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ABSTRACT

The importance of operand descaiption in programming is
emphasised, and programming languages are classified into
Desoniption-Oniented Programming Languages (DOPLs) and
Tdentifien-Oniented Programming Languages (IOPLs) according
to their operand-descriipfion facilities. Several examples
are used to illustrate DOPLs, and the advantages, in terms
of the level of transparency in programs, of using DOPLs over
TOPLSs.

1. DOPLs and IOPLs

Programming languages can be classified according to their facilities
for describing which cperands are to be used in an operation. There are
two main classes:

* languages which have a large variety of operand-deseription
facilities. These will be called Descriplion-Onlented
Programming Languages (DOPLs) [Lee, 1978].

* Languages whose only operand-description facilities are
identifiers and names. These will be called Tdentifien-
Ondented Programming Languagesl (IOPLs).

Examples of IOPLs range from very primitive languages such as a von
Neumann machine code, through the simpler high-level languages such as
Fortran, to much more sophisticated languages such as Pascal and Algol
68.

_ An example of a language with a large variety of operand-description
facilities is English. In fact, one of the main differences between
English and existing programming languages lies in its use of, for
example, adjectives, participles, adverbs, nouns, pronouns and names
when describing operands. These operand-description facilities account
for much of the expressive power of English, and it therefore seems
worthwhile to incorporate similar facilities in an algorithmic language.
The design of a DOPL can be influenced by the operand-description
facilities of English, as far as is commensurate with a formal,
unambiguous programming language.

The advantage of using a DOPL, as opposed to an IOPL, is that more
transparent, though possibly less efficient, programs can be written.
The level of operand-description facilities available in a language
greatly influences the structure of, and amount of detail in, programs.
The operard-description facilities available in a DOPL enable algorithms
to be specified without using variables, data structures, control

lThis represents a change of terminology from ILee [1978]
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structures with nested statements, or input statements. On the other
hand, because identifiers and names can only refer to one operand at a
time, all the above features are required in IOPLs mainly to support the
computation of names for individual operands.  IOPL programs are
oriented towards specifying a detailed, controlled series of operations
on {ndividually named operands, whereas DOPL programs are oriented
towards direct descriptions of the whole sequence 0§ operands to be used
in an operation. The latter is more transparent than the former. 1In
IOPL programs, there is a conceptual gap between the explicit information
given - the detailed sequence of operations on individually named operands
- ard the actual information regquired to urderstand the algorithm -
information on the whole group of operards involved.  IOPL programs
carmot £ill this gap, which must be bridged for each individual reading
of a program. DOPL programs, on the other hand, give the latter
information explicitly.

The operand-description facilities of the DOPL discussed here can be
used to describe the seguence of all the operards to be used in an
operation, the data for a program, the required results of an operation,
to define new description facilities, and to define data structures.

Although existing languages vary in their operand-description
facilities, and although there are examples of languages with operand-
description facilities other than identifiers and names (see, for example,
Astrahan and Chamberlain [1975], Barron [1977], Burger et al [1975],
Chamberlain and Boyce [1974], Feldman and Rovner [1969], Firdler [1969],
Hebditch [1973], Housel and Shu [1976], Martin [1976], Potts [19701),
and although there have been suggestions for language extensions which
are actually concerned with operand-description facilities (Herriot [1977],
Nylin and Harvill [1976]), no existing programming language seems to have
the breadth and type of operand-description facility envisaged here.

In subsegquent sections, several examples are used to introduce a
DOPL and to compare it to Pascal. The syntax and semantics of DOPLs
are discussed in section 6. To facilitate discussion prior to this
section, the following brief definitions are given. A DOPL program
contains a sequerce of requests, and is executed by using each of these
requests in turn. Requests may specify operations, or define data,
results or new operand-description facilities. An operational request
contains operatons and operand descriptions. These descriptions specify
the whole sequences of operards to be used in the operation, and the
request is executed by applying the operators to each of these operands
in turn.  In an operand description, each word is a desciipfon, and
nouns, pronouns, adjectives and identifiers are among the kinds of
descriptor used. In the DOPL examples, all operators {ard all
operator-like terms) are in upper case, and all descriptors are in lower
case. User-introduced operators and descriptors are in script.
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2. THE SIEVE OF ERATOSTHENES

Consider first the following DOPL request for generating all the
prime integers less than or equal to a given data integer:

PRINT each paime integer <= the data integer

It consists of the operator PRINT followed by an operand description
which describes the sequence of operards to be used in the PRINT
operation. The operand description is built from several descriptors,
of which each,integer, <=, the, data, are primitive, and piime is
user~defined.

An integer is an item in the 2-way infinite sequence of negative
and positive whole nunbers, and the descriptor each in the above
operand description specifies all of those integers satisfying the
conditions specified by the adjective prime and the relation

<= the data integer
Thus the operand description specifies a sequence of prime integers
up to a given data integer, and the PRINT request is executed by
PRINT-ing each one of these in turn.

A DOPL program for generating primes using the above reguest is
shown in program 21. It consists of three reguests.

program  piime-number generation:
DATA IS an integer.
ADJECTIVE prime

AS IN prime integer

Is integer >1

SUCH THAT (the piime integer)
mod.

(any integer > 1
and <= square root (the prime integer))
<> 0.
PRINT each priime integer <= the data integer
erd.

Program 2.1 A DOPL program for generating prime mumbers

The first one defines the program's data to be an integer, which can
subsequently be referred to as the data integer. The second one
defines the adjective paime. The line
ADJECTIVE prime
specifies that a new adjectival descriptor is being defined. The line
AS IN prime integer
specifies that this descriptor must be used with other descriptors
which specify an integer. 'The line
Is integer > 1
says that a prime integer is an integer (> 1) subject to the condition
following SUCH THAT, which specifies that a prime integer is one which
is not divisible by any other integers >1.

Given the usual definition of a prime, and given that a non prime
is divisible by an integer <= its square root, this program must be
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correct. It is evident from the operard descriptions used that the
printed results consist of all the primes up to the given data integer.

Consider now the Sieve of Fratosthenes. The essential feature of
this prime-muber-generation algorithm is the semoval of multiples of
integers from a sequence initially containing all the integers between
2 and a given data integer. First the multiples of 2 are removed,
then the multiples of 3, then the multiples of 5 (4 having been removed
because it is a multiple of 2), ard so on. At each stage, the
multiples of the next ron-removed integer (which must be a prime - the
fact that it has not been removed means that it cannot be a multiple of
any integer less than it) are removed. When all multiples have been
removed, the non~vemoved integers constitute the primes between 2 and
the given data integer.

This process can be specified in a DOPL by the request:

REMOVE each multipfe <= the data integer
of each non nemove-ed integer
between 2 and the data integer

This consists of the user-introduced operator REMOVE, followed by an
operand description which is built from several descriptors, of which
each, <=, the, data, integer, of, non, between, 2, and, are primitive,
arnd muftiple, nemove—ed are not.

The operand description specifies a sequence of operands consist-
ing of each multiple (<= the data integer) of each of the integers
described by the nested operand descripfion (the one following of):

each non femove-ed integer

between 2 and the data integer
The request is executed by applying the REMOVE operator to each of
these operands.

Although REMOVE is a non-primitive operator, it is not necessary
to give a procedure specifying how to remove integers! This is because
of the use of the adjective remove~ed, which specifies a condition
on integers which becomes true when they are used as operands of REMOVE.
Initially, no integers have been so used, arnd therefore the condition
non remove—ed
is true of all integers to begin with.

The description:

each integer between 2 and the integer data
specifies the seguence of integers: 2, 3, 4, ..., the data integer,
aryl causes each one of these to be generated in turn so that the
condition

non zemove~ed
can be checked. Thus the first integer specified by the nested operand
description is 2, ard the first operards specified by the entire operand
description of the request are therefore:

each multiple <= the data integer

of 2
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arnd so the multiples of 2 are REMOVE-ed. After this, the condition
remove—ed is true of the multiples of 2.

The nested operand description now specifies the next non
remove~ed integer, which is 3, ard so
each multiple <= the data integer
of 3
is REMOVE-ed. 'This process continues until there are no further non

nemove—-ed integers.

After executing the REMOVE request, the prime numbers can be
printed using the request:

PRINT each non remove-ed integer
between 2 and the data integer

A complete DOFL program for the Sieve process is shown in
program 2.2.

program  Sieve of Eratosthenes:
DATA IS an integer.
NOUN muliiple
AS IN muliiple of an integer
Is (the integer)*(any integer >1).
REMOVE  each muliiple <= the data integer
of each non #remove-ed integer
between 2 and the data integer,
PRINT each non nemove-ed integer
between 2 and the data integer
end,

Program 2.2 A DOPL version of the Sieve of Eratosthenes

The program consists of four recuests. The first describes the
data, the second defines the noun multiple, the third is the REMOVE
request, and the fourth prints the primes.

The descriptor muliiple is used as a noun (the syntax of operard
descriptions is discussed in section 6) in the REMOVE request, ard so
its definition begins with NOUN. The line

2S IN multiple of an integer
specifies that muliiple is to be used with a nested operand
description which specifies one or more integers. The line

IS {the integer)*{any integer >1)
defines a multiple to be a product of two integers. 'The descriptor
the in the factor

the integer
refers back to the previous mention of an integer, which is in

multiple of an integer.

The descriptor each specifies each item of a sequence from the
first omwards. The definition of multiple can be interpreted as a
definition of a seguence of multiples by virtue of the factor

any integer >1 ’
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in the expression following IS. Thus, in the REMOVE-request operand
description
each multiple of <an integer>
the descriptor each specifies the sequence of multiples
(the integer)*2
{the integer)*3
(the integer)*4
and so on.

The DOPL program can be fudged to be correct given the definition
of a prime ard given that every rnon prime is a multiple of some integer
less than it.

The DOPL program can be contrasted with the Pascal version in
program 2.3.

program  Enatosthenes [input, output];
const ne=?;
var sieve : arrayf? .. nl of integer;
data, 4, m : integen;
begin
nead(data);
for £ := 7 to data do sdeveld] := 4;
sleveldata + 1] =15
L= 1;
repeat
repeat £ = L + 1 until sdeve[d] > 0;
m o= 2%
while m < data do
begin -
saevelm] = 0;
m:=m+ AL
erd
wuntil £ > data;
for 4 := 2 to data do
if  sdeveld] >0 then writeln|sdieve[i])
end.

Program 2.3 A Pascal (IOPL) version of the Sieve of Eratosthenes

(Straight-forward representations of the sieve and of the removal
operation are used in this example, in order to facilitate comparison
of the two versions. Another, more efficient and more camplex ICFL
version, and its proof using invariants, can be fourd in Hoare [1972].
This IOPL version does not necessarily represent the way in which the
DOPL version would be implemented.)

This Pascal version is more difficult to understand and prove
correct than the DOPL version. Removal of multiples is done using
the assigrment

sdevelm] = 0
but because this can only reference one operand at a time, it has to be
placed inside two levels of nested loop, one to vary m so that all
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multiples are removed, and one to vary £ so that all multiples of all

primes are removed. Also, an extra loop is reguired to search for non-

removed integers. The loops are used solely to compute the names
sdevem}

of the removed multiples, and the array data structure, and the other

variables, are used mainly to construct the above names.

In the IOPL version, the remove (assignment of 0 to a 44eve component)
operation is nested inside two levels of loop, ard involves several
variables. Before encountering this operation, the explicit loop
statements, and other nested operations, have to be read., In fact, there
is ro syntactic clue to the fact that the assigrment to a 4{eve component
4i4 the main operation. Rather, this has to be gathered from a complex
combination of information given in several different places in the program.
Once it is known that this is the main operation of the loops, the
information on all the variables, which is distributed in different places
in declarations, initialisations and updates, together with the explicit
nested looping information, has to be gathered together and used to decide
what the entire group of remove~ands and non remove-ands are. It is only
this operand information which enables an understanding of the total process
specified by the loops. In the DOPL version, on the other hand, the main
operator REMOVE is placed first, and the sequence of all its operands is
made explicit using one operard description. ‘The detailed control
information is implicit in the semantics of the descriptors used. Also,
the DOPL version can define the data, and the terms pruime and multiple
{the adjective prime in program 2.2 is equivalent to non iemove~éd). For
these reasons the DOPL version is more transparent than the IOPL version.

3.  SORTING
Consider first the problem of sorting a seguence of data integers:
DATA IS several integer

This could be done using the request

PRINT smallest non print-ed data integer
UNTIL print-ed each data integer

However, sorting in a DOPL can be specified without using a particular
algorithm, by specifying what the result of sorting should be:

o SORT a sequence of integers:
RESULT IS ascendingly-ordened permutation

of the parameter sequence
end

This is an example of a procedure. It defines the user-introduced
operator SORT, by specifying what the result of an operation such as

SORT the data seguence

should be.
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The descriptor ascendingly-ondered can be defined as follows:

ADJECTIVE ascendingly-ondened
AS IN ascendingly-ondered integral sequence
is integral sequence
SUCH THAT each integer of the sequence
ig - <=

next integer of the sequence

The descriptor peumulation (which might actually be primitive in a
DOPL) can be defined as

NOUN permutation

AS IN permutation of sequence

Is sequence containing each item of
sequence

of-which pemutation is-being-defined
SUCH THAT FOR any item of the permutation
WE HAVE rumber of item = such-that-~for-and
of the pemutation
is = =
mmber of item = such-that-for-and
of sequence
of-which permutation is-being-defined

This contains rather involved conditions in the descriptions after IS and
WE HAVE. These specify that a permutation contains exactly the same items
as the original sequence, but not necessarily in the same order.

The operard description after IS has the form
sequence containing <description of items to be contained>
In the description of the items to be contained, the nested description
sequence of-which peunutation is-being-defined
specifies the seguence in
AS IN permutation of sequence
and the
of-which ... is-being-defined
reverses the descriptor of in
peamutotion of sequence
This could be shortened using an identifier:
AS IN permutation of sequence called x
after which, throughout this request, the seguence of which permutation is
being defined can be referred to as x. It seams better not to use the
identifier.

The description after WE HAVE is a Boolean expression which has the
structure

nuber of <description of an item of the permutation>

is-equal-to

mmber of <description of an item of

the sequerce of which peumutation is being defined>

The noun such~that~for-and refers to the item described after SUCH THAT
FOR. An identifier, for example y, could be used in place of this noun,
if the description after SUCH THAT FOR is modified:
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any item called y
of the permutation
The use of the primitive noun such-that-for-and is to be preferred.
With this noun, it is rather more obvious which item is being referred
to than with a user—introduced identifier such as ¢, which could have
been declared anywhere in the request (or in the whole program).

An ascendingly-ondened permulation of a sequence can be produced
by generating sequences in lexicographic order ard checking all the
corditions given in the definition, and then checking for ascendingly-
ondered-ness.  This would be impossibly inefficient for long parameter
sequences. EBven so, the SORT procedure is a formal specification of
sorting.

Consider now program 3.1, which is a procedure for sorting a
sequence of integers by partitioning it into three groups.

to  PARTITION SORT a seguence of integers:
T CHOOSE any parameter integer.
RESULT IS
result of patition-sont-ing
each paramgter integer < the choose-and,
each parameter integer = the choose-and,
result of parntition-sont-ing
each parameter integer > the choose-and
end

Program 3.1 A DOPL procedure for sorting by partitioning

The procedure contains two requests. The first chooses one of the
integers of the parameter sequence. This is subsequently referred to as
the choose-and.

The RESULT IS request specifies a partition of the parvameter sequence
into three groups, which contain those integers less than the chosen integer,
those equal to it, and those greater than it respectively. The camas in
the operand description of this request can be read as "followed by", and
the descriptor followed-by could be used in their place. 1In the description

result of parntition-sont-ing

each parameter integer < the choose-and
the descriptor paitifion-sont-ing implies a recursive application of the
operator PARTITION SORT to the sequence of parameter integers less than the
chosen integer. There is no need to explicitly specify what the result is
for a nmull sequence, because the following rule can be adopted in a DOPL:

the result of performing any operation on the null sequence is the
null sequence (unless otherwise specified).

Because of the operand descriptions used, it is evident that this
procedure recwisdvely partitions the parameter segquence:
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DEFINITION:

A necuasively pantitioned sequence is either a null sequence, or a
sequence comprising a left partition, followed by a middle partition

consisting of several ecqual items, followed by a right partition, such
that

{a} each item of the left partition is < the middle items,

{b} each item of the right partition is > the middle items,

{c) the left and right partitions are recursively partitioned
sequences.

It is intuitively cbvious that a recursively partitioned sequence is
ascerdingly ordered. This can be proved as follows:

PROPOSITION:
A recursively partitioned seguence is ascerdingly ordered.

PROCF by reductio. Suppose not, and consider the shortest seguence which
is recursively partitioned but not ascerdingly ordered. This sequence must
have at least two adjacent items which are out of order. These cannot both
be in the same partition, otherwise a shorter, recursively partitioned but
non-ascendingly ordered sequence would exist. Also, if one of these items
is in the left partition, the other cannot be in the middle partition
because of the stated property of the left partition. Similarly, if one of
these items is in the right partition, the other camnot be in the middle.
This leads to a contradiction, and so the result is proved.

* * *

From this proposition, program 3.1 can be judged to be a correct sorting
procedure. A DOPL program to sort a sequence of data integers can use the
request

FRINT result of parfition-sont-ing the data sequence
This will print the data integers in ascending order.

Arnother DOPL procedure for sorting by partitioning, this time into two
groups called the Legt-partition and the right-partition, is shown in program
3.2. This procedure can be judged to be correct, given the definitions of
the procedure PARTITION and the adjective partitioned below, by appealing
to a proposition which is similar to the one above for program 3.1.
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PARTITION SORT a seguence consisting—of 1 integer:
RESULT IS the integer

82 I8

PARTITION SORT a sequence consisting-of more-than 1 integer:
PARTITION it.
RESULT 1S
result of partition-soni-ing the
(Legt-partition, night-parntition)
of the partition-result
end

Program 3.2 Another DOPL partition-sorting procedure

In this program, two specifications of PARTITION SORT are given, one
for parameter sequences which consist of only one integer, and one for
other parameter segquences. In a DOPL, operand descriptions can be used
to specify the formal and actual parameters of a procedure. Vhen a
procedure is called, a case analysis on the actual parameters is performed
to match them up to an appropriate procedure specification.

The pronoun it in
PARTITION it

is used to refer back to the previous operand description, which in this
case is the parameter sequence. The PARTITION request is thus equivalent
to

PARTITION the parameter sequerce

Various kinds of pronoun can be included in a DOPL to make operand
descriptions shorter, and, if used appropriately, to make them more
transparent.

The operand description of the second RESULT IS request is factored,
so as to shorten it, using the pair of nouns

Left-partition, right-partition)
It is interpreted by applying

result of partilion-sont-ing the
and

of the partifion-result
to both nouns in the pair. The comma in the pair specifies the
concatenation of the resulting sequences. The parentheses are used for
grouping only.

The effect of the procedure PARTITION can be specified as follows:

to PARTITION a sequence consisting—of more~than 1 integer:
RESULT IS a partitioned penmutation of it
end

where the adjective partitioned is defined as
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ADJECTIVE partitioned
AS IN parniitioned integral sequence
18 sequence comprising

ron null sequence said-to-be the fLeff-parntition,
ron null seguence said-to-be the alght-partition

SUCH THAT each integer of the Lefif-parntition
ig - <=

each integer of the rdight-parntition

There may be many partitioned permutations of a given sequence, and
for any one of these there may be many possible Leff-partitions. The
description

the Legt- parntition of the patifion-result
refers to whichever Leftf-partition results from whichever method is used
to check for partitioned-ness.

Although the obvious interpretation of the above procedure would
involve generating permutations of the parameter sequence, there are other
methods of producing a partitioned pewmutation of a segquence. For
example, the partitioning process involved in Quicksort (Hoare, 1961, 1962;
Foley and Hoare 1971) an IOPL version of which is shown in program 3.3,
will produce a partitioned permutation.

procedure Quichsontivar A : integerariay;
m, n i infegen);
{To sort the components of A between the m'th and n'th}
var 4, 4, | : infegen;
begin if m < n then
begin {partition A between m'th and n'th components}
noi= Allmin) div 215 4 = m; { =
while £ <= { do

begin while ALL]l < 4 do £ := i+];
while # < A [§1 do § := 4-1;
if 1 <= § then begin
ATLY ==: ALf1;
£ oi= 4415 = 4-1

end
end;
Quicksont {A,m, {);
Quicksont [A,4,n}
end
end;

Program 3.3 An JOPL Quicksorting procedure (from Alagic and
Arbib [1978])

A specification of partitioning which is a little closer to that used
in Quicksort is:
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I8

PARTITION a sequence consisting-of more-than 1 integer:
CHOOSE a parameter integer.
RESULT IS a partitioned permutation
of the parameter sequence
SUCH THAT each integer of the Left-pariition
is - <= the choose-ard
ard each integer of the aight-partifion
is - >= the choose-ard

end

One of the main reasons for interest in Quicksort is that it is a
very efficient sorting algorithm. Obviously, the DOPL procedures in
programs 3.1 and 3.2, which are related to Quicksort in a certain sense,
are far less efficient than program 3.3. However, it is less obvious
that Quicksort actually sorts. In the last section of the paper, a
combined DOPL/IOPL programming system is proposed. In such a system, it
would be possible to express an algorithm in its gross, essential terms
using a DOPL, and to transform this to an efficient IOPL version. The
advantage of such a system, over an IOPL-only one, would be that, with a
DOPL version which could be judged to be correct, if correctness—preserving
transformations are used, the final optimised IOPL version would be known
to be correct. At each stage of the transformation, proof of correctness
would have a higher level, correct version to appeal to.

4, AN INTERPRETFR FOR A SIMPLE IOPL

The following is an interpreter for a simple IOPL whose programs are
sequerces of assigrment, read, write, while, if, case and compound
statements. Only simple integer variables are used, and the only
operator is +.

The interpreter does not need to specify input or parsing of the
source program. It is not necessary to use data structures to store the
source statements or variable values.
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Antenpreten :
Ldentifien
sequence <> 'while® or ‘do’ or ‘if' or ‘then’
or 'else' or ‘case' or 'of'
or 'begin' or 'emd' or 'read’
or 'write'’
comprising several alphabetic character .
value
value of integer
the integer .
value
value of Ldentifdlen
last value assign-ed—-to the Lidentiflen .
term
identifien or non-negative integer.
the value of a fewm is well defined.
expression
several feam separated-by '+°'.
value
value of expression
sum of value of each fewm of the expression.
nelational-operaton
.’<l or I<=| or !>I or I>=l or r—1 or I<>I.
Bookean-exphession
expression, nelational-operator, expression.
tThue
true Boolean-exphession
BoolLean-expression contains '<!
Boolean-expression
containing
first expression having value <
value of secord expression of the
BoolLean-expression

{and similar cases for the other relational operators}.

NOUN
15
NOUN
is

is
NOUN
1s
NOUN
is

assignment-statement

ddentifien, ':=', expression.
statement
assignment-statement or
while-statement or
Lf-statement or
case-statement or
compound-statement or
nead-statement or

wite-statement.
while-statement
'while', Boolean-expression, 'do',statement.
edse-part
‘else', statement.
Lg-statement
'if!, Boolean-expressdion,
"then', statement
optionally followed-by elfse-part.
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NOUN case-specdfication

18 several distinct integer separated-by ',’',
':?, statement.

NOUN case-statement

I8 ‘case’, expression, 'of',

several case-specification
not containing integer
contained-in any preceding
case-specdfication
of the case-sfatement
ard separated-by '; 7',

‘erd’.
NOUN compound-statement
15 begin',
several Astatement separated-by ';',
‘erd’.
NOUN read-statement
18 'read', '(', several identifien separated-by',',")'.
NOUN wiite-statement
18 'write', '(', several {dentifier separated-by ',',']'.
NOUN 10PL-program
18 compound-statement .
DATA IS 10PL-program, several integer,
EXECUTE the I0PL-phogham

to EXECUTE a compound-siatement:
EXECUTE each statement

erd

to EXECUTE an assignment-siatement:
ASSIGN vatue of expression
T0 identifion

end

to EXECUTE a while-statement containing frue Boolean-expression:
EXECUTE siatement of the while-statement.
EXECUTE the while~-statement

end
to EXECUTE a while~statement containing non frue Boolean-expression:
DO NOTHING

erd

‘to EXECUTE an Af-sfatement containing true Boolean-expression:
EXECUTE Atatement after 'then'

end

to EXECUTE an A4-statement containing non frue Boolean-expression:
EXECUTE statement of else-parnt

erd

to EXECUTE a case-statement:
EXECUTE statement
of case-specdfication
containing integer = vafue of expression

end
to EXECUTE a head-statement:
TO each {dentifien
ASSIGN first non assign-ed data integer
to EXECUTE a wuite-statement:
PRINT value of each Ldentifien
erd

erd.
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5.  EULERIAN CIRCUITS IN GRAPHS

An Euleriaen Circuit in a grarh is a sequence of arcs such that

(a) each arc of the graph is in the Circuit exactly once,

{b) consecutive arcs in the Circuit end at and begin at the
same node,

{c) the last arc in the Circuit ends at the same node at which
the first one begins.

Walking around an Eulerian Circuit would involve traversing each arc once,
and passing through each ncde one or more times. CObviously, a graph
having an Eulerian Circuit (and no trivial nodes) must be connected.

Given the descriptors node, graph and connected-io, an Euwlerian-Cireudld
of a ghaph can be defined in a DOPL (actually as a sequence of nodes, pairs
of which represent the arcs) as in program 5.1. It is assumed that there
is at most one arc between any two nodes, and that no node is connected
to itself. Rather than use the identifiers a and b in the description
after WE HAVE, the descriptions

first such~that-for-and

secord such~that-for-and
could be used. Naturally, in a language with many operand—description
facilities, a choice can be made in each case whether to use a defined
descriptor such as an identifier, or a primitive descriptor, such as the

nouns above. It seems simpler in this case to use the identifiers.
NOUN Eulesdian-Cincudt
AS IN Eulenian-Cincuit of graph
IS sequence of nede of the graph
SUCH THAT each node of the seguence

is-connected-Lo
next node of the seguence
AND SUCH THAT last node of the sequence
is~connected-to
first node of the sequence
AND SUCH THAT FOR any node called a
of the graph
and any node called b and connected-to a
of the graph
WE HAVE either b is adjacent—to «
in the sequence
or b is the last node of
the sequence
and a is the first node
of the sequence
or b is the first node of
the sequence
and a is the last node
of the sequence
AND SUCH THAT mmber of node
connected-to any node of the graph
is-equal-to 2*mumber of occurrences
of the node in the seguence

Program 5.1 Definition of an Eulerian Circuit of a graph
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The Eulerian Circuits of a given graph can be generated:

CHOOSE any node of the graph.
PRINT each Eulerian-Circuit begimming-with the choose—and
of the graph

Program 5.2 defines a graph as it might be presented for input
punched on cards:

DATA IS  graph punched-on cards

The descriptors node and connected-to are also defined in program 5.2.
The descriptor said-to-be precedes a defining occurrence of a new
descriptor. A relator is a type of descriptor which can be used in
relations.

NOUN node.
Is several alphabetic character.
NOUN connections
Is several distinct node separated-by ', °'.
NOUN node-Aingormation
Is node said-to-be connected-£o
each node of following connections
and not = any node of following connections,
"' connections, ;.
NOUN ghaph
I8 several node-infommation
not containing node
= nede of
any preceding node-infcumation
SUCH THAT relator connected-io is symmetric

Program 5.2 Definition of a graph

From this definition, the description

node of graph
means

node of node-ingoamation of graph
ard can be so interpreted by an implementation. The semantics of
operand-description interpretation can be such as to allow the use of short
descriptions which can be automatically extended according to the defined
structure of sequerces.

The Eulerian Circuits of a data graph can be printed using the above
CHOOSE and PRINT requests. A copy of the graph itself can be printed as
follows

PRINT the data graph
The guestion of whether or not a given connected graph has an

Eulerian Circuit can be resolved without actually generating such a
Circuit, by using the following theorem:
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THEOREM (BEuler)

A connected multi-graph has an Bulerian Circuit if and only if each
node is comnected to an even muwber of other nodes.

PROOF

Only if: An Bulerian Circuit, for each visit to a node, must enter
ard leave the node on different arcs.

If: Proceed by induction on the size of the graph.

The result is true for a graph with one arc and one node.  Suppose
it to be true for a connected graph with up to n arcs, and consider a
graph with nt+l arcs. Choose any node of the graph, and any two nodes
connected to the chosen one. Remove a conmection from these two nodes
to the chosen one, and insert a connection between the two nodes which
bypasses the chosen one. This will result in a graph with either one or
two components, but with one fewer arc. By the irduction hypothesis,
there is an Bulerian Circuit for each of these components. An Eulerian
Circuit for the original graph can be made from these by replacing the
inserted arc by the two removed cnes, and then concatenating the two
Circuits.

* * *

Bssuming the data graph to be connected (an adjective connecfed, to
be applied to &Graphs, can be defined in terms of the existence of
paths between any two nodes - a path is a sequence of arcs with certain
properties, and can be defined in a similar way to an Eulerian Circuit,
which is a path with special properties), the following request can be
used to decide whether a data graph has an Fulerian Circuit:

IF the data graph does-not~contain
node cennected-£to an odd mmber of node
PRINT "this graph has an Fulerian Circuit"
This must be correct because of the above theorem.

6. DOPL SYNIAX AND SEMANTICS

LI

A DOPL program is a sequerce of requests separated by '.7, and
possibly followed by procedure definitions:

NOUN DOPL-progham

Is ‘orogram', name, ':',
several requesi separated-by '.'
optionally followed-by several procedure,'end', '.'.

The program is executed by using each request in turn:

w EXECUTE a DOPL-progham:
EXECUTE each frequest
end

A request is several requestor/operand-descaiption pairs, where a
requestor is an operator, a preposition or a term such as NOUN, ADJECTIVE,
IS, AS IN, SUCH THAT, UNTIL:
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NOUN nequest o
IS several (requeston, operand-description)

An operational reguest is executed by applying the operators to all
the operands of all the operand descriptions. For example, for a unary
operator:

to EXECUTE  nequest comprising (operator, operand-description):
APPLY the operaton
TO each operand of the operand-descaiption

erd

APPLY would be defined for each primitive and user-defined operator (in the
latter case, by executing the requests of the appropriate procedure
definition), but not for user-introduced, non user-defined operators such
as REMOVE (section 2) or ASSIGN (section 4). 'The semantics of these
would be specified in terms of the associated descriptors. For example,
the semantics of xemove-ed, as in

nemove—ed <description of an operand>
is

apply-ed REMOVE to the operand
and the semantics of assign-ed as in

assign-ed <description of an cperand>
to <description of another operand>

is

apply-ed (ASSIGN, TO)
o {the openrand, the other operand)

The basic structure of an operand description is

NOUN operand-descniption
IS several adjective-fype-descripton,
neference, post-description
optionally followed-by
(*of’, nested-operand-description)

vwhere a neference is a description of an actual object, and may be a
noun, a pronoun or an identifier. The adjectives either specify the
generation of all the objects specified by the reference, or possibly,
together with the post-description (an example of which is "<= the

data integer" from section 2), specify the required properties of objects.
In addition to the above structure, cperand descriptions can be combined
using descriptors such as either, or, and, (,) and cthers.

The sequence of all the operands of an operard description used in
an operational request is the sequence comprising each referenced cbject
(with the properties stated in adjectives ard post—descriptions) of each
object specified by the nested operard description.
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7, PROPOSAL FOR A DOPL-BASFD SYSTEM

A language containing a spectrum of DOPL and IOPL features would
make an ideal programming system. Initially, programs could be
writgen using the DOPL, possibly in a highly rnon-procedural fashion,
as for example with SORT in section 3. Provided these were not too
disproportionately inefficient (as with sorting 100 integers using a
strict interpretation of SORT), they could be executed and used
whilst a programmer and/or the implementation were refining the DOPL
version to a more efficient IOPL one.

In the case of a well-defined, self-contained problem, such as
sorting or the generation of primes or circuits in graphs, the DOPL
version of an algorithm could be judged to be correct by appealing to
what might be called the factual basis of the algorithm, this being
the collection of proven properties of the objects involved in the
algorithm. For example, for problems involving primes, the facfual
basis might include the definition of what is meant by a prime and
propositions about the existence of factors of non primes. For
problems involving circuits in graphs, the factual basis might include
the theorem in section 5. In the case of more complex problems,
such as large data-processing applications or the design of a new
programming language, the DOPL version might be developed and agreed
to by a committee of users and analysts, as the correct initial
specification for a required system. In either case, an efficient
implementation of the DOPL version could then be cbtained using various
automatic or marmal correctness-preserving transformations.

The design of a DOPL presents a host of challenging problems.
Many of these remain to be resolved. Nevertheless, the notion of
operand descriiption, and the incorporation of a variety of description
facilities in a programming language, seem to hold the promise of a
superior, general-purpose language for the future.
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