
PROCEEDINGS OF THE SYMPOSIUM ON
LANGUAGE DESIGN AND PROG~MMING METHODOLOGY
SYDNEY, I0-ii SEPTEMBER, 1979

THE DESIGN OF A SUCCESSOR TO PASCAL
Ken Robinson

Department of Computer Science
University of New South Wales

ABSTRACT

A new programming language intended as a contribution to the
development of Pascal is discussed.

The language supports all of the type constructs of Pascal
except the variant record.

* A class construct has been provided to allow the implemen-
tation of abstract data types and the hiding of the actual
implementation.

* A type union replaces the variant record.

* Parameterized types allow procedures to operate on wider
classes of conformable data types than Pascal.

* Predefined data types of "complex" and "string" have been
added.

* A new concept called a "selector" has been added.

* The var parameter has been discarded. Parameter modes are
now const, value, result and value result.

* Functions are generalized to any type and additionally may
return more than one value.

* The assignment statement is replaced by the concurrent
assignment statement.

* The if-, while- and repeat-statements are replaced by
Dijkstra's if- and do-statements.

* A pipeline facility is provided for communication and syn-
chronization of sequential processes.

* This work was initiated while the author was visiting the Computer
Studies Group, Department of Mathematics, Southampton University.

152

i. INTRODUCTION

The design of a new programming language frequently is approached
with a great deal of trepidation and announced with apologies for the
introduction of "yet another programming language". The trepidation is
understandable - there are too many existing examples of bad language
design or bad language implementation - yet the apologies are not
appropriate = apologies cannot cover up a bad design and only other
programmers and time can pass judgement on a language. Perhaps there
is a need to apologize in advance for the fact that should the language
gain substantial acceptance then it is destined to outstay its original
welcome. Despite the existence of so many programming languages this
author feels that there are not enough good languages with good com-
pilers widely available on a large number of machines. Pascal is one
such language and having now established itself ~n many areas of com-
puting it can justifiably claim to be the most influential language of
the last decade. Pascal is now in the process of being standardized
and this inevitably gives rise to much argument. Pascal has probably
achieved all that its designer Wirth (1971) ever hoped for it and yet
there are many programmers who want and require more. Thus there is a
constant demand for extensions to the language, but there are limits to
every design and few significant extensions to Pascal are possible
without changing the existing language. Indeed Pascal is one language
where the "defects" are in many cases the result of deliberate comprom-
ises embodied in the language design objectives. It is the opinion of
this author that it will prove better to complete the definition of
Pascal and accept a standard language which is not significantly

extended over the language defined in the Pascal Revised Report, Jensen

& Wirth(1975).

This paper discusses the design of a new language intended as a
development of Pascal. The language developed is not a straight-
forward extension of Pascal; it is about as different from Pascal as
Pascal was from Algol 60. The paper is intended to be informal and is
not a reference manual for the language; that will be released with the

implementation of a compiler.

2. DESIGN AlMS

The language is intended to be suitable for use in a wide area of
scientific and system programming. The emphasis here is on the suita-
bility to a particular class of programming rather than the simple
feasibility of use. For example, Pascal is not an attractive program-
ming language for a large class of scientific problems simply because

of the omission of the basic data type "complex".

In general the aims and objectives of Pascal apply with the fol-

lowing being either new or reiterated for emphasis:

* to allow more abstract algorithms and data structures to be real-

ized directly;

* to provide the simpler, yet more powerful, control structures dev-

ised by Dijkstra (1975,1976);

153

* to provide an increased degree of data hiding;

* to provide a facility for parallel programming by implementing a

form of communication between processes based on Hoare (1978);

* to design a language which is capable of reasonably efficient exe-

cution;

* to provide for rigorous checking of the consistency of the opera-

tions on the data, preferably during compilation;

* to provide no implicit default actions;

* to provide for the separate compilation of procedures;

* to design a language in which programmers, particularly students,

can concentrate on the design of reliable algorithms and data
structures;

* to keep the language "small", that is the language specification
should be compact and the number of language constructs few. It
would be regarded as an advantage if the language were even more

compact than Pascal;

* to reduce the degree to which sequential computation intrudes into
the realization of an algorithm, thus reducing the number of tran-

sient variables required.

3. LANGUAGE ELEMENTS

Since we are discussing a development of Pascal it follows that

many features of Pascal remain and it is assumed that the reader is
familar with Pascal. The following is not a comprehensive definition
of a complete language but rather a description of those developments
which are different from Pascal. Syntax definitions, where given, are
in extended BNF (Wirth iq77).

3.1 Types and Type Definitions

Class. A class type, in addition to scalar and structured types,
which is similar to the class type of Simula (Dahl et al 1967), Con-
current Pascal (Brinch Hansen 1976) and Hoare(1972), is introduced.
The class concept permits a collection of data structures and associ-
ated procedures, functions and selectors to realize an abstract data

structure. The initialization of a class occurs implicitly at the time
of entry to the block in which a class variable is declared, rather
than via an explicit request as in Simula and Concurrent Pascal. The
class construct permits a programmer to implement a high degree of data

hiding. The implementation of a class also determines the degree of
access to the data structure possible from outside the class, thus
varying degrees of data security can be achieved. Within a class a
procedure gives access to an action, a function access to a value and a
selector access to a variable.

154

Figure 1 shows a class implementation of a list-structure. It
should be noted that the realization of "list" using pointers cannot be
"seen" from outside the class declaration. If a variable is declared
to be of type "list"

L: list;

then only the procedures and functions of the class can be referenced

as for example L.prepend(info)~ L.head, etc.

list = class
listptr = ~listelement;
listelement = record

content: T;
link: lis tptr

end;

vat
listhead: listptr;

procedure prepend(x: T);
b__egin

listhead := listptr(x,listhead)

end;
function head: T;

head := nil end ;

Figure i

In the example shown in Figure 2 the definition of "table" uses the
type "person" as an abstract type. The actual definition could be a
structured type (record) or it could be a class. The only requirement
is that "person" possesses a selector named "key". The table could

have been implemented in many ways other than an array (e.g. a linear
list, a tree) without any difference discernible outside the class.
The only requirement is that type "table" provide sufficient pro-
cedures, functions and selectors to implement the desired table func-

t ions.

person = ,o~;
table = class

va r

A: array (...) of person;
procedure insert(...);
function find(k: keytype): person;

begin
"determine i such that A(i).key = k"
return(A(i))

end;

begin .°~ end;

Figure 2

155

Notice that the basic structure record itself could be realized
by a class. ~he following types are indistinguishable:

record c lass
fieldl : tl; var
field2: t2; fl: tl;

... f2: t2;
ella ...

selector fieldl = fl;
selector field2 = f2;

°..

begin end

Parameterized Types

Size Parameters Parameterized types were suggested by Wirth(1975)
as a possible method of overcoming the problem, in Pascal, of passing
arrays, of the same dimension but of different actual size, as argu-
ments to the same procedure or function. The facility described here
is a general form of Wirth's suggestion.

Parameterized type definition:-

type-identifier param-list "=" type

example s

realvector(n: integer) = array (1..n) of real
matrix(m,n: integer) = array (l..m,l..n) of real

Parameterized type use:-

var-identifier ":" type-identifier parameters

examples

avector: realvector(100)
amatrix: matrix(10,20)
procedure sort(value result v: realvector(n))
function product(value a: matrix(ml,nl);

value b: matrix(m2,n2)): matrix(ml,n2)

Notice that the parameters "n", "ml", nl", "m2" and "n2" declared
within the procedure formal parameter section become constants (i.e.,
read only) whose values are the sizes associated with the actual param-
e ters.

Type Parameters The precedent for this is Pascal itself where
file-, set- and array-type declarations have the form

identifier [parameters] "of" type

establishing a type-class.

!56

It is proposed that the following general forms be allowed:

Definition:-

type-identifier [formal-params] "of" formal-type-identifier "=" type

reference : -

type-identifier [actual-params] "of" actual-type-identifier

Examples

table of T = class
var

A: array (...) of T;

The Pascal type "file" can be regarded as a parameterized class:

file of T = class
var

f: "primitive file" o__[f T;
procedure get;

. o .

procedure put;

Predefined TyRes

Scalar ~pes

Integer and Boolean As for Pascal.

Character Character sets remain a problem in programming
languages as we are still unable, after three decades of computing, to
agree on a standard set! The only axioms which are valid for all char-

acter encodings are extremely weak:

i. the characters in the subrange "0"..'9" are ordered and

ous;

2. characters in the subrange "A'..'Z" (not "a'.o'z" which may not

exist!) are ordered.

contigu-

The intimidation of programming languages, and through them program-
mers, by the various whims of computer manufacturers is intolerable-
character processing in Pascal is crippled severely as a consequence of
accepting the above axioms. There is a strong temptation to adopt the
most rational of the contending character codes for the definition of
the collating sequence of characters for a particular language. If
this were done then there is really only one candidate, ASCII (ISO),
since none of the others could be described as rational, least of all
that unbelievable mess known as EBCDIC culpably loosed on an undeserv-
ing world by IBM, and regrettably followed by some other manufacturers.

157

Implementation notes

i. Character data should be represented internally by at least 8
bits. On machines with 24 bit, 36 bit and 60 bit words characters
should be represented by 8 bits, 9 bits and i0 bits respectively.
For such machines it will not be possible to utilize any 6 bit
"character" handling instructions which might exist.

2. Reading and writing of text-files may require character transla-
t~n.

3. A distinction should be made between "character" and 'byte" data.

A byte is an integer subrange (6-bit or 8-bit) and it is expected
that there will be a predefined type "byte" which will provide for
the processing of special character encodings.

Against the above possible disadvantages must be weighed the advantage
of program portability.

Real and Complex To the type "real" (as for Pascal) is added the
predefined class "complex" possessing a real component (.r) and an ima-
ginary component (.i)

Sets "Set" is a predefined parameterized type as for Pascal
except that "set of char" must be implemented.

Strings A predefined parameterized class

"string" "of" T

is introduced, where T is a scalar type-identifier.

Pascal does not possess a true string type. An array can be used
to implement the data-structure known as a string, but a string is not
an array (packed or otherwise). It must be possible to reference a
string as a whole or any substring of that string. In addition it
should be possible to have varying length strings.

Files and Text-files Files as for Pascal except that "file" is a
predefined parameterized class. Both sequential and random access file
processing procedures will be implemented.

A text-file ("text") is a predefined parameterized class which is
a structured file consisting of "pages" which in turn consist of
"lines" which in turn consist of "characters". It should be possible
to write any data, with the possible exception of pointers, to a text-
file. In general reciprocity should exist between input and output
statements, meaning that if some data has been written on a text-file
by "f.write(x)" then it will be possible to recover that same data by
"f .read (x)"

Pipes

"pipe" "of" type-identifier

158

"Pipe ~ is a predefined parameterized class for communication
between sequential processes. A pipe has two associated procedures
"send" and "receive" by which a single item of data may be sent or
received through the pipe.

Unions A predefined parameterized class "union" is introduced
replacing Pascal's variant record. Pascal provided a means of
representing a type-union as a variant record. The greatest weakness
of this facility is that it becomes the programmer's responsibility to
ensure that the tag setting correctly reflects the current status of
the variant.

Example

R: record
case tag: tagtype of

fool: (x: tl; ...);
idiot: (y: t2; ...);

end

Rotag := fool; (I)
R.x := o..~ (2)
R.tag := idiot; (3)
if R.y (4)

The reference at (4) is obviously invalid yet it may be very difficult
to check since it is necessary to determine whether the field "y" has
been reset since the last resetting of the tag-field. Notice that the
statements at (2), (3) and (4) could be widely separated and still be

analogous to the above,

The example illustrates the point that the value of the tag-field
alone is not a reliable indicator of the actual variant which has been
established. Thus the value of a tag-field cannot be used to determine
the validity of a variant reference and this may explain why tag-field

checking is omitted from many Pascal compilers.

The problem stems from the division of the action of establishing
a variant into two separate actions, the setting of the tag-field (the
intended variant) and the setting of the components of that variant.

There is also the disadvantage that unions are forced to be expli-
citly structured data and thus, for example, a union of scalar types

becomes cumbersome.

159

Examples

x: union of (integer,real,char);

x := i; (* x.type becomes "integer" *)

if x.type = char ->

case x.type of

integer ->
real->

char->

Data Constructors It is desirable to be able to initialize vari-

ables and to generate instances of a data structure within a program.
It is convenient to use the type-identifier to construct an instance of

data of that type.

Examples

v: integer(I); (* v is initialized to 1 *)
x := complex(y,z) (* x.r = y and x.i = z *)

In the case of scalar type-identifiers it is convenient to use them
also as type transfer functions.

Definition

If TI and T2 are scalar type-identifiers

and x is an element of T1
then T2(x) is an element of T2

such that ord(T2(x)) = ord(x)

Examples

integer('a') = ord('a')
colour((ord(red)+ord(blue)) div 2)

char(i) is equivalent to Pascal's chr(i)

Constant Definitions

constant-definition = constant-identifier "=" constant-expression.

Constant definitions will be allowed to contain constant expressions,

that is expressions whose values can be determined at their point of
o ccur r enc e •

3.2 Procedures~ Functions and Selectors

Procedures Similar to Pascal procedures except for parameter

modes (see below).

Functions Functions in Pascal are severely restricted in that

they may return only scalar or pointer values. This is unfortunate as
frequently it is with structured types that functions are most

required. For example, in Pascal we could define the types "point" and

160

"line" as follows:

point = record x, y: real end;
line = record pl, p2: point end

in order to represent points and lines in plane geometry and then we
could establish an algebra of points and lines. However the algebra

would be to little avail since we could not define the required func-
tions in Pascal. If the reader thinks that the above example is too
esoteric then it will be a revealing exercise to work out in detail the

implementation of complex arithmetic in Pascal.

It is necessary, in order that computations on data-structures may
proceed at a high level, to allow functions to return values of any

type.

Figure 3 shows a complex product function which could be used if
the language did not possess "complex" as a basic type.

cmplxunion = union of (integer,real,complex);
function cmplxprod(value a, b: cmplxunion): complex;
b e~g!n

do
a.type isnt complex -> a := complex(a.O)

b.type isnt complex -> b := complex(b,0)
od;

return(complex(a.r*b.r-a.i*b.i, a.r*b.i+a.i*b.r))
end

Figure 3

Traditionally in programming languages there is a lack of uniformity in

the treatment of functions which return one value and functions which
return more than one value. It is recognized that functions may com-
pute more than one value and this fact may then be used to motivate the

concept of the var parameter.

It has been suggested that the semantics of procedures and func-
tions should be describable in terms of a concurrent assignment state-
ment (Hoare 1971, Hoare & Wirth 1973). That is,the effect of a pro-
cedure or function (as far as the var parameters and global variables
are concerned) is that of a concurrent assignment of expressions to the

var parameters and global variables.

Since the proposed language possesses a concurrent assignment

statement it seems opportune to realize the semantics rather literally.
Functions may return more than one value and may have only const or
value parameters. The multiple values may be assigned to variables in
a concurrent assignment statement. Figure 4 shows a simple function
returning two values.

161

function minmax(const g: realvector(m)): (real,real);

var
min,max: real;

i: integer;
begin

end

assert(m >= i);

min,max := gill,gill;
i := 2;
do i < m->

if g[i] < g[i+l] ->
d__o_o g[i] < rain -> min := g[i]
D g[i+l] > max -> max := g[i+l]

od

g[i] >= g[i+l] ->
d__o_o g[i] > max -> max := g[i]

g[i+l] < min -> min := g[i+l]
od

f ii;
i :+ 2

o d;
if i = m ->

d__o_o g[i] < rain -> rain := g[i]

N g[i] > max -> max := g[i]
od

D i <> m-> skip
f i;
r eturn(min,max)

Figure 4. Function returning two values

Selectors A selector returns a variable rather than a value.

Such a facility is necessary with classes if access is to be given to
actual components of a structure rather than simply a copy of the com-
ponent. For example, suppose it is required to search "mytable" of
class "table", defined in Figure 2, for an entry whose key is "Fred"
and to increment the value in the associated field "age". The function

"find" defined in Figure 2 is of no use since it returns the value of
the record not the record itself hence

mytable.find('Fred') .age :+ 1

is not correct, in fact it is illegal. However changing "find" to a

selector rather than a function makes the above assignment both legal
and correct.

Parameters Parameters to procedures may be passed by const,
value, result or value result only.

Parameters to functions and selectors may be passed by const or
value only.

162

3.3 Statements

Concurren ! Assignment

assignment = variable-list ":=" expression-list

For procedural programming languages, like Pascal, variables and

assignment are, for better or worse (Backus 1978), their most fundamen-
tal concepts. The state of a program is represented by the state of
the variables and the assignment statement is the principal mechanism
for changing the value of a variable. It is one of the objectives of a
high-level programming language to reduce the number of variables
required to implement an algorithm, yet languages which implement a
simple assignment statement are imposing a very simple sequential
mechanism for changing the state of a program: at most the value of one
variable may be changed. In a situation where a change of state
requires the simultaneous changing of the values of a number a vari-
ables this simple sequential mechanism may require extra variables to
effect the change. As a consequence of the increase in variables the
realization becomes longer and more complex than the algorit~.

Just two simple examples will be given to illustrate the above
point. The first is the common case of swapping the values of two
variab les :

a, b := b~ a

=> x := a; a := b; b := x

the second comes from an algorithm for reversing the order of the ele-
ments in a linear linked list:

r, p, pT°next := p, p~.next, r
=> x := r~ y := p; r := p; p := pT.next; y~.next := x

The concurrent assignment appears to have been first used in CPL (Bar-
ron et al 1963) and largely ignored by programming languages since
then. Its importance seems not to have been appreciated: as indicated

above it is not simply (or even primarily) a notational convenience
such as, for example, the multiple assignment of Algol 60.

Other Assignment Operators In addition to the normal assignment
operator ":="~ other forms are introduced for incrementing ":+", decre-
menting ":-', etc., the value of a variable. More generally:

v :? u is equivalent to v := v ? u for "?" # "="

If-statement

if-statement = "if ~' guarded-command-list "fi"
guarded-command-list = guarded-command {" 0 " guarded-command} •
guarded-command = guard "->" statement {";" statement} .

guard = Boolean-expression .

The statement is due to Dijkstra (1975,1976). The interpretation of
the statement is as follows. All the guards are evaluated and of those

163

guarded commands whose guards are true one command is chosen arbi-
trarily and executed. At least one guard must he true otherwise the

statement aborts.

The if-then-else-statement has attracted much comment on both its
asymmetry and the complexity of the implied pre-condition for a state-
ment nested deeply within a nested if-then-else-statement. In many
cases the if-then-else-statement is another example of sequential ord-
ering being imposed where none is required. If an ordering is required
the above if-statement forces the logical complexity to be explicit

since the guards will have to be mutually exclusive.

Case-statement The Pascal case-statement is retained even though

it is made redundant by the if-statement, since selection on the basis
of a set of constants is likely to be more efficient using a case-
statement.

Do-statement

do-statement = "do" guarded-command-list "od"

This statement is due to Dijkstra (1975,1976). The do-statement is an
iterative statement which terminates when all the guards are false.
While any guard is true one command whose guard is true is arbitrarily
selected and executed. The comments made above on the if-then-else-

statement apply similarly to the while-statement of Pascal and no
clearer demonstration of the beauty of the do-statement compared with
the relative ugliness of the while-statement is likely to be found than
the one shown in Figure 5. The expression of Euclid's algorithm seems
to have played an important role during Dijkstra's own formulation of
his concept of guarded commands.

function gcd(a,b: posint): posint;

begin
do a > b-> a :- b

a <b->b :-a
o d;

return(a)
end

Figure 5a. Euclid's algorithm expressed with do-statement

function gcd(a,b: posint): posint;
begin

while a <> b

do begin
while a > b do a := a-b;
while a < b do b := b-a

end;

gcd := a
end

Figure 5b. Euclid's algorithm expressed in Pascal

Programmin__~ note It may appear at first that the statement:

if B then S

should be translated to:

if B m> S

D not B -> skip
fi

but in many cases the following translation is possible:

do B -> S od

This second construct is stronger than the former in so far as it makes
clear that the consequent of the statement implies "not B" (i.e.,
{B} S {not B})o

Implementation note It is important that the selection of guarded
commands for both the if-statement and the do-statement is arbitrary.
Requiring all guards to be evaluated and then selecting arbitrarily
from those guarded commands whose guards are true will prove ineffi-
cient on a sequential machine (but not perhaps on a parallel machine).
Alternatively the compiler could order the guarded commands arbitrarily
(such that the order is likely to be different for different compila-

tions) and then the guards could be evaluated sequentially with selec-
tion of the first command whose guard is true.

For-statement

for-statement
"for" variable ~"-" expression "to ~' expression "->" statement

I "for" variable ~w:=,, expression "downto" expression "->" statement

I "forall" variable "in" set-expression "->" statement .

The Pascal for-statement will be retained. In addition a for-statement

which executes a statement for all values contained in a set, the order

of selection being arbitrary, is included.

With-statement

with-statement = "with" variable-list "->" statement .

The with-statement becomes a necessity rather than a convenience, as it

is in Pascal, since in general it is required in order to hold the
variable returned by a selector.

3.4 Parallel Execution

par-sequence = "parbegin" proc-call {"I I" proc-call} "parend"

Processes can communicate through "pipes". The implementation
attempted here is different to, but based on, that suggested by
Hoare(1978). In Hoare's paper processes communicate directly with a
named process rather than through a named pipeline. In a network sense

Hoare's approach is to name the nodes whereas the approach here is to
name the edges. There are notational advantages in the latter but a
number of implementational disadvantages, one of which is the fact that
the processes associated with a pipe may vary with time. In particular
the termination of a process cannot be used to signal the end of a
pipe. A number of constraints may be required.

Figure 6 is a realization of the procedures "disassemble",
"assemble" and process "reformat" discussed in Hoare (1978).

4. SEPARATE COMPILATION

Separate compilation of procedures is a requirement for large pro-
grams and for programs which wish to use a library of procedures.

It is intended that the compiler will accept an object known as a
"module" where a module consists of a definition and declaration sec-
tion followed by a sequence of procedure declarations and/or a program
dec laration.

module = [definitions-and-declarations] {procedure} [program]

In this way procedures at level 0 (i.e. external to the program)
may be compiled separately.

4.1 External Procedures

As a consequence of separate compilation it must be possible
to reference procedures which are external to the current module. In
addition the facility should exist to reference and use external pro-
cedures compiled by another language compiler (in particular FORTRAN
and assembler).

5. IMPLEMENTATION AND EXTENSIBILITY

No programming language is better than its implementation: the
quality of the compiler and run-time support system has a profound
effect on the observed quality of any programming language. This is
particularly true of the language being discussed here since it is not
an experimental "paper" language; one of the objectives is to produce a
Pascal-like language which will be attractive to a large community of
programmers. For this reason a full description of the language will
not be generally svailable until a satisfactory implementation exists.

One of the objectives of the implementation is to produce a com-
piler which is portable enough to become the basis of all implementa-
tions. To achieve this the code generation will be made very "visible"
and will be documented to aid transportation to various machines. The
initial compiler will of course be written in Pascal and it is planned
always to have a Pascal version of a compiler available for initial
bootstrapping onto any machine for which a Pascal compiler exists.

One of the notable achievements of Pascal is the degree to which a
family of Pascal compilers now exists, each compiler clearly based on

166

the compiler implemented by Ammann (1970,!974)~ The objective here is
to carry the process further and attempt to produce a "standard" com-
piler. This would seem to have important implications for the stan-
dardization of a language: it should be easier to revise a language if
at the same time as a revised language standard is produced a revised
standard compiler is also produced.

type charpipe = pipe of char;
~rocedure disassemble(result X: charpipe);

var
cardimage: string(80) of char;

b___eg in

end

do not input.eof ->
i nput.readln(cardimage);

for i := 1 to 80 ->
if i <= cardimage.length ->

X.send(cardimage[i])
0 i > cardimage.length ->

X.send(" ")
fi;

X.send("
od;
X.close

")

Figure 6a. Procedure disassemble

p_r_Qcedure assemble(value X: charpipe);

var
c: char;
!ineimage: string(125) of char;

>egSn

end

lineimage := '';
do not X.end ->

X.receive(c);
lineimage.append(c);
do lineimage.length = 125 ->

output.writeln(lineimage);

lineimage := ""

od
o d;
if lineimage.length = 0 -> skip

lineimage.length <> 0 ->
output.writeln(lineimage)

fi

Figure 6b. Procedure assemble

var X: charpipe;
. ° .

parbegin disassemble(X) II assemble(X) parend

Figure 6c. Process reformat

167

6. ACKNOWLEDGEMENTS

The design presented here is obviously derived from
Influences are numerous and in many cases unremembered.
any whose influence has gone unacknowledged.

many sources.
I apologize to

For stimulating discussions which preceded this design I would
like to thank Ian Hayes, David Carrington, Jeffrey Tobias, Greg Rose,
Carroll Morgan and Tony Gerber. I wish to thank all my colleagues at
Southampton especially John Goodson, Mike Rees and Ralph Elliott for
valuable discussions during my visit, even though they remain justifi-
ably sceptical about the language described in this paper. I am grate-
ful to David Barron for the opportunity of visiting the Computer Stu-
dies Group and the chance to commence this project. John Goodson must
be thanked again for proof-reading this paper, although I am solely
responsible for any remaining split infinitives.

7. REFERENCES

Ammann, U. (1970) "Pascal-6000 compiler", ETH Zurich.
Ammann, U. (1974) "The method of structured programming applied to the

development of a compiler", International Computing Symp. 1973,
(GUnther, et al, Eds), 93-99.

Barron, D.W., Buxton, J.N., Hartley, D.F., Nixon, F., Strachey, G.S.
(1963) "The main features of CPL", Computer Journal 6, 134-143.

Backus, J. (5978) "Can programming be liberated from the von Neumann
style? A functional style and its algebra of programs",
Comm ACM 21,8(August), 613-641.

Brinch Hansen, P. (1976) "The programming language Concurrent Pascal",
I.E.E.E. Trans. Software Eng.--1,2 (June), 199-207.

Dahl,O-J., et al. (1967) "SIMULA 67, common base language",
Norwegian Computing Centre, Forskningveien, Oslo.

Dijkstra, E.W.D. (1975) "Guarded commands, nondeterminacy and formal
derivation of programs", Comm ACM 18,8 (August), 453-457.

Dijkstra, E.W.D. (1976) "A discipline of programming", Prentice-Hall.
Hoare, C.A.R. (1971) "Procedures and parameters; an axiomatic

approach", Symposium on Semantics of Algorithmic Languages
(E.Engeler, ed), Lecture Notes in Mathematics 188,
Springer-Verlag.

Hoare, C.A.R. (1972) "Proof of correctness of data representations",
Acta Informatica i, 271-281.

Hoare, C.A.R. (1978) "Communicating sequential processes",
Comm ACM 21,8 (August), 666-677.

Hoare, C.A.R. & Wirth, N. (1973) "An axiomatic definition of Pascal",
Acta Informatica_2, 335-355.

Jensen,K. & Wirth,N. (1975) "Pascal User Manual and Report",
Springer-Verlag.

Wirth, N. (1971) "The programming language Pascal",
Acta Informatica -1,1, 35-63.

Wirth, N. (1975) "An assessment of the programming language Pascal",
SIGPLAN Notices 10,6 (June), 23-30.

Wirth, N. (1977) "What can we do about the unnecessary diversity of
notations for syntactic definitions?", Comm ACM " 20, 1 l(November),
822-823.

