
PROCEEDINGS OF THE SYMPOSIUM ON
LANGUAGE DESIGN AND PROGRAMMING METHODOLOGY
SYDNEY, 10-11 SEPTEMBER, 1979

DOPLs : A NEW TYPE OF PROGRAMMING LANGUAGE
Graham Lee

Department of Computer Science
University of Western Australia

ABS~TRACT

The importance of operand description in progranming is
emphasised, and programming languages are classified into
D~cription-Oriented Programming Languages (DOPLs) and
Identifier-Oriented Programming Languages (IOPLs) a c c o r d i n g

tO their opU~and-description facilities. Several exanples
are used to illustrate DOPLs, and the advantages, in terms
of the level of transparency in programs, of using DOPLs over
IOPLs.

i. DOPLs and IOPLs

Progranming languages can be classified according to their facilities
for describing which operands are to be used in an operation. There are
two main classes:

Languages which have a large variety of ope%and-description
facilities. These will be called Description-Oriented
Programming Languages (DOPLs) [Lee, 1978].
Languages whose only operand-description facilities are
identifiers and names. These will be called Identifier-
Oriented Programming Languages I (IOPLs).

Examples of IOPLs range from very primitive languages such as a yon
Neumann machine c~e, through the simpler high-level languages such as
Fortran, to much more sophisticated languages such as Pascal and Algol
68.

An example of a language with a large variety of operand-description
facilities is English. In fact, one of the main differences between
English and existing progranming languages lies in its use of, for
example, adjectives, participles, adverbs, nouns, pronouns and names
when describing operar~s. These operand-description facilities account
for much of the expressive power of English, and it therefore seems
worthwhile to incorporate similar facilities in an algorithmic language.
The design of a DOPL can be influenced by the operand-description
facilities of English, as far as is corsaensurate with a formal,
unambiguous progranmdng language.

The advantage of using a DOPL, as opposed to an IOPL, is that more
transparent, though possibly less efficient, programs can be written.
The level of operand-description facilities available in a language
greatly influences the structure of, and amount of detail in, programs.
The operand-description facilities available in a DOPL enable algorithms
to be specified without using variables, data structures, control

iThis represents a change of terminology from Lee ~978]

170

structures with nested statements, or input statements. On the other
hand, because identifiers and names can only refer to one operand at a
time, all the above features are required in IOPLs mainly to support the
computation of names for individual operands. IOPL programs are
oriented towards specifying a detailed, controlled series of operations
on imlividu~Iiy named op~an~, whereas DOPL programs are oriented
towards direct descriptions of the whole sequence of ope/ulni~ to be used
in an operation. The latter is more transparent than the former. In
IOPL programs, there is a conceptual gap between the explicit iP~ormation
given - the detailed sequence of operations on individually named operands
- and the actual information required to understand the algorithm -
information on the whole group of operands involved. IOPL programs
cannot fill this gap, ~%Lich must be bridged for each individual reading
of a program. DOPL programs, on the other hand, give the latter
information e~licit ly.

The operand-description facilities of the DOPL discussed here can be
used to describe the sequence of all the operands to be used in an
operation, the data for a program, the required results of an operation,
to define new description facilities, and to define data structures.

Although existing languages vary in their operand-description
facilities, and although there are examples of languages with operand-
description facilities other than identifiers and names (see, for example,
Astrahan and Chamberlain [1975], Barron [1977], Burger et al [1975],
Chamberlain and Boyce [1974], Feldman and Rovner [1969], Findler [1969],
Hebditch [1973], House/ and Shu [1976], Martin [1976], Potts [1970]),
and although there have been suggestions for language extensions which
are actually concerned with operand-description facilities (Herriot [1977],
Nylin and Harvill [1976]), no existing programming language se6~s to have
the breadth and type of operand-description facility envisaged here.

In ~dbsequent sections, several exan~les are used to introduce a
DOPL and to compare it to Pascal~ The syntax and s6m~nntics of DOPLs
are discussed in section 6. ~ facilitate discussion prior to this
section, the following brief definitions are given. A DOPL program
contains a sequence of requests, and is executed by using each of these
requests in turn. Requests may specify operations, or define data,
results or new operand-description facilities. An operational request
contains op~uto~ and op~and d~criptiom~. These descriptions specify
the whole sequences of operands to be used in the operation, and the
request is executed by applying the operators to each of these operands
in turn. In an operand description, each word is a d~c2ip/JJr, and
nouns, pronouns, adjectives and identifiers are among the kinds of
descriptor used. In the DOPL examples, all operators (and all
operator-like terms) are in upper case, and all descriptors are in lower
case. User-introduced operators and descriptors are in script.

171

2. THE SIEVE OF ERATOSYHENES

Consider first the following DOPL request for generating all the
prime integers less than or equal to a given data integer:

PRINT each prime integer <= the data integer

It consists of the operator PRIN~f followed by an operand description
which describes the sequence of operands to be used in the PRIS~
operation. The operand description is built from several descriptors,
of which each,integer, <=, the, data, are primitive, and ~kme is
user-defined.

An integer is an item in the 2-way infinite sequence of negative
and positive whole numbers, and the descriptor each in the above
operand description specifies all of those integers satisfying the
conditions specified by the adjective prime and the relation

<= the data integer
Thus the operand description specifies a sequence of prime integers
up to a given data integer, and the PRINT request is executed by
P~ing each one of these in turn.

A DOPL program for generating primes using the above request is
shown in program ~i. It consists of three requests.

program
DA~% IS
ADJECTIVE
AS IN
IS
SUCH THAT

PRIb~
erd.

p~e-number generation:
an i n t e g e r .
prime
prime integer
integer > 1
(the prime in teger)

rood
(any integer > 1

and <= square root (the pAime integer))
<> 0.
each prime integer <= the data integer

Program 2.1 A DOPL program for generatin~ prime numbers

The first one defines the program's data to be an integer, which can
subsequently be referred to as the data integer. The second one
defines the adjective prime. The line

mmm~ ~e
specifies that a new adjectival descriptor is being defined. The line

AS IN prime integer
specifies that this descriptor must be used with other descriptors
which specify an integer. The line

IS integer > 1
says that a prime integer is an integer (> i) subject to the condition
following SUCH THAT, which specifies tbmt a pJu(me integer is one which
is not divisible by any other integers >i.

Given the usual definition of a prime, and given that a non prime
is divisible by an integer <= its square root, this program must be

172

correct. It is evident from the operand descriptions used that the
printed results consist of all the primes up to the given data integer.

Consider now the Sieve of Eratosthenes. The essential feature of
this prime-number-generation algorithm is the removal of multiples of
integers frc~ a sequence initially containing all the integers between
2 and a given data integer. First the multiples of 2 are removed,
then the multiples of 3, then the multiples of 5 (4 having been r(~oved
because it is a multiple of 2), and so on. At each stage, the
multiples of the next nor~removed integer (which must be a prime - the
fact that it has not been removed means that it cannot be a multiple of
any integer less than it) are removed. When all multiples have been
re, Dyed, the non-removed integers constitute the primes between 2 and
the given data integer°

This process can be specified in a DOPL by the request:

REMOVE each multiple <= the data integer
of each non remove-ed integer

between 2 and the data integer

This consists of the user-introduced operator REMOVE, followed by an
operand description which is built from several descriptors, of which
each, <=, the, data, integer, of, non, between, 2, and, are primitive,
and multiple, r~move-ed are not.

The operand description specifies a sequence of operands consist-
ing of each m ~ t i p l e (<= the data integer) of each of the integers
described by the nested op@2~nd d~o]u6p~o~¢ (the one following of) :

each non remoue-ed integer
between 2 and the data integer

The request is executed by applying the REMOVE operator to each of
these operands.

Although REMOVE is a non-primitive operator, it is not necessary
to give a procedure specifying how to remove integers! This is because
of the use of the adjective remove-ed, which sF~cifies a condition
on integers which becomes true when they are used as operands of REMOVE.
Initially, no integers have been so used, and therefore the condition

non remove-ed
is true of all integers to begin with.

The description:
each integer between 2 and the integer data

specifies the sequence of integers: 2, 3, 4 , the data integer,
and causes each one of these to be generated in turn so that the
condition

non ~emove-ed
can be checked. Thus the first integer specified by the nested operand
description is 2, and the first operands specified by the entire operand
description of the request are therefore:

each ~_ple <= t/%e data integer
of 2

173

and so the multiples of 2 are REMOVE-ed. After this, the condition
remove-ed is true of the multiples of 2.

The nested operand description now specifies the next non
remove-ed integer, which is 3, and so

each multiple <= the data integer
of 3

is REMOVE-ed. %~tis process continues until there are no further non
r emo v e-ed integers.

After executing the REMOVE request, the prime numbers can be
printed using the request:

PRINT each non remove-ed integer
between 2 and the data integer

A complete DOPL program for the Sieve process is shown in
program 2.2.

program
DATA IS
NOUN
ASIN
IS
REMOVE

PRIhTf

end.

Sieve of Eratosthen~:
an i n t e g e r .
multiple
m~£tiple o f an i n t e g e r
(the integer) * (any integer >i).
each mu~ple <= the data integer

of each non remove-ed integer
between 2 ar~ the data integer.

each non remove-ed integer
between 2 and the data integer

Program 2°2 A DOPL version of the Sieve of Eratosthenes

The program consists of four requests. The first describes the
data, the second defines the noun multiple, the third is the REMOVE
request, and the fourth prints the primes.

The descriptor multiple is used as a noun (the syntax of operand
descriptions is discussed in section 6) in the REMOVE request, and so
its definition begins with NOUN. The line

AS IN multiple of an integer
specifies that mufJtiple is to be used with a nested operand
description which specifies one or more integers. The line

IS (the integer) * (any integer >I)
defines a multiple to be a product of two integers. The descriptor
the in the factor

the integer
refers back to the previous mention of an integer, which is in

m~tiple of an integer.

The descriptor each specifies each item of a sequence from the
first onwards. The definition of multiple can be interpreted as a
definition of a sequence of multiples by virtue of the factor

any integer >i

174

in the expression fol!owing IS. Thus, in the REMOVE-request operand
description

each multiple of <an integer>
the descriptor each specifies the sequence of multiples

(the integer) *2
(the integer) * 3
(the integer) *4

and soon.

The DOPL program can be judged to be correct given the definition
of a pr~ne ar~ given that every non prime is a multiple of son~ integer
less than it.

until i >
for i : =

if
end.

The DOPL program can be contrasted with the Pascal version in
program 2. 3.

program E r a t o s t h e n ~ (input , output) ;
c o n s t n = ?;
var s i e v e : array[2 . . n] o f i n t e g ~ ;

data, i , m : i n t e g ~ ;
beg in

f o r i "= 2 t o d a t a d o s ieve[i] "= i ;
~ieve[data + I] :=I ;

i : = I ;
repeat

repeat i := i + I until siev£[i] > O;
m := ~*i;
while m <= data do

begin
s i e~[m] := O;
m : = m + i
end

2 to data do
s ~ e r i] > 7 t h e n w r i t ~ n (s i eve[i])

Progr~ 2.3 A Pascal (TOPL) version of the Sieve of Eratosthenes

(Straight-forward representations of the sieve and of the r6~oval
operation are used in this e~anlole, in order to facilitate conloarison
of the two versions. Another, more efficient and more complex IOPL
version, and its proof using invariants, can be found in Hoare [1972].
This IOPL version does not necessarily represent the way in which the
DOPL version would be implemented.)

This Pascal version is more difficult to urderstand and prove
correct than the DOPL version. Removal of multiples is done using
the assi~ent

sieve[m] := 0
but because this can only reference one operand at a time, it has to be
placed inside two levels of nested loop, one to vary m so that all

175

multiples are removed, and one to vary i so that all multiples of all
primes are r6s~ved. Also, an extra loop is required to search for non-
removed integers. The loops are used solely to compute the names

sieve[m]
of the removed multiples, and the array data structure, and the other
variables, are used mainly to construct the above names.

In the IOPL version, the remove (assignment of 0 to a sieve component)
operation is nested inside two levels of loop, and involves several
variables. Before eD~ountering this operation, the explicit loop
statements, and other nested operations, have to be read. In fact, there
is no syntactic clue to the fact that the assigr~ent to a sieve component
/s the main operation. Rather, this has to be gathered from a cc~plex
combination of information given in several different places in the program.
Once it is known that this is the main operation of the loops, the
information on all the variables, which is distributed in different places
in declarations, initialisations and updates, together with the explicit
nested looping information, has to be gathered together and used to decide
what the entire group of remove-ands and non r~move-ands are. It is only
this operand information which enables an understanding of the total process
specified by the loops. In the DOPL version, on the other hand, the main
operator REMOVE is placed first, and the sequence of all its operands is
made explicit using one operand description. The detailed control
information is implicit in the semantics of the descriptors used. Also,
the DOPL version can define the data, and the terms prime and multiple
(the adjective prime in program 2.2 is equivalent to non rcmove-ed) o For
these reasons the DOPL version is more transparent than the IOPL version.

3. SORTING

Consider first the problem of sorting a sequence of data integers:

DA~ IS several integer

This could be done using the request

PP/[~rf
UNTIL

smallest non print-ed data integer
print-ed each data integer

However, sorting in a DOPL can be specified without using a particular
algorithm, by specifying what the result of sorting should be-

to

end

SORT a sequence of integers:
RF_b-73LT IS ascendingly-ord~ed permutation

of the parameter sequence

This is an example of a procedure. It defines the user-introduced
operator SORT, by specifying what the result of an operation such as

SORT the data sequence

should be.

176

The descriptor ascendingly-ordered can be defined as follows:

ADJECTIVE
AS I~{
IS
SUCH THAT

ascendingly-ordered
ascenli~ly-ordered integral sequence
integral sequence
each integer of the sequence
is - <:
next integer of the sequence

The descriptor permutation (which might actually be primitive in a
DOPL) can be defined as

NOUN
ASIN
IS

SUCH THAT FOR
~ HAVE

p~nmu tatio n
permutation of sequence
sequence containing each item of

sequence
of-which permutation is-being-defined

any item of the permutation
number of item = such-that-for-and

of the permutation
is - =
number of item = such-that-for-and

of sequence
of-which p~ut~bion is-being-defined

This contains rather involved conditions in the descriptions after IS and
~ HAVE. These specify that a pemmutation contains exactly the same items
as the original sequence, but ndt necessarily in the same order.

The operand description after IS has the form
sequence containing <description of items to be contained>

In the description of the items to be contained, the nested description
sequence of-which permutation is-being-defined

specifies the sequence in
AS IN p~tm~,on of sequence

and the
of-which ~.. is-being-defined

reverses the descriptor of in
p~tmu~tion of sequence

This could be shortened using an identifier:
AS IN p@Imat&tg~on of sequence called z

after which, throughout this request, the sequence of which p~,unuZaZion is
being defined can be referred to as x. It seems better not to use the
identifier.

The description after WE HAVE is a Boolean expression which has the
structure

number of <description of an item of the p~m~on>
is-equal-to
number of <description of an item of

the sequence of which p~mu2m2ion is being defined>
The noun such-that-for-ar~ refers to the item described after SUCH THAT
FOR. An identifier, for example y~ could be used in place of this noun,
if the description after SLEH TI{AT FOR is modified:

177

any item called y
of the permutation

The use of the primitive noun such-that-for-and is to be preferred.
With this noun, it is rather more obvious which item is being referred
to than with a user-introduced identifier such as y, which could have
been declared anywhere in the request (or in the whole program).

An ascendingly-ordered permutation of a sequence can be produced
by generating sequences in lexicographic order and checking all the
conditions given in the definition, and then checking for ascendingly-
ordered-ness. This would be ini~ssibly inefficient for long parameter
sequences. Even so, the SORT procedure is a formal specification of
sorting °

Consider now program 3 .i, which is a procedure for sorting a
sequence of integers by partitioning it into three groups.

to

end

PARTITION SORT a sequence of integers:
CHOOSE a n y parameter integer.
RESULT IS

result of p~on-sort-ing
each parameter integer < the choose-and,

each parameter integer = the choose-and,
result of partition-sort-ing

each parameter integer > the choose-and

Program 3.1 A DOPL procedure for sorting by partitioning

The procedure contains two requests. The first chooses one of the
integers of the parameter sequence. This is subsequently referred to as
the c~os e-and.

The RESU~LT IS request specifies a partition of the parameter sequence
into three groups, which contain those integers less than the chosen integer,
those equal to it, and those greater than it respectively. The ~ s in
the operand description of this request can be read as "followed by", and
the descriptor followed-by could be used in their place. In the description

result of partit~'on-sort-ing
each parameter integer < the choose-and

the descriptor ~on-sort-ing implies a recursive application of the
operator PARTITION SORT to the sequence of parameter integers less than the
chosen integer. There is no need to explicitly specify what the result is
for a null sequence, because the following rule can be adopted in a DOPL:

the result of performing any operation on the null sequence is the
null sequence (unless otherwise specified).

Because of the operand descriptions used, it is evident that this
procedure recur~iv~y part i t io~ the parameter sequence:

178

DEFINITION:

A r e c ~ i v ~ y partitioned sequence is either a null sequence, or a
sequence comprising a left partition, followed by a middle partition
CODsisting of several equal items, followed by a right partition, such
that

(a) each item of the left partition is < the middle items,
(b) each item of the right partition is > the middle items,
(c) the left and right partitions are recursively partitioned

sequences.

It is intuitively obvious that a recursively partitioned sequence is
ascendingly ordered. This can be proved as follows:

PROPOSITION:

A recursively partitioned sequence is ascendingly ordered.

PROOF by reductio. Suppose not, and consider the shortest sequence which
is recursively partitioned but not ascendingly ordered. This sequence must
have at least two adjacent items which are out of order. These cannot both
be in the same partition, otherwise a shorter, recursively partitioned but
r~n-ascendingly ordered sequence ~3uld exist. Also, if one of these items
is in the left partition, the other cannot be in the middle partition
because of the stated property of the left partition. Similarly, if one of
these items is Ln the right partition, the other cannot be in the middle.
This leads to a contradiction, and so the result is proved.

From this proposition, program 3.1 can be judged to be a correct sorting
procedure. A DOPL program to sort a sequence of data integers can use the
request

PBXk~ result of pa*~bition-sort-ing the data sequence

This will print the data integers in ascending ordem.

Another DOPL procedure for sorting by partitioning, this time into two
groups called the l e f t - p ~ o n and the r i g h t - p a ~ o n , is shc~m in program
3.2. This procedure can be judged to be correct, given the definitions of
the procedure PARTITION and the adjective p~oned below, by appealing
to a proposition which is similar to the one above for program 3.1.

179

to

end
to

end

PARTITION SORT a sequence consisting-of 1 integer:
RESULT IS the integer

PARTITION SORT a sequence consisting-of more-than 1 integer:
PARTITION it.
RESULT IS

result of parti/&ion-sort-ing the
(left-partition, right-partition)
of the part/t/0n-result

Program 3.2 Another DOPL partition-sorting procedure

In this program, two specifications of PARTITION SORT are given, one
for parameter sequences which consist of only one integer, and one for
other parameter sequences. In a DOPL, operand descriptions can be used
to specifythe formal andactual parameters of a procedure. ~'~en a
procedure is called, a caseanalysis on the actual parameters is performed
to match them up to an appropriate procedure specification.

The pronoun it in

PARTITION it

is used to refer back to the previous operand description, which in this
case is the parameter sequence. The PARTITION request is thus equivalent
to

PARTITION the parameter sequence

Various kinds of pronoun can be included in a DOPL to make operand
descriptions shorter, and, if used appropriately, to make the~ more
transparent.

The operand description of the second RESULT IS request is factored,
so as to shorten it, using the pair of nouns

(left-partition, right-partition)
It is interpreted by aI~lying

result of pm~tition-sort-ing the
and

of the partition-result
to both nouns in the pair. The comma in the pair specifies the
concatenation of the resulting sequences. The parentheses are used for
grouping only.

The effect of the procedure PARTITION can be specified as follows:

to

end

PARTITION a sequence consisting-of more-than 1 integer:
RESL~T IS a p a r ~ n e d permutation o f it

where the adjective partitioned is defined as

180

ADJBCT IVE p a r d o n e d
AS IN par t i t ioned integral sequence
IS sequence go,or isinm

non null secglence said-to-be the left-parti2~on,
non null sequence said-to-be the right-partition

SL~H THAT each integer of die l e f t - p a ~ 2 i t i o n
is - <=
each integer of the right-partition

There may be many pa~wOLtioned permutation6 of a given sequence, and
for any one of these there may be many possible left-partitior~. The
description

the left- p~on of the par;t/t/0n-result
refers to whichever left-partilion results from wg_ichever method is used
to check for p~oned-ness.

Although the obvious interpretation of the above procedure would
involve generating permutations of the parameter sequence, there are other
methods of producing a [x~titioned permutation of a sequence. For
example, the partitioning process involved in Quicksort (Hoame, 1961, 1962;
Foley and Hoare 1971) an IOPL version of which is sho~m in program 3.3,
will produce a partitioned pe~Tiuta2/~n.

procedure Quicksort(var A : intege~ay;
m, n : in teger) ;

{~0 sort the com~nents of A between the m'th and n'th}
var r, i , j : i~teger;
b e g i n i f m < n t h e n

b e g i n { p a r t i t i o n A between m ' t h and n ' t h components}
r :=-A[(m+n) d i v 2]; i := m; j := n;
while i <= j do

beginwhil---e A[i] < r do i := i+I;
while r < A [j] ~ j := j-l;
if ~-<= j then be~in

- - ~ [Z] - : = : A [j] ;
i := i+I; J:= j-1
end

end;
Q~c~-~rt IA, m, j) ;
Quick .of t (A, i .n)
end

Program 3.3 An IOPL Quicksorting procedure (from Alagic and
Arbib [1978])

A specification of partitioning which is a little closer to that used
in Quicksort is:

181

t o

e n d

PARTITION a sequence consisting-of more-than i integer:
CHOOSE a parameter integer.
RESULT IS a paJutit6oned permutation

of the parameter sequence
SUCH THAT each integer of the left-p~ktition

i s - < = t h e choose-and
a n d e a c h i n t e g e r o f t h e r i g h t - p ~ o n

i s - >= t h e choose-and

One of the main reasons for interest in Quicksort is that it is a
very efficient sorting algorithm. Obviously, the DOPL procedures in
programs 3 .i and 3.2, which are related to Quicksort in a certain sense,
are far less efficient than program 3.3. However, it is less obvious
that Quicksort actually sorts. In the last section of the paper, a
combined DOPL/IOPL progranraing systera is proposed. In such a system, it
would be possible to express an algorithm in its gross, essential terms
using a DOPL, and to transform this to an efficient IOPL version. The
advantage of such a system, over an IOPL-only one, would be that, with a
DOPL version which could be judged to be correct, if correctness-Freserving
transformations are used, the final optimised IOPL version would be known
to be correct. At each stage of the transformation, proof of correctness
would have a higher level, correct version to appeal to.

4. AN ISZIYI{PRETER FOR A SIMPLE IOPL

The following is an interpreter for a simple IOPL whose programs are
sequences of assignaent, read, write, while, if, case and c~npound
stat~nents. Only simple integer variables are used, and the only
operator is +.

The interpreter does not need to specify input or parsing of the
source program. It is not necessary to use data structures to store the
source stat~nents or variable values.

182

program_
~OU~
IS

NOUN
AS IN
IS
NOUN
AS IN
IS
NOUN
IS
NOTE
NOUN
IS
NOUN
ASIN
IS
NOUN
IS
NOUN
IS
ADJECTIVE
ASIN
IN CASE
IS

i n t e r p r e t e r :
i d e n t i f i e r
sequence <> 'while' or ~do' or ~if' or 'then'

or 'else' or 'case' or 'of'
or 'begin' or 'end' or 'read'
or 'write'

conlorising several alphabetic character.

value
value of integer
the integer.
value
value of i d e n t i f i e r
last value ass ign-ed- to the i d e n t i f i e r .
term
i d e n t i f i ~ o r n o n - n e g a t i v e i n t e g e r .
the value of a £e/~m is well defined.
e x p r ~ s i o n
several t~rm separated-by '+'.
value
value o f e x p r ~ s i o n
sum o f value o f e a c h t e rm o f t h e e x p r ~ s i o n .
r ~ a t~o nal- o p ~ ato r
~<' or '<=' or '>' or '>=' or '=' or '<>'.

Boolean- e x p r ~ s i o n
expression, r ~ i o n a l - o p ~ o r , expression.
t rue
t rue Boolean- expression
Boolean-expr~s ion c o n t a i n s ' < '
~oolean- e x p r ~ s i o n

containing
first expression having value <

value of second expression of the
Boolean- e x p r ~ s i o n

{and similar cases for the other relational operators}.

IS
NOUN
IS

NOUN
iS
NOUN
IS
kDUN
IS

assignment-s tatement
i d e n t i f i e r , " = ' , express ion .
s ta tement
ass ignment-s tatement o r
whi le-s ta tem ent o r
i f - s t a t e m e n t o r
cas e -s ta tement o r
compound-statement o r
read-s ta tement o r
w*J~ e- s t a t em e nt .
whi le - s ta tement
' ~ i l e ' , Boolean- expression, ' do ' , s ta tement .

e - p a ~
' e l s e ' , s ta tement .
i f - s ~ em ent
' i f ' , Boolean-expr~s ion ,

' t h e n ' , s ta tement
o p t i o n a l l y f o l l o w e d - b y e l s e - p a r t .

183

NOUN
IS

M3UN
IS

N ~
I S

NOUN
IS
NOUN
IS
NDUN
IS
DATA IS
EXECUTE

t_o EXECUTE
EXECUTE

end
toEXECUTE

ASS I G N
TO

end
to EXECUTE

EXECUTE
EXECUTE

end
EXECUTE
DO NOTHING

end
t o EXECUTE

EXECUTE
end
to EXECUTE

- - EXECUTE
end
to EXECUTE

EXECUTE

end
t o EXECUTE

- - TO
ASS I G N

end
to' EXECUTE

PRINT
end
end.

cas e-speci f i ca t io n
several distinct integer separated-by ', ',
' : ' , s tatement.
case-statement
'case', expression, 'of',
several cas e-s peci f icat io n

not containing integer
contained-in any preceding

cas e- S peci f i ca t io n
o f t h e case-statement

and separated-by ' ; ',
lend' °

compound-statement
' b e g i n ' ,
several statement separated-by ' ; ',
lend~ .

read-statement
'read', '(', several identifier separated-by', ', ') '
write- staZement
'write', '(', several identifier separated-by ', ', 'J'
IOPL-program
compound-stat~ent .
IOPL-program, s e v e r a l i n t e g e r .
the IOPL-program
a compound-statement :
each statement

an assignment-statement:
value of exbression
i d e n t i f i e r

a while-statemer~ containing t rue Boolean-expression:
statement of the w~ile-s ta tement .
the whi le-s tatement

a while-s tatement containing non t rue Boolean-expre4sion.

an i f - s t a t emen t containing t rue Boolean-expression:
s tatement after 'then'

an i f - s t a t emen t c o n t a i n i n g non t rue Boolean-expression:
s tatement o f e ~ z - p a r t

a case-statement:
s tatement

o f case-spec i f i ca t ion
c o n t a i n i n g i n t e g e r = value o f expression

a read-statement:
each i d e n t i f i e r
first non assign-ed data integer

a wri te-s tatement:
value o f each i d e n t i f i e r

184

5. EUTJ{RIAN CIRCUITS IN GRAPHS

An Eulerian Circuit in a gray,h is a sequence of arcs such that

(a) each arc of the graph is in the Circuit exactly once,
(b) consecutive arcs in the Circuit end at and begin at the

same node,
(c) the last arc in the Circuit ends at the same node at which

the first one begins.

Walking around an Eulerian Circuit would involve traversing each arc once,
and passing through each node one or more times. Obviously, a graph
having an Eulerian Circuit (and no trivial nodes) must be connected.

Given the descriptors node, graph and connected-to, an E~6erian-Circui2
of a graph can be defined in a DOPL (actually as a sequence of nodes, pairs
of which represent the arcs) as in program 5.i. It is assumed that there
is at most one arc between any two nodes, and that no node is connected
to itself. Rather than use the identifiers a and b in the description
after WE HAVE, the descriptions

first such-that-for-and
second such-that-for-and

could be used. Naturally, in a l~ge with many operand-description
facilities, a choice can be made in each case whether to use a defined
descriptor such as an identifier, or a primitive descriptor, such as the
nouns above. It seems simpler in this case to use the identifiers.

NOUN
AS IN
IS
SUCH THAT

AND SUCH THAT

AND SUCH THAT FOR

WE HAVE

AND SUCH THAT

Eul6rian- C~cui t
Eulerian-Circui2 of graph
sequence of node of the graph
each node of the sequence
is-connected-to
next node of the secfaence
last node of the sequence
is-connected-to
first node of the sequence
any node called a

of the graph
and a n y node c a l l e d b and connected-to a

o f t h e graph
either b is adjacent-to a

in the sequence
or b is the last node of

the sequence
and a is the first node

of the sequence
or b is the first node of

the sequence
and a is the last node

of the sequence
number of node

connected-to any node of the graph
is-equal-to 2*number of occurrences

of the node in the sequence

Program 5.I Definition of an Eulerian Circuit of a graph

185

The Eulerian Circuits of a given graph can be generated:

CHOOSE any node of the graph.
PRINT each Eul~ian-Circuit beginning-with the choose-and

of the graph

Program 5.2 defines a graph as it might be presented for input
punched on cards:

DATA IS graph punched-on cards

The descriptors node and connected-to are also defined in program 5.2.
The descriptor said-to-be precedes a defining occurrence of a new
descriptor. A relator is a type of descriptor which can be used in
relations.

NOUN
IS
NfL~
IS
NOUN
IS

NOUN
IS

SUCH THAT

node
several alphabetic character.
co nnectio
several distinct node separated-by ','
node-information
node s a i d - t o - b e connected-to

each node of fo l lowing connectio~
and not = any node of fo l lowing connections,

' : ' , connections, ' ; ' .
graph
s e v e r a l node-information

not con ta in ing node
= node of

any preceding node-information
r e l a t o r connected-to i s s ~ t r i c

Program 5.2 Definition of a graph

From this definition, the description
node of graph

node of node-information of graph
and can be so interpreted by an imple~nentation. The semantics of
operand-description interpretation can be such as to allow the use of short
descriptions which can be automatically extended according to the defined
structure of sequences.

The Eulerian Circuits of a data graph can be printed using the above
CHOOSE and PRINT requests. A copy of the graph itself can be printed as
follows

PRIN~f the data graph

The question of whether or not a given connected graph has an
~erian Circuit can be resolved without actually generating such a
Circuit, by using the following theorem:

186

THEORI~ (Eul~)

A connected multi-graph has an Eulerian Circuit if and only if each
node is connected to an even number of other nodes.

PROOF

o~__/y if:

If:

An Eulerian Circuit, for each visit to a node, must enter
~nd leave the node on different arcs.
Proceed by induction on the size of the graph.

The result is true for a graph with one arc and one node. Suppose
it to be true for a connected graph with up to n arcs, and consider a
graph with n+l arcs. Choose any node of the graph, and any two nodes
connected to the chosen one. Remove a connection from these two nodes
to the cbx)sen one, and insert a connection between the two nodes which
b~asses the chosen one. This will result in a graph with either one or
tw~ components, but with one fewer arc. By the induction hypothesis,
there is an Eulerian Circuit for each of these components. An Eulerian
Circuit for the original graph can be made from these by replacing the
inserted arc by the two removed ones, and then concatenating the two
Circuits.

Assuming ~he data graph to be connected (an adjective connected, to
be applied to ~raphs, can be defined in terms of the existence of
path~ between any two nodes - a path is a sequence of arcs with certain
properties, and can be defined in a similar way to an Eulerian Circuit,
which is a path with special properties), the following request can be
used to decide whether a data graph has an Eulerian Circuit:

I F d~e data graph does-r~t-contain
node connected-to a n odd number of node

PRINT "This graph has an ~lerian Circuit"

qhis must be correct because of the above theorem.

6. DOPL SYNIZ/AND S[MA~ICS

A DOPL program is a sequence of requests separated by '. ', and
possibly followed by procedure definitions:

NOUN
IS

DOPL-program
'program', name, ' • ' - r

several request separated-by '.'
optionally followed-by several procedure, 'end', '. '.

The program is executed by using each request in turn:

t o

end

EXECUTE a DOPL-program:
EXECUTE each request

A request is several requestor/operand-desc2~ip~on pairs, where a
requ~tor is an op~vxtor, a preposition or a term such as kDUN, ADJECTIVE,
IS, AS IN, SUCH THAT, UNTIL:

187

NOUN
IS

request
several (requester, op~%and-d~cription)

An operational request is executed by applying the operators to all
the operates of all the operand descriptions. For example, for a unary
operator:

t o

end

EXECUTE
APPLY
TO

request comprising (operator, operand-des~ption) :
the operator
e a c h operand o f t h e operand-d~cription

APPLY ~Duld be defined for each prJa~tive and user-defined operator (in the
latter case, by executing the requests of the appropriate procedure
definition), but not for user-introduced, non user-defined operators such
as REMOVE (section 2) or ASSIGN (section 4). The semantics of these
would be specified in terms of the associated descriptors. For example,
the semantics of remove-ed, as in

remove-ed <description of an operand>

i s

apply-ed REMOVE to the operand

and the semantics of assign-ed as in

assign-ed <description of an op~tand>
to <description of another operand>

i s

apply-ed (ASSIGN, TO)
to (the operand, the o t ~ e r op~nd)

The basic structure of an operaDd description is

NOUN
IS

o perand-d es criptio n
several adjective-type-descriptor,
ref~ence, post-description
optionally followed-by

(' o f ' , n~ted-operand-description)

~ere a refe~enc£ i s a description of an actual object, and may be a
noun, a pronoun or an identifier. The adjectives either specify the
generation of all the objects specified by the reference, or possibly,
together with the post-description (an example of which is "<= the
data integer" from section 2), specify the required properties of objects.
In addition to the above structure, operand descriptions can be combined
using descriptors such as either, or, and, (,) and others.

The sequence of all the operands of an operand description used in
an operational request is the sequence conlorising each referenced object
(with the properties stated in adjectives and post-descriptions) of each
object specified by the nested operand description.

188

7. PROPOSAL _FOR A DOPL-BASED SYSTEM

A language Containing a spectrum of DOPL and IOPL features would
nmke an ideal prograrmdng system. Initially, program~ could be
writ%en using the DOPL, possibly in a highly non-procedural fashion,
as for example with SORT in section 3. Provided these were not too
disproportionately inefficient (as with sorting i00 integers using a
strict interpretation of SORT), they could be executed and used
whilst a prograna~er and/or the implementation were refining the DOPL
version to a more efficient IOPL one.

In the case of a well-defined, self-contained problem, such as
sorting or the generation of primes or circuits in graphs, the DOPL
version of an algorithm could be judged to be correct by appealing to
what might be called the factual basis of the ~go~m, this being
the collection of proven properties of the objects involved in the
algorithm. For example, for problems involving primes, the factor.
b~/s might include the definition of what is meant by a prime and
propositions about the existence of factors of non primes. For
problems involving circuits in graphs, the factual basis iright include
the theorem in section 5. In the case of more complex problems,
such as large data-processing applications or the design of a new
programming lar~juage, the DOPL version might be developed and agreed
to by a committee of users and analysts, as the correct initial
specification for a required system. In either case, an efficient
implementation of the DOPL version could theft be obtained using various
automatic or manual correctness-preserving transformations.

%he design of a DOPL presents a host of challenging problems.
Many of these re~ain to be resolved. Nevertheless, the notion of
op~tam~ description, and the incorporation of a variety of description
facilities in a prograrmdng language, seem to hold the promise of a
superior, general-purpose language for the future.

REFERENC~

ALAGIC, S.~ ARBIB, M.A.r (1978) : "The Design of Well-Structured
and Correct Prcx/rams", Springer-Verlag, New York.

ASTRAHAN, M.M.r CHAMBERIAIN, D.D., (1975): "Implementation of a
Structured English Query Language", Corsn. ACM, Vol. 18, ~b. I0,
pp 580-588.

BARRON, D.W.~ (1977) : "An Introduction to the Study of
Programming Languages", CUP, Cambridge.

BURGER, J.F.t LEAL, A.~ SHOSHANI, A., (1975) "A Semantic-Based
Natural-Imnguage Interface for Data Manag6ment Systems",
Proceedings of International Conference on Systems Sciences ,
Hawaii, pp 218-220.

CHAMBERLAIN, D.D., BOYCE, R.F., (1974): "SEQL~EL: A structured
English query language", Proceedings of ACM-SIGFIDET Workshop
on Data Description, Access and Control, Ann Arbor, Michigan,
pp 249-264.

189

FELDMAN, J.A.) ROVNER, P .D.~ (1969) : "An Algol-Based Associative
Language", Comm. ACM, Vol. 12, No. 8, pp 439-449.

FIhDLER, N.V., (1969): "Design Features of and Progrars~ing
Experience with an Associative Memory, Parallel Processing
Language, AMPPL-II", Proceedings of Fourth Australian Cc~puter
Conference, Adelaide, pp 321-325.

FOLEY, M., HOARE, C.A.R., (1971) : "proof of a recursive
program: Quicksort", Computer Journal, Vol. 14, NO. 4, pp 391-395.

HEBDITCH, D.L., (1973) : "Terminal languages for data base
access", Data Base Management, Infotech State of the Art Report
15, pp 521-541.

HERRIOT, R.G., (1977) : "Towards the Ideal Progranming Ianguage",
SIGPIAN Notices, Vol. 12, No. 3, pp 56-62.

HOARE, C.A.R., (1961): "Algorithm 63, Partition", "Algorithm 64,
Quicksort", Comm. ACM, Vol. 4, ~b. 7, p 321.

HOARE, C.A.R., (1962) : "Quicksort", Computer Journal, Vol. 5,
No. i, pp 10-15.

HOARE, C.A.R., (1972) : "Proof of a structured program: The
Sieve of Eratosthenes", Cc[nputer Journal, Vol. 15, No. 4, pp 321-325.

HOUSEL, B.C., SHU, N.C., (1976): "A High-Level Data Manipulation
Language for Hierarchical Data Structures", Proceedings of a
Conference on IIATA: Abstraction, Definition and Structure,
SIGPIAN Notices, Vol. 8, No. 2, pp 155-168.

LEE, G., (1978) : "Some design features of a Description Oriented
Progra/mling Language", Proceedings of the Eighth Australian
Computer Conference, Canberra, pp 938-946.

MARTIN, J., (1976) : "Principles of Data-Base Management",
Prentice-Hall, Englewood Cliffs, N.J.

NYLIN, Jr., W.C., HARVILL, J.B. (1976): "Multiple Tense Computer
Prograrm/ng", SIGPLAN Notices, Vol. Ii, No. 12,pp 74-93.

POTgS, G.W., (1970): "Natural language inquiry to an :epen-e~ded
data library", Proceedings of the SJCC, Atlantic City, N.J.,
pp 333-342.

