereas D*(n) is exponential. If the conjectures are true then the cardinality procedure results in a complete factorization algorithm for primitive univariate integral polynomials whose average computing time, in a very strong sense, is dominated by a polynomial function of its degree n.

This research was supported by the National Science Foundation, grants MCS74-13278 Aol and MCS78-01731, by the University of Wisconsin Graduate School, and by the Deutsche Forschungsgemeinschaft.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. Berlekamp, E. R. Algebraic Coding Theory. McGraw-Hill, 1968.

    Google Scholar 

  2. Collins, G.E., and Musser, D.R. The SAC-l Polynomial Factorization System. Technical Report #157, Computer Sciences Department, Univ. of Wisconsin-Madison, March 1972.

    Google Scholar 

  3. Frobenius, F.G. Über Beziehungen zwischen den Primidealen eines algebraischen Körpers und den Substitutionen seiner Gruppe. (1896). Gesammelte Abhandlungen II.

    Google Scholar 

  4. Janusz, G.J. Algebraic Number Fields. Academic Press, 1973.

    Google Scholar 

  5. Knuth, D.E. The Art of Computer Programming, Vol. 1: Fundamental Algorithms. Addison-Wesley, 1968.

    Google Scholar 

  6. Knuth, D.E. The Art of Computer Programming, Vol. 2: Seminumerical Algorithms. Addison-Wesley, 1968.

    Google Scholar 

  7. Musser, D.R. Algorithms for Polynomial Factorization. (Ph.D. thesis). Technical Report #134, Computer Sciences Department, Univ. of Wisconsin-Madison, Sept. 1974.

    Google Scholar 

  8. Musser, D.R. Multivariate Polynomial Factorization. Jour. ACM, Vol. 22, No. 2 (April 1975), pp. 291–308.

    Google Scholar 

  9. Musser, D.R. On the Efficiency of a Polynomial Irreducibility Test. Jour. ACM, Vol. 25, No. 2 (April 1978), pp. 271–282.

    Google Scholar 

  10. van der Waerden, B.L. Die Seltenheit der Gleichungen mit Affekt. Math. Ann. 109 (1936), pp. 13–16.

    Google Scholar 

  11. van der Waerden, B.L. Modern Algebra, Vol. 1. Ungar, 1948.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Edward W. Ng

Rights and permissions

Reprints and permissions

Copyright information

© 1979 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Collins, G.E. (1979). Factoring univariate integral polynomials in polynomial average time. In: Ng, E.W. (eds) Symbolic and Algebraic Computation. EUROSAM 1979. Lecture Notes in Computer Science, vol 72. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-09519-5_84

Download citation

  • DOI: https://doi.org/10.1007/3-540-09519-5_84

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-09519-4

  • Online ISBN: 978-3-540-35128-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics