Lecture Notes in Computer Science

Edited by G. Goos and J. Hartmanis

77

Gregor v. Bochmann

Architecture of Distributed Computer Systems

Springer-Verlag Berlin Heidelberg New York 1979

Editorial Board

W. Brauer P. Brinch Hansen D. Gries C. Moler G. Seegmüller J. Stoer N. Wirth

Gregor v. Bochmann Université de Montréal Dépt. d'Informatique et de Recherche Opérationelle (I.R.O.) Case Postale 6128 Succursale "1" Montréal, P.R.H3C 3J7 Canada

AMS Subject Classifications (1970): 68 A 05, 68 B 20, 94 A xx CR Subject Classifications (1974): 3.8, 4.3, 6.0

ISBN 3-540-09723-6 Springer-Verlag Berlin Heidelberg New York ISBN 0-387-09723-6 Springer-Verlag New York Heidelberg Berlin

Library of Congress Cataloging in Publication Data Bochmann, Gregor v. 1941-Architecture of distributed computer systems. (Lecture notes in computer science; 77) Bibliography: p.

Includes index.

1. Electronic data processing--Distributed processing. 2. Computer architecture.

I. Title. II. Series.

QA76.9.D5B63 001.6'4 79-24491

ISBN 0-387-09723-6

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to the publisher, the amount of the fee to be determined by agreement with the publisher.

© by Springer-Verlag Berlin Heidelberg 1979 Printed in Germany

Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr. 2145/3140-543210

PREFACE

This text is written for computer programmers, analysts and scientists, as well as computer science students, as an introduction to the architecture of distributed computer systems. The emphasis is placed on a clear understanding of the principles, rather than on details; and the reader will learn about the structure of distributed systems, their problems, and approaches to their design and development. The reader should have a basic knowledge of computer systems and be familiar with modular design principles for software development. He should also be aware of present-day remote-access and distributed computer applications.

The first part of the text serves as an introduction to the concept of "distributed system". We give examples, try to define terms, and discuss the problems that arise in the context of parallel and distributed processing. The second part deals with the description of parallelism, making abstraction from the physical distribution of the different system components. We discuss formalized methods that may be used to specify, and analyse the behaviour of, parallelism in local operating systems or distributed computer systems. In the third part, we explain the architecture of distributed systems and the role of the different communication protocols used. This includes the discussion of data transmission networks, as well as so-called higher level protocols used in computer networks for communication between different application programs, data bases, and terminals.

This text does not give the description of any particular distributed system, nor does it discuss the advantages and disadvantages of distributed computer applications, such as for banking transactions or distributed data bases. We have given extensive references to more detailed descriptions of the topics discussed, to complementary articles, and to explanations of certain prerequisite concepts, most readers will be familiar with.

This text was written when the author was a visiting

professor at the Ecole Polytechnique Fédérale de Lausanne, Switzerland. It represents the lecture notes of a one-semester course ("troisième cycle") given in the Département de Mathématiques in 1977-78. I would like to thank the Département de Mathématiques, and in particular Professor G. Coray, for my pleasant stay in Lausanne. For the preparation of this text, I have profited from many discussions, in particular with J. Gecsei (Montreal), D. Gurtner and F. Vittoz. I thank S. Waddell for suggesting many improvements of the original manuscript, and Ch. Luyet and D. Salconi (Montreal) for the careful typing. Last, but not least, I thank my wife, Elise, for her patience and moral support.

TABLE OF CONTENTS

Part	I:	Introduction

١.	Distr	ibuted s	ystems: examples and definition	1
	1.1.	Distrib	oution of control and data in existing systems	1
		1.1.1.	Systems distributed over long distance	1
			1.1.1.1. Remote access	1
			1.1.1.2. Computer networks	6
			1.1.1.3. Systems for distributed processing	9
		1.1.2.	Locally distributed systems	13
		1.1.3.	Multi-processor systems	18
		1.1.4.	Virtual distribution	18
	1.2.	Classi	fication of distributed systems	20
		1.2.1.	Degree of coupling	20
		1.2.2.	Interconnection structure	21
•		1.2.3.	Interdependence of components	24
		1.2.4.	Synchronization between components	24
	1.3.	Definit	tion of "distributed system"	25
2.	Parallelism			31
	2.1.	Paralle	el processes and applications	31
	2.2.	Constra	aints on independence	33
	2.3.	Modular	r system structure and abstraction	37
3.	Commo	n proble	ems	42
	3.1.	Coopera	ation	42
		3.1.1.	Compatibility	42
		3.1.2.	Synchronization	43
	3.2.	. Distributed resource sharing		43
	3.3.	3. Naming and addressing		44
		3.3.1.	Search strategies for link editors	44
		3.3.2.	Naming of I/O flows	44
		3.3.3.	Addressing scheme of telephone networks	45
		3.3.4.	Process addressing by ports	45
	3.4.	3.4. Protection		48
		3.4.1.	Protection in distributed systems	49
	3.5.		recovery	50
			Error detection	50
		3.5.2.	Recovery by retry	51
		3.5.3.		51
		3.5.4.	The design principle of recovery blocks	52

	3.6.	Real ti	ne considerations	53
		3.6.1.	Time-outs	54
		3.6.2.	Clock synchronization in distributed systems	54
Par	t II:	Logical	description of parallelism	
4.	A gen	eral for	malism for the description of systems	57
	4.1.	The bas	ic model	57
		4.1.1.	Transition systems	57
		4.1.2.	Operations	58
		4.1.3.	Transition and relations between states	58
		4.1.4.	Abstraction	61
		4.1.5.	Parallelism and functionality	63
	4.2.	Reachab	ility and execution sequences	65
		4.2.1.	Possible operation sequences	65
		4.2.2.	Liveness	67
		4.2.3.	Equivalence between systems	68
	4.3.	Synchro	nization mechanisms	68
	4.4.	Non-ins	tantaneous operations	72
		4.4.1.	Mutual exclusion	72
		4.4.2.	Queueing considerations and scheduling	74
	4.5	Processe	s	75
		4.5.1.	The concept	76
		4.5.2.	Cooperation	77
		4.5.3.	Mutual exclusion	82
	4.6.	The ind	uction principle	84
	4.7.	Distinc	tion between "control structure" and "interpretation"	85
		4.7.1.	Notation for the case of a finite control structure	88
	4.8.	Asserti	ons	89
	4.9.	Formali:	zed specification methods for systems with parallelism	92
Par	t III:	Archit	ecture and communication protocols for distributed syst	ems
5.	Archi	tecture (of distributed systems	96
	5.1.		hierarchial system structure and physical distribution	97
	5.2.		structure of a distributed system	108
		5.2.1.	Communication over a dedicated circuit	109
		5.2.2.	Communication through a network	112
		5.2.3.	A uniform transport service	113
		5.2.4.	Higher level protocols	115

	5.3.	Compati	bility and interworking issues	118
		5.3.1.	Requirements for compatibility	119
		5.3.2.	Network interconnection	120
		5.3.3.	System interworking and adaptation	124
	5.4.	Specifi	cation, verification and implementation of protocols	125
		5.4.1.	Specification techniques	126
		5.4.2.	Protocol verification	127
		5.4.3.	Protocol implementation	129
6.	Messa	ige trans	port requirements and data transmission networks	133
	6.1.	Message	transport requirements	133
	6.2.	Data tr	ransmission services	135
		6.2.1.	Dedicated circuits	135
		6.2.2.	Switching	136
		6.2.3.	Circuit and packet switching	136
	6.3.	The tra	nsport protocol	1 37
7.	Line	protocol	S	140
	7.1.	Transmi	ssion of bits	141
		7.1.1.	Interface procedures	141
		7.1.2.	Physical media	142
		7.1.3.	Bit synchronization	144
		7.1.4.	Typical performances	147
	7.2.	Transpa	rency and framing	148
		7.2.1.	Bit-oriented method	149
		7.2.2.	Character-oriented method	150
		7.2.3.	Method based on envelope transmission	151
	7.3.	Transmi	ssion error detection and correction	151
		7.3.1.	Principles	151
		7.3.2.	Error detecting codes	155
		7.3.3.	Error correcting codes	158
	7.4.	Retrans	mission protocols	158
		7.4.].	Principles	158
		7.4.2.	The "alternating bit" protocol	161
		7.4.3.	p. october 1	164
_	_	7.4.4.	•	170
8.	Techn	ological	developments and standards	176
Re f	erence	s		179

179

	An example of a protocol implementation based on a formalized specification.	192
A.1.	A unified model for the specification and verification of protocols	194
A.2.	Combining assertions and states for the validation of process communication	201
А.3.	Defining a layer service	206
A.4.	A formalized specification of HDLC classes of procedures	210
A,5.	Development and structure of an X.25 implementation	222