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ABS~TRACT 

The importance of operand description in progranming is 
emphasised, and programming languages are classified into 
D~cription-Oriented Programming Languages (DOPLs) and 
Identifier-Oriented Programming Languages ( IOPLs)  a c c o r d i n g  

tO their opU~and-description facilities. Several exanples 
are used to illustrate DOPLs, and the advantages, in terms 
of the level of transparency in programs, of using DOPLs over 
IOPLs. 

i. DOPLs and IOPLs 

Progranming languages can be classified according to their facilities 
for describing which operands are to be used in an operation. There are 
two main classes: 

Languages which have a large variety of ope%and-description 
facilities. These will be called Description-Oriented 
Programming Languages (DOPLs) [Lee, 1978]. 
Languages whose only operand-description facilities are 
identifiers and names. These will be called Identifier- 
Oriented Programming Languages I (IOPLs). 

Examples of IOPLs range from very primitive languages such as a yon 
Neumann machine c~e, through the simpler high-level languages such as 
Fortran, to much more sophisticated languages such as Pascal and Algol 
68. 

An example of a language with a large variety of operand-description 
facilities is English. In fact, one of the main differences between 
English and existing progranming languages lies in its use of, for 
example, adjectives, participles, adverbs, nouns, pronouns and names 
when describing operar~s. These operand-description facilities account 
for much of the expressive power of English, and it therefore seems 
worthwhile to incorporate similar facilities in an algorithmic language. 
The design of a DOPL can be influenced by the operand-description 
facilities of English, as far as is corsaensurate with a formal, 
unambiguous progranmdng language. 

The advantage of using a DOPL, as opposed to an IOPL, is that more 
transparent, though possibly less efficient, programs can be written. 
The level of operand-description facilities available in a language 
greatly influences the structure of, and amount of detail in, programs. 
The operand-description facilities available in a DOPL enable algorithms 
to be specified without using variables, data structures, control 

iThis represents a change of terminology from Lee ~978 ] 
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structures with nested statements, or input statements. On the other 
hand, because identifiers and names can only refer to one operand at a 
time, all the above features are required in IOPLs mainly to support the 
computation of names for individual operands. IOPL programs are 
oriented towards specifying a detailed, controlled series of operations 
on imlividu~Iiy named op~an~, whereas DOPL programs are oriented 
towards direct descriptions of the whole sequence of ope/ulni~ to be used 
in an operation. The latter is more transparent than the former. In 
IOPL programs, there is a conceptual gap between the explicit iP~ormation 
given - the detailed sequence of operations on individually named operands 
- and the actual information required to understand the algorithm - 
information on the whole group of operands involved. IOPL programs 
cannot fill this gap, ~%Lich must be bridged for each individual reading 
of a program. DOPL programs, on the other hand, give the latter 
information e~licit ly. 

The operand-description facilities of the DOPL discussed here can be 
used to describe the sequence of all the operands to be used in an 
operation, the data for a program, the required results of an operation, 
to define new description facilities, and to define data structures. 

Although existing languages vary in their operand-description 
facilities, and although there are examples of languages with operand- 
description facilities other than identifiers and names (see, for example, 
Astrahan and Chamberlain [1975], Barron [1977], Burger et al [1975], 
Chamberlain and Boyce [1974], Feldman and Rovner [1969], Findler [1969], 
Hebditch [1973], House/ and Shu [1976], Martin [1976], Potts [1970] ), 
and although there have been suggestions for language extensions which 
are actually concerned with operand-description facilities (Herriot [1977], 
Nylin and Harvill [1976]), no existing programming language se6~s to have 
the breadth and type of operand-description facility envisaged here. 

In ~dbsequent sections, several exan~les are used to introduce a 
DOPL and to compare it to Pascal~ The syntax and s6m~nntics of DOPLs 
are discussed in section 6. ~ facilitate discussion prior to this 
section, the following brief definitions are given. A DOPL program 
contains a sequence of requests, and is executed by using each of these 
requests in turn. Requests may specify operations, or define data, 
results or new operand-description facilities. An operational request 
contains op~uto~ and op~and d~criptiom~. These descriptions specify 
the whole sequences of operands to be used in the operation, and the 
request is executed by applying the operators to each of these operands 
in turn. In an operand description, each word is a d~c2ip/JJr, and 
nouns, pronouns, adjectives and identifiers are among the kinds of 
descriptor used. In the DOPL examples, all operators (and all 
operator-like terms) are in upper case, and all descriptors are in lower 
case. User-introduced operators and descriptors are in script. 
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2. THE SIEVE OF ERATOSYHENES 

Consider first the following DOPL request for generating all the 
prime integers less than or equal to a given data integer: 

PRINT each prime integer <= the data integer 

It consists of the operator PRIN~f followed by an operand description 
which describes the sequence of operands to be used in the PRIS~ 
operation. The operand description is built from several descriptors, 
of which each,integer, <=, the, data, are primitive, and ~kme is 
user-defined. 

An integer is an item in the 2-way infinite sequence of negative 
and positive whole numbers, and the descriptor each in the above 
operand description specifies all of those integers satisfying the 
conditions specified by the adjective prime and the relation 

<= the data integer 
Thus the operand description specifies a sequence of prime integers 
up to a given data integer, and the PRINT request is executed by 
P~ing each one of these in turn. 

A DOPL program for generating primes using the above request is 
shown in program ~i. It consists of three requests. 

program 
DA~% IS 
ADJECTIVE 
AS IN 
IS 
SUCH THAT 

PRIb~ 
erd. 

p~e-number generation: 
an i n t e g e r .  
prime 
prime integer 
integer > 1 
(the prime in teger )  

rood 
(any integer > 1 

and <= square root (the pAime integer)) 
<> 0. 
each prime integer <= the data integer 

Program 2.1 A DOPL program for generatin~ prime numbers 

The first one defines the program's data to be an integer, which can 
subsequently be referred to as the data integer. The second one 
defines the adjective prime. The line 

mmm~ ~e 
specifies that a new adjectival descriptor is being defined. The line 

AS IN prime integer 
specifies that this descriptor must be used with other descriptors 
which specify an integer. The line 

IS integer > 1 
says that a prime integer is an integer (> i) subject to the condition 
following SUCH THAT, which specifies tbmt a pJu(me integer is one which 
is not divisible by any other integers >i. 

Given the usual definition of a prime, and given that a non prime 
is divisible by an integer <= its square root, this program must be 
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correct. It is evident from the operand descriptions used that the 
printed results consist of all the primes up to the given data integer. 

Consider now the Sieve of Eratosthenes. The essential feature of 
this prime-number-generation algorithm is the removal of multiples of 
integers frc~ a sequence initially containing all the integers between 
2 and a given data integer. First the multiples of 2 are removed, 
then the multiples of 3, then the multiples of 5 (4 having been r(~oved 
because it is a multiple of 2), and so on. At each stage, the 
multiples of the next nor~removed integer (which must be a prime - the 
fact that it has not been removed means that it cannot be a multiple of 
any integer less than it) are removed. When all multiples have been 
re, Dyed, the non-removed integers constitute the primes between 2 and 
the given data integer° 

This process can be specified in a DOPL by the request: 

REMOVE each multiple <= the data integer 
of each non remove-ed integer 

between 2 and the data integer 

This consists of the user-introduced operator REMOVE, followed by an 
operand description which is built from several descriptors, of which 
each, <=, the, data, integer, of, non, between, 2, and, are primitive, 
and multiple,  r~move-ed are not. 

The operand description specifies a sequence of operands consist- 
ing of each m ~ t i p l e  (<= the data integer) of each of the integers 
described by the nested op@2~nd d~o]u6p~o~¢ (the one following of) : 

each non remoue-ed integer 
between 2 and the data integer 

The request is executed by applying the REMOVE operator to each of 
these operands. 

Although REMOVE is a non-primitive operator, it is not necessary 
to give a procedure specifying how to remove integers! This is because 
of the use of the adjective remove-ed, which sF~cifies a condition 
on integers which becomes true when they are used as operands of REMOVE. 
Initially, no integers have been so used, and therefore the condition 

non remove-ed 
is true of all integers to begin with. 

The description: 
each integer between 2 and the integer data 

specifies the sequence of integers: 2, 3, 4 .... , the data integer, 
and causes each one of these to be generated in turn so that the 
condition 

non ~emove-ed 
can be checked. Thus the first integer specified by the nested operand 
description is 2, and the first operands specified by the entire operand 
description of the request are therefore: 

each ~_ple <= t/%e data integer 
of 2 
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and so the multiples of 2 are REMOVE-ed. After this, the condition 
remove-ed is true of the multiples of 2. 

The nested operand description now specifies the next non 
remove-ed integer, which is 3, and so 

each multiple <= the data integer 
of 3 

is REMOVE-ed. %~tis process continues until there are no further non 
r emo v e-ed integers. 

After executing the REMOVE request, the prime numbers can be 
printed using the request: 

PRINT each non remove-ed integer 
between 2 and the data integer 

A complete DOPL program for the Sieve process is shown in 
program 2.2. 

program 
DATA IS 
NOUN 
ASIN 
IS 
REMOVE 

PRIhTf 

end. 

Sieve of Eratosthen~: 
an i n t e g e r .  
multiple 
m~£tiple o f  an i n t e g e r  
(the integer) * (any integer >i). 
each mu~ple  <= the data integer 

of each non remove-ed integer 
between 2 ar~ the data integer. 

each non remove-ed integer 
between 2 and the data integer 

Program 2°2 A DOPL version of the Sieve of Eratosthenes 

The program consists of four requests. The first describes the 
data, the second defines the noun multiple, the third is the REMOVE 
request, and the fourth prints the primes. 

The descriptor multiple is used as a noun (the syntax of operand 
descriptions is discussed in section 6) in the REMOVE request, and so 
its definition begins with NOUN. The line 

AS IN multiple of an integer 
specifies that mufJtiple is to be used with a nested operand 
description which specifies one or more integers. The line 

IS (the integer) * (any integer >I) 
defines a multiple to be a product of two integers. The descriptor 
the in the factor 

the integer 
refers back to the previous mention of an integer, which is in 

m~tiple  of an integer. 

The descriptor each specifies each item of a sequence from the 
first onwards. The definition of multiple can be interpreted as a 
definition of a sequence of multiples by virtue of the factor 

any integer >i 
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in the expression fol!owing IS. Thus, in the REMOVE-request operand 
description 

each multiple of <an integer> 
the descriptor each specifies the sequence of multiples 

(the integer) *2 
(the integer) * 3 
(the integer) *4 

and soon. 

The DOPL program can be judged to be correct given the definition 
of a pr~ne ar~ given that every non prime is a multiple of son~ integer 
less than it. 

until i > 
for i : = 

if 
end. 

The DOPL program can be contrasted with the Pascal version in 
program 2. 3. 

program E r a t o s t h e n ~  ( input ,  output)  ; 
c o n s t  n = ?; 
var  s i e v e :  array[2 . .  n] o f  i n t e g ~ ;  

data, i ,  m : i n t e g ~ ;  
beg in  

f o r  i "= 2 t o  d a t a  d o  s ieve[ i ]  "= i ;  
~ieve[data + I] :=I ; 

i : = I ;  
repeat 

repeat i := i + I until siev£[i] > O; 
m := ~*i;  
while m <= data do 

begin 
s i e~[m]  := O; 
m : = m + i  
end 

2 to data do 
s ~ e r i ]  > 7 t h e n  w r i t ~ n (  s i eve[ i ]  ) 

Progr~ 2.3 A Pascal (TOPL) version of the Sieve of Eratosthenes 

(Straight-forward representations of the sieve and of the r6~oval 
operation are used in this e~anlole, in order to facilitate conloarison 
of the two versions. Another, more efficient and more complex IOPL 
version, and its proof using invariants, can be found in Hoare [1972]. 
This IOPL version does not necessarily represent the way in which the 
DOPL version would be implemented. ) 

This Pascal version is more difficult to urderstand and prove 
correct than the DOPL version. Removal of multiples is done using 
the assi~ent 

sieve[m] :=  0 
but because this can only reference one operand at a time, it has to be 
placed inside two levels of nested loop, one to vary m so that all 
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multiples are removed, and one to vary i so that all multiples of all 
primes are r6s~ved. Also, an extra loop is required to search for non- 
removed integers. The loops are used solely to compute the names 

sieve[m] 
of the removed multiples, and the array data structure, and the other 
variables, are used mainly to construct the above names. 

In the IOPL version, the remove (assignment of 0 to a sieve component) 
operation is nested inside two levels of loop, and involves several 
variables. Before eD~ountering this operation, the explicit loop 
statements, and other nested operations, have to be read. In fact, there 
is no syntactic clue to the fact that the assigr~ent to a sieve component 
/s the main operation. Rather, this has to be gathered from a cc~plex 
combination of information given in several different places in the program. 
Once it is known that this is the main operation of the loops, the 
information on all the variables, which is distributed in different places 
in declarations, initialisations and updates, together with the explicit 
nested looping information, has to be gathered together and used to decide 
what the entire group of remove-ands and non r~move-ands are. It is only 
this operand information which enables an understanding of the total process 
specified by the loops. In the DOPL version, on the other hand, the main 
operator REMOVE is placed first, and the sequence of all its operands is 
made explicit using one operand description. The detailed control 
information is implicit in the semantics of the descriptors used. Also, 
the DOPL version can define the data, and the terms prime and multiple 
(the adjective prime in program 2.2 is equivalent to non rcmove-ed) o For 
these reasons the DOPL version is more transparent than the IOPL version. 

3. SORTING 

Consider first the problem of sorting a sequence of data integers: 

DA~ IS several integer 

This could be done using the request 

PP/[~rf 
UNTIL 

smallest non print-ed data integer 
print-ed each data integer 

However, sorting in a DOPL can be specified without using a particular 
algorithm, by specifying what the result of sorting should be- 

to 

end 

SORT a sequence of integers: 
RF_b-73LT IS ascendingly-ord~ed permutation 

of the parameter sequence 

This is an example of a procedure. It defines the user-introduced 
operator SORT, by specifying what the result of an operation such as 

SORT the data sequence 

should be. 
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The descriptor ascendingly-ordered can be defined as follows: 

ADJECTIVE 
AS I~{ 
IS 
SUCH THAT 

ascendingly-ordered 
ascenli~ly-ordered integral sequence 
integral sequence 
each integer of the sequence 
is - <: 
next integer of the sequence 

The descriptor permutation (which might actually be primitive in a 
DOPL) can be defined as 

NOUN 
ASIN 
IS 

SUCH THAT FOR 
~ HAVE 

p~nmu tatio n 
permutation of sequence 
sequence containing each item of 

sequence 
of-which permutation is-being-defined 

any item of the permutation 
number of item = such-that-for-and 

of the permutation 
is - = 
number of item = such-that-for-and 

of sequence 
of-which p~ut~bion is-being-defined 

This contains rather involved conditions in the descriptions after IS and 
~ HAVE. These specify that a pemmutation contains exactly the same items 
as the original sequence, but ndt necessarily in the same order. 

The operand description after IS has the form 
sequence containing <description of items to be contained> 

In the description of the items to be contained, the nested description 
sequence of-which permutation is-being-defined 

specifies the sequence in 
AS IN p~tm~,on of sequence 

and the 
of-which ~.. is-being-defined 

reverses the descriptor of in 
p~tmu~tion of sequence 

This could be shortened using an identifier: 
AS IN p@Imat&tg~on of sequence called z 

after which, throughout this request, the sequence of which p~,unuZaZion is 
being defined can be referred to as x. It seems better not to use the 
identifier. 

The description after WE HAVE is a Boolean expression which has the 
structure 

number of <description of an item of the p~m~on> 
is-equal-to 
number of <description of an item of 

the sequence of which p~mu2m2ion is being defined> 
The noun such-that-for-ar~ refers to the item described after SUCH THAT 
FOR. An identifier, for example y~ could be used in place of this noun, 
if the description after SLEH TI{AT FOR is modified: 
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any item called y 
of the permutation 

The use of the primitive noun such-that-for-and is to be preferred. 
With this noun, it is rather more obvious which item is being referred 
to than with a user-introduced identifier such as y, which could have 
been declared anywhere in the request (or in the whole program). 

An ascendingly-ordered permutation of a sequence can be produced 
by generating sequences in lexicographic order and checking all the 
conditions given in the definition, and then checking for ascendingly- 
ordered-ness. This would be ini~ssibly inefficient for long parameter 
sequences. Even so, the SORT procedure is a formal specification of 
sorting ° 

Consider now program 3 .i, which is a procedure for sorting a 
sequence of integers by partitioning it into three groups. 

to 

end 

PARTITION SORT a sequence of integers: 
CHOOSE a n y  parameter integer. 
RESULT IS 

result of p~on-sort-ing 
each parameter integer < the choose-and, 

each parameter integer = the choose-and, 
result of partition-sort-ing 

each parameter integer > the choose-and 

Program 3.1 A DOPL procedure for sorting by partitioning 

The procedure contains two requests. The first chooses one of the 
integers of the parameter sequence. This is subsequently referred to as 
the c~os e-and. 

The RESU~LT IS request specifies a partition of the parameter sequence 
into three groups, which contain those integers less than the chosen integer, 
those equal to it, and those greater than it respectively. The ~ s  in 
the operand description of this request can be read as "followed by", and 
the descriptor followed-by could be used in their place. In the description 

result of partit~'on-sort-ing 
each parameter integer < the choose-and 

the descriptor ~on-sort-ing implies a recursive application of the 
operator PARTITION SORT to the sequence of parameter integers less than the 
chosen integer. There is no need to explicitly specify what the result is 
for a null sequence, because the following rule can be adopted in a DOPL: 

the result of performing any operation on the null sequence is the 
null sequence (unless otherwise specified). 

Because of the operand descriptions used, it is evident that this 
procedure recur~iv~y part i t io~ the parameter sequence: 
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DEFINITION: 

A r e c ~ i v ~ y  partitioned sequence is either a null sequence, or a 
sequence comprising a left partition, followed by a middle partition 
CODsisting of several equal items, followed by a right partition, such 
that 

(a) each item of the left partition is < the middle items, 
(b) each item of the right partition is > the middle items, 
(c) the left and right partitions are recursively partitioned 

sequences. 

It is intuitively obvious that a recursively partitioned sequence is 
ascendingly ordered. This can be proved as follows: 

PROPOSITION: 

A recursively partitioned sequence is ascendingly ordered. 

PROOF by reductio. Suppose not, and consider the shortest sequence which 
is recursively partitioned but not ascendingly ordered. This sequence must 
have at least two adjacent items which are out of order. These cannot both 
be in the same partition, otherwise a shorter, recursively partitioned but 
r~n-ascendingly ordered sequence ~3uld exist. Also, if one of these items 
is in the left partition, the other cannot be in the middle partition 
because of the stated property of the left partition. Similarly, if one of 
these items is Ln the right partition, the other cannot be in the middle. 
This leads to a contradiction, and so the result is proved. 

From this proposition, program 3.1 can be judged to be a correct sorting 
procedure. A DOPL program to sort a sequence of data integers can use the 
request 

PBXk~ result of pa*~bition-sort-ing the data sequence 

This will print the data integers in ascending ordem. 

Another DOPL procedure for sorting by partitioning, this time into two 
groups called the l e f t - p ~ o n  and the r i g h t - p a ~ o n ,  is shc~m in program 
3.2. This procedure can be judged to be correct, given the definitions of 
the procedure PARTITION and the adjective p~oned below, by appealing 
to a proposition which is similar to the one above for program 3.1. 
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to 

end 
to 

end 

PARTITION SORT a sequence consisting-of 1 integer: 
RESULT IS the integer 

PARTITION SORT a sequence consisting-of more-than 1 integer: 
PARTITION it. 
RESULT IS 

result of parti/&ion-sort-ing the 
(left-partition, right-partition) 
of the part/t/0n-result 

Program 3.2 Another DOPL partition-sorting procedure 

In this program, two specifications of PARTITION SORT are given, one 
for parameter sequences which consist of only one integer, and one for 
other parameter sequences. In a DOPL, operand descriptions can be used 
to specifythe formal andactual parameters of a procedure. ~'~en a 
procedure is called, a caseanalysis on the actual parameters is performed 
to match them up to an appropriate procedure specification. 

The pronoun it in 

PARTITION it 

is used to refer back to the previous operand description, which in this 
case is the parameter sequence. The PARTITION request is thus equivalent 
to 

PARTITION the parameter sequence 

Various kinds of pronoun can be included in a DOPL to make operand 
descriptions shorter, and, if used appropriately, to make the~ more 
transparent. 

The operand description of the second RESULT IS request is factored, 
so as to shorten it, using the pair of nouns 

(left-partition, right-partition) 
It is interpreted by aI~lying 

result of pm~tition-sort-ing the 
and 

of the partition-result 
to both nouns in the pair. The comma in the pair specifies the 
concatenation of the resulting sequences. The parentheses are used for 
grouping only. 

The effect of the procedure PARTITION can be specified as follows: 

to 

end 

PARTITION a sequence consisting-of more-than 1 integer: 
RESL~T IS a p a r ~ n e d  permutation o f  it 

where the adjective partitioned is defined as 
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ADJBCT IVE p a r d o n e d  
AS IN par t i t ioned  integral sequence 
IS sequence go,or isinm 

non null secglence said-to-be the left-parti2~on, 
non null sequence said-to-be the right-partition 

SL~H THAT each integer of die l e f t - p a ~ 2 i t i o n  
is - <= 
each integer of the right-partition 

There may be many pa~wOLtioned permutation6 of a given sequence, and 
for any one of these there may be many possible left-partitior~. The 
description 

the left- p~on of the par;t/t/0n-result 
refers to whichever left-partilion results from wg_ichever method is used 
to check for p~oned-ness. 

Although the obvious interpretation of the above procedure would 
involve generating permutations of the parameter sequence, there are other 
methods of producing a [x~titioned permutation of a sequence. For 
example, the partitioning process involved in Quicksort (Hoame, 1961, 1962; 
Foley and Hoare 1971) an IOPL version of which is sho~m in program 3.3, 
will produce a partitioned pe~Tiuta2/~n. 

procedure Quicksort(var A : intege~ay; 
m, n : in teger ) ;  

{~0 sort the com~nents of A between the m'th and n'th} 
var r,  i ,  j : i~teger;  
b e g i n  i f  m < n t h e n  

b e g i n  { p a r t i t i o n  A between m ' t h  and n ' t h  components} 
r :=-A[(m+n) d i v  2]; i := m; j := n; 
while i <= j do 

beginwhil---e A[i] < r do i := i+I; 
while r < A [j] ~ j := j-l; 
if ~-<= j then be~in 

- -  ~ [ Z ] - : = :  A [ j ] ;  
i := i+I; J:= j-1 
end 

end; 
Q~c~-~rt  IA, m, j ) ; 
Quick .of t  (A, i .n)  
end 

Program 3.3 An IOPL Quicksorting procedure (from Alagic and 
Arbib [1978] ) 

A specification of partitioning which is a little closer to that used 
in Quicksort is: 



181 

t o  

e n d  

PARTITION a sequence consisting-of more-than i integer: 
CHOOSE a parameter integer. 
RESULT IS a paJutit6oned permutation 

of the parameter sequence 
SUCH THAT each integer of the left-p~ktition 

i s  - < =  t h e  choose-and 
a n d  e a c h  i n t e g e r  o f  t h e  r i g h t - p ~ o n  

i s  - >= t h e  choose-and 

One of the main reasons for interest in Quicksort is that it is a 
very efficient sorting algorithm. Obviously, the DOPL procedures in 
programs 3 .i and 3.2, which are related to Quicksort in a certain sense, 
are far less efficient than program 3.3. However, it is less obvious 
that Quicksort actually sorts. In the last section of the paper, a 
combined DOPL/IOPL progranraing systera is proposed. In such a system, it 
would be possible to express an algorithm in its gross, essential terms 
using a DOPL, and to transform this to an efficient IOPL version. The 
advantage of such a system, over an IOPL-only one, would be that, with a 
DOPL version which could be judged to be correct, if correctness-Freserving 
transformations are used, the final optimised IOPL version would be known 
to be correct. At each stage of the transformation, proof of correctness 
would have a higher level, correct version to appeal to. 

4. AN ISZIYI{PRETER FOR A SIMPLE IOPL 

The following is an interpreter for a simple IOPL whose programs are 
sequences of assignaent, read, write, while, if, case and c~npound 
stat~nents. Only simple integer variables are used, and the only 
operator is +. 

The interpreter does not need to specify input or parsing of the 
source program. It is not necessary to use data structures to store the 
source stat~nents or variable values. 
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program_ 
~OU~ 
IS 

NOUN 
AS IN 
IS 
NOUN 
AS IN 
IS 
NOUN 
IS 
NOTE 
NOUN 
IS 
NOUN 
ASIN 
IS 
NOUN 
IS 
NOUN 
IS 
ADJECTIVE 
ASIN 
IN CASE 
IS 

i n t e r p r e t e r  : 
i d e n t i f i e r  
sequence <> 'while' or ~do' or ~if' or 'then' 

or 'else' or 'case' or 'of' 
or 'begin' or 'end' or 'read' 
or 'write' 

conlorising several alphabetic character. 

value 
value of integer 
the integer. 
value 
value of i d e n t i f i e r  
last value ass ign-ed- to  the i d e n t i f i e r .  
term 
i d e n t i f i ~  o r  n o n - n e g a t i v e  i n t e g e r .  
the value of a £e/~m is well defined. 
e x p r ~ s i o n  
several t~rm separated-by '+'. 
value 
value o f  e x p r ~ s i o n  
sum o f  value o f  e a c h  t e rm o f  t h e  e x p r ~ s i o n .  
r ~ a  t~o nal- o p ~ ato r 
~<' or '<=' or '>' or '>=' or '=' or '<>'. 

Boolean- e x p r ~ s i o n  
expression,  r ~ i o n a l - o p ~ o r ,  expression.  
t rue  
t rue  Boolean- expression 
Boolean-expr~s ion  c o n t a i n s  ' < '  
~oolean- e x p r ~ s i o n  

containing 
first expression having value < 

value of second expression of the 
Boolean- e x p r ~ s i o  n 

{and similar cases for the other relational operators}. 

IS 
NOUN 
IS 

NOUN 
iS 
NOUN 
IS 
kDUN 
IS 

assignment-s tatement  
i d e n t i f i e r ,  " = ' ,  express ion .  
s ta tement  
ass ignment-s tatement  o r  
whi le-s ta tem ent o r  
i f - s t a t e m e n t  o r  
cas e -s ta tement  o r  
compound-statement o r  
read-s ta tement  o r  
w*J~ e- s t a t  em e nt  . 
whi le - s ta tement  
' ~ i l e  ' ,  Boolean- expression,  ' do  ' ,  s ta tement .  

e - p a ~  
' e l s e ' ,  s ta tement .  
i f - s ~  em ent 
' i f ' ,  Boolean-expr~s ion ,  

' t h e n ' ,  s ta tement  
o p t i o n a l l y  f o l l o w e d - b y  e l s e - p a r t .  
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NOUN 
IS 

M3UN 
IS 

N ~  
I S  

NOUN 
IS 
NOUN 
IS 
NDUN 
IS 
DATA IS 
EXECUTE 

t_o EXECUTE 
EXECUTE 

end 
toEXECUTE 

ASS I G N 
TO 

end 
to  EXECUTE 

EXECUTE 
EXECUTE 

end 
EXECUTE 
DO NOTHING 

end 
t o  EXECUTE 

EXECUTE 
end 
to EXECUTE 

- -  EXECUTE 
end 
to EXECUTE 

EXECUTE 

end 
t o  EXECUTE 

- -  TO 
ASS I G N 

end 
to' EXECUTE 

PRINT 
end 
end. 

cas e-speci  f i ca t io  n 
several distinct integer separated-by ', ', 
' : ' ,  s tatement.  
case-statement 
'case', expression, 'of', 
several cas e-s peci f icat io n 

not containing integer 
contained-in any preceding 

cas e- S peci f i ca t io  n 
o f  t h e  case-statement 

and separated-by ' ; ', 
lend' ° 

compound-statement 
' b e g i n  ' ,  
several statement separated-by ' ; ', 
lend~ . 

read-statement 
'read', '(', several identifier separated-by', ', ') ' 
write- staZement 
'write', '(', several identifier separated-by ', ', 'J' 
IOPL-program 
compound-stat~ent  . 
IOPL-program, s e v e r a l  i n t e g e r .  
the  IOPL-program 
a compound-statement : 
each statement  

an assignment-statement: 
value of exbression 
i d e n t i f i e r  

a while-statemer~ containing t rue  Boolean-expression: 
statement of the w~ile-s ta tement .  
the whi le-s tatement  

a while-s tatement  containing non t rue  Boolean-expre4sion. 

an i f - s t a t emen t  containing t rue  Boolean-expression: 
s tatement  after 'then' 

an  i f - s t a t emen t  c o n t a i n i n g  non t rue  Boolean-expression: 
s tatement  o f  e ~  z - p a r t  

a case-statement: 
s tatement 

o f  case-spec i f i ca t ion  
c o n t a i n i n g  i n t e g e r  = value o f  expression 

a read-statement: 
each i d e n t i f i e r  
first non assign-ed data integer 

a wri te-s tatement:  
value o f  each  i d e n t i f i e r  
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5. EUTJ{RIAN CIRCUITS IN GRAPHS 

An Eulerian Circuit in a gray,h is a sequence of arcs such that 

(a) each arc of the graph is in the Circuit exactly once, 
(b) consecutive arcs in the Circuit end at and begin at the 

same node, 
(c) the last arc in the Circuit ends at the same node at which 

the first one begins. 

Walking around an Eulerian Circuit would involve traversing each arc once, 
and passing through each node one or more times. Obviously, a graph 
having an Eulerian Circuit (and no trivial nodes) must be connected. 

Given the descriptors node, graph and connected-to, an E~6erian-Circui2 
of a graph can be defined in a DOPL (actually as a sequence of nodes, pairs 
of which represent the arcs) as in program 5.i. It is assumed that there 
is at most one arc between any two nodes, and that no node is connected 
to itself. Rather than use the identifiers a and b in the description 
after WE HAVE, the descriptions 

first such-that-for-and 
second such-that-for-and 

could be used. Naturally, in a l~ge with many operand-description 
facilities, a choice can be made in each case whether to use a defined 
descriptor such as an identifier, or a primitive descriptor, such as the 
nouns above. It seems simpler in this case to use the identifiers. 

NOUN 
AS IN 
IS 
SUCH THAT 

AND SUCH THAT 

AND SUCH THAT FOR 

WE HAVE 

AND SUCH THAT 

Eul6rian- C~cui t  
Eulerian-Circui2 of graph 
sequence of node of the graph 
each node of the sequence 
is-connected-to 
next node of the secfaence 
last node of the sequence 
is-connected-to 
first node of the sequence 
any node called a 

of the graph 
and  a n y  node c a l l e d  b and connected-to a 

o f  t h e  graph 
either b is adjacent-to a 

in the sequence 
or b is the last node of 

the sequence 
and a is the first node 

of the sequence 
or b is the first node of 

the sequence 
and a is the last node 

of the sequence 
number of node 

connected-to any node of the graph 
is-equal-to 2*number of occurrences 

of the node in the sequence 

Program 5.I Definition of an Eulerian Circuit of a graph 
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The Eulerian Circuits of a given graph can be generated: 

CHOOSE any node of  the graph. 
PRINT each Eul~ian-Circuit  beginning-with the choose-and 

of  the  graph 

Program 5.2 defines a graph as it might be presented for input 
punched on cards: 

DATA IS graph punched-on cards 

The descriptors node and connected-to are also defined in program 5.2. 
The descriptor said-to-be precedes a defining occurrence of a new 
descriptor. A relator is a type of descriptor which can be used in 
relations. 

NOUN 
IS 
NfL~ 
IS 
NOUN 
IS 

NOUN 
IS 

SUCH THAT 

node 
several alphabetic character. 
co nnectio 
several distinct node separated-by ',' 
node-information 
node s a i d - t o - b e  connected-to 

each node of  fo l lowing  connectio~ 
and not = any node of fo l lowing connections, 

' : ' ,  connections, ' ; ' .  
graph 
s e v e r a l  node-information 

not  con ta in ing  node 
= node of  

any preceding  node-information 
r e l a t o r  connected-to i s  s ~ t r i c  

Program 5.2 Definition of a graph 

From this definition, the description 
node of graph 

node of  node-information of  graph 
and can be so interpreted by an imple~nentation. The semantics of 
operand-description interpretation can be such as to allow the use of short 
descriptions which can be automatically extended according to the defined 
structure of sequences. 

The Eulerian Circuits of a data graph can be printed using the above 
CHOOSE and PRINT requests. A copy of the graph itself can be printed as 
follows 

PRIN~f the data graph 

The question of whether or not a given connected graph has an 
~erian Circuit can be resolved without actually generating such a 
Circuit, by using the following theorem: 
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THEORI~ (Eul~) 

A connected multi-graph has an Eulerian Circuit if and only if each 
node is connected to an even number of other nodes. 

PROOF 

o~__/y if: 

If: 

An Eulerian Circuit, for each visit to a node, must enter 
~nd leave the node on different arcs. 
Proceed by induction on the size of the graph. 

The result is true for a graph with one arc and one node. Suppose 
it to be true for a connected graph with up to n arcs, and consider a 
graph with n+l arcs. Choose any node of the graph, and any two nodes 
connected to the chosen one. Remove a connection from these two nodes 
to the cbx)sen one, and insert a connection between the two nodes which 
b~asses the chosen one. This will result in a graph with either one or 
tw~ components, but with one fewer arc. By the induction hypothesis, 
there is an Eulerian Circuit for each of these components. An Eulerian 
Circuit for the original graph can be made from these by replacing the 
inserted arc by the two removed ones, and then concatenating the two 
Circuits. 

Assuming ~he data graph to be connected (an adjective connected, to 
be applied to ~raphs, can be defined in terms of the existence of 
path~ between any two nodes - a path is a sequence of arcs with certain 
properties, and can be defined in a similar way to an Eulerian Circuit, 
which is a path with special properties), the following request can be 
used to decide whether a data graph has an Eulerian Circuit: 

I F  d~e data graph does-r~t-contain 
node connected-to a n  odd number of node 

PRINT "This graph has an ~lerian Circuit" 

qhis must be correct because of the above theorem. 

6. DOPL SYNIZ/AND S[MA~ICS 

A DOPL program is a sequence of requests separated by '. ', and 
possibly followed by procedure definitions: 

NOUN 
IS 

DOPL-program 
'program', name, ' • ' - r 

several request separated-by '.' 
optionally followed-by several procedure, 'end', '. '. 

The program is executed by using each request in turn: 

t o  

end 

EXECUTE a DOPL-program: 
EXECUTE each request 

A request is several requestor/operand-desc2~ip~on pairs, where a 
requ~tor is an op~vxtor, a preposition or a term such as kDUN, ADJECTIVE, 
IS, AS IN, SUCH THAT, UNTIL: 
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NOUN 
IS  

request 
several (requester, op~%and-d~cription) 

An operational request is executed by applying the operators to all 
the operates of all the operand descriptions. For example, for a unary 
operator: 

t o  

end 

EXECUTE 
APPLY 
TO 

request comprising (operator, operand-des~ption) : 
the operator 
e a c h  operand o f  t h e  operand-d~cription 

APPLY ~Duld be defined for each prJa~tive and user-defined operator (in the 
latter case, by executing the requests of the appropriate procedure 
definition), but not for user-introduced, non user-defined operators such 
as REMOVE (section 2) or ASSIGN (section 4). The semantics of these 
would be specified in terms of the associated descriptors. For example, 
the semantics of remove-ed, as in 

remove-ed <description of an operand> 

i s  

apply-ed REMOVE to the operand 

and the semantics of assign-ed as in 

assign-ed <description of an op~tand> 
to <description of another operand> 

i s  

apply-ed (ASSIGN, TO) 
to (the operand, the o t ~ e r  op~nd)  

The basic structure of an operaDd description is 

NOUN 
IS 

o perand-d es criptio n 
several adjective-type-descriptor, 
ref~ence, post-description 
optionally followed-by 

( ' o f ' ,  n~ted-operand-description) 

~ere a refe~enc£ i s  a description of an actual object, and may be a 
noun, a pronoun or an identifier. The adjectives either specify the 
generation of all the objects specified by the reference, or possibly, 
together with the post-description (an example of which is "<= the 
data integer" from section 2), specify the required properties of objects. 
In addition to the above structure, operand descriptions can be combined 
using descriptors such as either, or, and, (,) and others. 

The sequence of all the operands of an operand description used in 
an operational request is the sequence conlorising each referenced object 
(with the properties stated in adjectives and post-descriptions) of each 
object specified by the nested operand description. 
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7. PROPOSAL _FOR A DOPL-BASED SYSTEM 

A language Containing a spectrum of DOPL and IOPL features would 
nmke an ideal prograrmdng system. Initially, program~ could be 
writ%en using the DOPL, possibly in a highly non-procedural fashion, 
as for example with SORT in section 3. Provided these were not too 
disproportionately inefficient (as with sorting i00 integers using a 
strict interpretation of SORT), they could be executed and used 
whilst a prograna~er and/or the implementation were refining the DOPL 
version to a more efficient IOPL one. 

In the case of a well-defined, self-contained problem, such as 
sorting or the generation of primes or circuits in graphs, the DOPL 
version of an algorithm could be judged to be correct by appealing to 
what might be called the factual basis of the ~go~m, this being 
the collection of proven properties of the objects involved in the 
algorithm. For example, for problems involving primes, the factor. 
b~/s might include the definition of what is meant by a prime and 
propositions about the existence of factors of non primes. For 
problems involving circuits in graphs, the factual basis iright include 
the theorem in section 5. In the case of more complex problems, 
such as large data-processing applications or the design of a new 
programming lar~juage, the DOPL version might be developed and agreed 
to by a committee of users and analysts, as the correct initial 
specification for a required system. In either case, an efficient 
implementation of the DOPL version could theft be obtained using various 
automatic or manual correctness-preserving transformations. 

%he design of a DOPL presents a host of challenging problems. 
Many of these re~ain to be resolved. Nevertheless, the notion of 
op~tam~ description, and the incorporation of a variety of description 
facilities in a prograrmdng language, seem to hold the promise of a 
superior, general-purpose language for the future. 
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