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ABSTRACT 

The program DASIMI accepts an axiomatic specification for a 
data structure, then constructs an instance of the structure 
thus defined and executes operations upon it. This paper 
explains how such a specification is developed, indicating 
some of the problems which may be encountered. The manner 
in which DASIMI employs the axioms in the simulation of the 
structure is described. Finally, certain correctness proofs 
concerning the axioms are discussed. 

I. INTRODUCTION 

Data Abstraction is the process of 'correctly' specifying the 
properties of a data structure without regard to details of implemen- 
tation. We regard a 'correct' specification as one which provides all 
relevant details about the structure (and no irrelevant details), and 
which contains no ambiguities, contradictions or redundancies. Or, in 
model theoretic terms, we wish our specification to be complete, con- 
sistent and independent [Foo and Nolan, 1978]. 

Such specifications may be expressed in many different fashions, 
but we have chosen an equational axiom system. The construction and 
application of such a system is discussed in the following sections. 

The program DASIMI accepts an axiom system as input, and provides 
a simulation of the corresponding data structure. Simulation is 
perhaps not the appropriate word to use in this case, as the program 
actually constructs and executes operations on an instance of the 
structure arising from the axioms. 

The program as it stands does perform various syntactic checks on 
the axioms as they are read. However, future versions of the program 
will also check the axioms for incompleteness, inconsistency, redun- 
dancy, and other semantic errors. The test for consistency (and in- 
dependence) is particularly efficient because of the axiom system used 
by the program. This test will be described later. 

The program is also limited to those structures which can be ex- 
pressed using axioms of one particular form. At present, such struc- 
tures consist primarily of linear and circular (i.e. non-branching) 
structures which are well-behaved, in the sense that the operations 
performed on them have the same effect, in general, on each instance 
of the structure. 



144 

2. CONSTRUCTI~[QAN AXIOMATIC SPECIFICATION 

Clearly, before any simulation can take place, we must specify to 
the program exactly the type of structure we require. DASIMI expects 
this information in the form of a list of axioms, the exact nature of 
which will be described in the following sections. 

The task of constructing an axiomatic specification is a complex 
one, so we will illustrate the process throughout with a sample struc- 
ture. The so called 'peek-stack' [Majster, 1977] will be used for 
this purpose~ since while being fairly simple conceptually, it poses 
most of the problems normally met in this area. 

The peek-stack may be considered to be a normal stack equipped 
with a 'pointer'. The pointer can be moved down the stack by a spe- 
cial operation (DOWN), and reset to the top-of-stack by another (RE- 
TURN). The READ operation, instead of returning the top element of 
the stack, returns the element currently indicated by the pointer. 
Any PUSHing or POPing attempted while the pointer is not at the top- 
of-stack results in an error condition. 

In order to establish a specification for any data structure, we 
must first state the operations with which we wish to equip the struc- 
ture. Thus, for our peek-stack, we need the operations PUSH (an item 
onto the stack), POP (an item off the stack) and READ (an item). In 
addition, we will need the operations DOWN and RETURN described above. 

Finally, we need at least one structure to act as a reference 
point. In this case, we choose two: NEWPS returns a new (empty) 
peek-stack, while ERROR is a distinguished structure which results 
from any illegal combination of operations. Note that we may regard 
NEWPS and ERROR either as constant elements of the set of peek-stacks, 
or as nullary functions which map into that set. Conceptually, the 
former definition is closer to our true intention, but we can use the 
same techniques on all the operations if we regard them all as func- 

tions. 

Now that we have defined the operations we wish to use, we can 
express any peek-stack by combining these operations. For example, 
the peek-stack consisting of the elements '2' and '6', with '6' at the 
top-of-stack and the pointer indicating '2' would be expressed in the 
form 

DOWN.PUSH(6).PUSH(2).NEWPS 

The operations are performed from right to left and are separated 
by a dot. Henceforth, we will refer to such a string of operations as 
an op-sequence. The value of the above op-sequence is the peek-stack 

just described. 

As another example, the value of 
READ~DOWN.PUSH(6).PUSH(2).NEWPS 

is '2 ~ Note that the value of an op-sequence is an element of the 
set mapped into by its leftmost operation (see next section). 
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3. FUNCTIONALITY 

As stated above, the operations we wish cur structure to possess 
may be considered as mappings. In the case of the peek-stack (and all 
other structures compatible with DASIMI), such mappings involve two 
sets. These will be referred to as D, the set of structures (in this 
case peek-stacks), and I, the set of items (DASIMI uses integers). 

While operations of any functionality are possible, the current 
version of the program recognises only the following four cases : 

I : D x I -> D (PUSH) 
2 : D -> D (POP, DOWN, RETURN) 
3 : -> D (NEWPS, ERROR) 
4 : D -> I (READ) 

It is this factor which is chiefly responsible for the limitation 
on the type of data structure that DASIMI is capable of representing. 
The reason for this restriction will become apparent later. 

4. HIDDEN OPERATIONS 

We have already stated that many data structures cannot be speci- 
fied at all using operations with only the above four functionalities. 
It is also true that many structures would require an infinite number 
of axioms, if only the desired operations are used in the axioms. The 
peek-stack is such a structure [Thatcher et al., 1978]. 

However, by using additional operations in the axioms, finite ax- 
iom systems can be developed in some cases. The addition of an opera- 
tion SHOVE (D x I -> D) is sufficient for the construction of a finite 
axiom system to represent the peek-stack. SHOVE has the effect of ad- 
ding an item to the top of the stack irrespective of the current posi- 
tion of the pointer. 

Of course, we may not wish the user to have access to SHOVE. It 
is possible within DASIMI to specify that certain operations found in 
the axioms should not be available during simulation. We call such 
operations 'hidden' operations. 

5. THE AXIOM SYSTEM 

In the context of data abstraction, the term 'axiom' usually 
refers to a statement asserting the equivalence of seemingly dissimi- 
lar structures (i.e. op-sequences). Thus the statement "a PUSH fol- 
lowed by a POP is equivalent to the identity operation" could be con- 
sidered an axiom. A more common form for such an axiom would be 
POP(PUSH(A,B)) = A . 

The notation used in DASIMI is POP.PUSH(X).$ = $ , where the dol- 
lar sign is a variable representing any element of D. 
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The axioms which define the peek-stack to DASIMI are : 

PSI : PUSH(X).#ERROR = #ERROR 
PS2 : PUSH(X).#SHOVE(Y).$ = #ERROR 
PS3 : #SHOVE(X).#ERROR = #ERROR 
PS4 : POP~#ERROR = #ERROR 
PS5 : POP.NEWPS = #ERROR 
PS6 : POP.PUSH(X).$ : $ 
PS7 : POP.#SHOVE(X).$ : #ERROR 
PS8 : DOWN.#ERROR : #ERROR 
PS9 : DOWN.NEWPS : #ERROR 
PSIO : DOWN.PUSH(X).$ : #SHOVE(X).$ 
PS11 : DOWN.#SHOVE(X).$ : #SHOVE(X).DOWN.$ 
PS12 : RETURN.#ERROR : #ERROR 
PS13 : RETURN.NEWPS : NEWPS 
PS14 : RETURN.PUSH(X).$ : PUSH(X).$ 
PS15 : RETURN.#SHOVE(X).$ : PUSH(X).RETURN.$ 
PS16 : READo#ERROR : !E 
PS17 : READ°NEWPS = IN 
PS18 : READ.PUSH(X).$ : X 
PS19 : READ.#SHOVE(X).$ : READ.$ 

The ~#' before ERROR and SHOVE indicates the hidden nature of 
these operations. '!E' and '!N' are distinguished elements of I which 
are defined in the axioms to indicate the empty and error conditions; 
they are not normally available to the user during simulation. X and 

Y are arbitrary elements of D. 

The axioms are used in the following manner. As stated earlier, 
each op-sequence corresponds to some peek-stack (or element of I). We 
apply an axiom to such a sequence by trying to match the left-hand- 
side (LHS) of the axiom to some right subsequence of the operations. 
If a match occurs, we substitute the RHS of the axiom. This produces 
a new string which represents the same structure. If the axioms above 
are repeatedly applied to any op-sequence representing a peek-stack, 
the sequence will be transformed into its 'Standard Form' (see below). 

We will refer to an axiom system such as the one above as an NASF 
(Non-Associative Standard Form) equational axiom system. 

The axioms are non-associative in that where more than one axiom 
could conceivably be applied to an op-sequence, the axiom whose LHS 
matches the smallest possible right subsequence of operations is al- 
ways chosen. Contradictions can quite easily be forced if the axioms 
are applied in any other order. For example, READ.PUSH(2).#ERROR 
would take the value '2' if PS18 were applied first. However, the 
NASF system ensures that PSI (which matches the smallest right subse- 
quence: PUSH(2).#ERROR) is applied first, then PS16 is applied to give 

the correct result ('!E'). 

Since any given instance of a data structure can in general be 
represented by a number, possibly infinite, of different op-sequences~ 
it is useful to be able to choose a unique sequence to represent each 
instance. We call such a sequence the 'Standard Form' (or SF) of the 

structure. 
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For example, the standard form chosen for the peek-stack is 
#SHOVE*.PUSH*.NEWPS + #ERROR . That is "a NEWPS followed by zero or 
more PUSHes, followed by zero or more SHOVEs, or an ERROR by itself". 

Each axiom is of the following form : 

OPI.OP2 ..... OPM.DS = opl.op2 ..... opN.DS 

where OPi and opi are operations, DS is either a nullary operation or 
$, and the following restrictions apply : 

(I) OPI.0P2 ..... OPM.DS is not in SF. 
(2) OP2.0P3 ..... OPM.DS is in SF. 
(3) M >= N and N >= 0 and M > O. 
(4) If M = N, then op2 ..... opN.DS is not in SF. 

(I) and (2) imply that the LHS of each axiom is of the form 'OPI.S' 
(where S is an SF sequence). This reflects the fact that axioms must 
always be applied to the smallest non-SF right subsequence. 

(3) and (4) tell us that when the axiom has been applied, either SF is 
restored, or a new axiom can be applied to a new and smaller right 
subsequence. 

The use of the NASF system has a number of advantages. Perhaps 
the most important is that the nature of the axioms follows directly 
from the SF. For once we have obtained the SF, we form the LHS of our 
axioms by prepending the operations to various SF sequences. 

Another advantage of NASF is that the axioms are much more amen- 
able to proofs of completeness, consistency etc. This is because only 
one axiom is normally applicable to any given op-sequence. Finally, 
of course, no proofs for associativity of axioms are necessary (or 
possible). 

A possible disadvantage of the NASF system is that it may not be 
capable of representing certain classes of data structures. Although 
this possibility is mentioned in Thatcher et al. [1978], the exact ex- 
tent of such restrictions is still an open problem. 

6. CORRECTNESS 

Once the axioms have been established, it is highly desirable to 
be able to prove them 'correct'. By 'correctness', we do not mean 
that the axioms specify the 'intended structure', since without a 
pre-existing specification it is impossible to determine what the 'in- 
tended structure' is. (Of course, it may be possible to prove two 
specifications equivalent, but that problem is beyond the scope of 
this discussion.) 

We will describe an axiom system as 'correct' if it gives rise to 
exactly one type of data structure. A correctness proof can be divid- 
ed into two parts. Firstly, the axiom system must contain no internal 
contradictions (i.e. it must be consistent). Secondly, the effect of 
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every possible combination of operations must be clearly defined by 
the axiom system (i.e. it must be complete). 

A third property we may wish our axioms to possess is indepen- 
dence. That is, no two axioms must apply to the same op-sequence. 
While not strictly necessary, independence is a desirable property as 
we avoid the complications of unnecessary axioms and simplify other 
proofs concerning the axioms. 

Now, the NASF system requires that axioms be applied only to the 
smallest possible right subsequence, and that the axioms are repeated- 
ly applied until SF is reached. Therefore, inconsistency and redun- 
dancy can only be present when two or more axioms can be applied to 
the same op-sequence, and hence to the same right subsequence. This 
condition can only occur when the LHS of one axiom is the same as, or 
a left subsequence of, the LHS of another axiom. Note that in this 
case we ignore any '$' in the LHS. By applying this simple test to 
all the axioms, we can determine whether any inconsistency or redun- 
dancy is present. 

The second phase of the correctness proof is to ascertain that 
every legal op-sequence can be converted to SF by repeated application 
of the axioms. If this is the case, we call our axioms 'complete'. 
Moreover~ since on any computer we can only generate finite op- 
sequences~ we can say that for all practical purposes a complete sys- 
tem is also categorical (i.e. can only generate one type of struc- 
ture). 

Completeness proofs for individual axiom systems suggest that a 
testing algorithm would rely on induction on the lengths of op- 
sequences. However, at the time of writing, no general completeness 
algorithm had been perfected. 

7. THE PROGRAM ~DASIMI ~ 

DASIM is being written in two stages. Stage I accepts correct 
axioms as input and thereafter acts as a "black box" containing the 
data structure. Stage 2 (currently being designed) will accept axioms 
and the nature of the SF. The axioms will be checked for compatibili- 
ty with the SF, and for any semantic errors (incompleteness, incon- 
sistency etc.). Thereafter, the simulation is as before. 

DASIMI is written in standard PASCAL [Jensen and Wirth, 1975] 
(future versions may be written in SNOBOL4). The program accepts NASF 
axioms, whose operations are of the four functionalities described 
above. This purely arbitrary restriction ensured that the essential 
features of the prototype program were not submerged in the morass of 
impiementational details associated with more general data structure 
simulation. 

However, it is hoped that future versions of the program will ac- 
cept operations of a much wider (and perhaps even arbitrary) range of 
functionalities. In addition, the restriction on using only the sets 
D and I may be lifted. This will correspondingly widen the range of 



149 

data structures that DASIM is capable of representing. 

A brief summary of the program's operation follows : 

The program operates in two modes, an axiom gathering mode and a 
simulation mode. Initially, the program reads a file containing ax- 
ioms written in the form : 

AXNAME : LHS = RHS ; COMMENT 

Each axiom is then checked for syntactic errors (such as functionality 
conflicts and incorrect syntax). 

The axioms are then stored on a linked list, each axiom itself 
pointing to linked lists of operators (LHS and RHS). There is a 
separate list in which is stored the details of the various opera- 
tions. 

The axiom gathering mode is terminated by an escape character 
which also indicates how much of the internal workings of the strud- 
ture are to be displayed. 

After the axioms have been verified, the program enters the simu- 
lation mode during which it interactively accepts input lines consist- 
ing of single operations (or commands such as "clear the current 
structure" etc.). The program maintains a circular list on which the 
current SF of the structure is stored. Note that a circular list is 
used for convenience only, a linear list is sufficient to store circu- 
lar structures. When an input line is received, the appropriate 
operation is added to the list. The axioms are now applied to the 
list as follows. 

Successively larger right sublists are compared with the LHS of 
each axiom in turn. If a match occurs, the RHS of the axiom is sub- 
stituted for the sublist. The process is repeated until no further 
matches can be found (i.e. SF is achieved). However, if the most re- 
cent operation returns an item, the whole structure is duplicated and 
the axioms are applied to the duplicate. This is because the process 
of extracting an item invariably has a destructive effect on the 
stored structure. The integer value of the operation is then 
displayed and the original structure is left intact. 

8. THE CONCEPTUAL NATURE OF 'DASIMI' 

We have variously referred to the operation of DASIMI as 'con- 
struction' and 'simulation' of data structures. In fact, DASIMI 
embeds data structures onto an internal structure, namely the linked 
list in which instances of the structure are stored. If we allowed 
the operators to have more general functionalities, they would have to 
be stored in a more general data structure. For example, the opera- 
tions necessary for a finite axiomatisation of tree-like structures 
would themselves have to be internally stored on a tree (or more gen- 
eral structure). 
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Taking this concept to its logical conclusion, we should be able 
to simulate any data structure below a certain level of complexity by 
designing a suitably general internal structure for our simulating 
program. However, each such increase in generality entails a substan- 
tial increase in the size and complexity of the simulating program. 
Nevertheless, it should be possible to write programs operating on the 
same principles as DASIMI for a number of general applications. 
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