PROCEEDINGS OF THE SYMPOSIUM ON
LANGUAGE DESIGN AND PROGRAMMING METHODOLOGY
SYDNEY, 10-11 SEPTEMBER, 1979

AN EXPERIMENT IN SOFTWARE SCIENCE
Dan B. Johnston and Andrew M. Lister

Department of Computer Science
University of Queensland

ABSTRACT

This paper describes an experiment which was
undertaken for two purposes: firstly to test the
applicability of software science in the realm of
student programming, and secondly to obtain guantit-
ative inferences about the programming language
PASCAL. The results suggest that software science
offers little in the area studied, and possible reasons
for this are discussed.

1. INTRODUCTION

Software science {Halstead, 1977; Fitzsimmons and Love, 1978;
Van der Knijff, 1978) is an embryonic experimental science which
attempts to analyse programs in terms of certain basic measures on
them. It is concerned with quantifying such program properties as
comprehensibility, likelihood of error, and effort to write, and
with establishing relationships, or "laws", which allow these
quantities to be predicted from simple measures such as counts of
operators and operands. The aim of the experiment described in this
paper was to investigate the validity of the software science laws
in the domain of student programming, and in this context to see
what, if anything, software science can tell us about the merits of
PASCAL as a programming language.

More precisely, the experiment was designed to investigate the
following areas:

(1) The correlation between the measure of "goodness" of a program
provided by software science and the subjective assessment of
the same program by a practised programmer (in this case a
tutor marking the program for assessment). In particular we
were interested to learn whether the software science measures
could form a reliable basis for automatic grading of programs.

(2) The accuracy of certain approximations in software science.

(3) The language level of PASCAL, in the sense of "high" or "low",
as quantified by software science.

196

A notable feature of the experiment was the large number of
sample programs measured: about 13,000 programs written by over
500 students. Indeed the availability of this large sample was
a compelling reason for performing the experiment ~ the opportunity
seemed too good to waste. The sample is described in detail in
section 3 of the paper after a brief presentation of notation in
section 2. Section 4 details the measurements made and the results
obtained, and section 5 discusses what conclusions can be drawn.

2. SOFTWARE SCIENCE MEASURES

The fundamental measures of software science, from which all
others are derived, are {for any program)

nl -~ number of distinct operators used
n2 - number of distinct operands used
N1 - number of operator occurrences
N2 - number of operand occurrences

The vocabulary of the program is
n =nl + n2

and the program length is
N = N1+ N2

The volume of a program, which is the minimum number of bits required
to hold it, is

Vo= NZOan

The potential volume V* of an algorithm is the volume of the minimal
program required to express it. Such a minimal program assumes the
algorithm to be implemented as a procedure built into the language
used, and therefore comprises only a single procedure call. V* is

a property of an algorithm, and is independent of the programming
language used.

The ratio
L= VvV

is the level of a program, and measures the degree of compaction which
would be achieved if the language used allowed the algorithm to be
expressed in its minimal form.

The effort required to write a program is given by
E = V/L

This formulation of F is based on the number of mental discriminations
required to write the program, and is therefore an indicator of the
probable number of errors in the program, the time required to write

it, and the effort required to understand it. The measure of "goodness”
of a program which expresses a given algorithm in a given language is
inversely related to E.

The final measure of software science is the language level of
a programming language, given by the product

A = LV*

197

which is asserted to be constant over all well-written programs in
the language. A is the quantitative measure which corresponds to
intuitive ideas of the level of a programming language.

Calculation of the quantities above for a particular program
requires the measurement of nl, n2, NI, and N2 for the program,
together with a knowledge of V* for the corresponding algorithm.
If NI or N2 are not available the estimator

A
N

It

nl Zag2 nl + n2 Zogz nl

is claimed to be a good approximation to the length N, and if V¥ is
unknown then

L =1(2xn8l/(nl x N2)

can be used as an approximation to the program level L (which can
in turn be used to compute approximations and A for E and A).
Justification of the estimators § and L is given by Halstead (1977)
on both theoretical and empirical grounds.

3. THE SAMPLE PROGRAMS

The data for the experiment consisted of 12,886 syntactically
correct PASCAL programs submitted by over 500 first year students
to the University of Queensland's central computer during the first
semester of 1979. Syntactically incorrect programs were excluded
from the sample since the measurements on these would have been
somewhat arbitrary. The sample programs can be divided into two
classes; assigmments, which form part of each student's assessment,
and general programs, which students run for interest but which are
not assessed. The relevant characteristics of each class of programs
are described below.

3.1 Assignments

Each student was expected to submit three assignments for
assessment. The assignments may be briefly described as follows:

Assignment 1. A program to read the subject codes and examination
grades of a hypothetical student, to validate the data, and print
out either the credit points obtained for each subject or an
indication of a data error.

Assignment 2. A program to simulate the action of a faulty clock
over a 12 hour period, printing the actual time at hourly intervals
as measured by the clock.

Assignment 3. A program to read a piece of English text, print all
its distinct words, and to indicate with an asterisk all the distinct
words which have the same initial letter as the final word.

"Ideal" programs for each assignment, written by the lecturer in
charge of the course (Lister), are given in the Appendix.

198

Of course not all students submitted all three
assignments, and the sample size was further reduced by
eliminating

(1) programs which still contained syntax errors,

(2) programs which failed to meet the stated specifications
(for example by simply not working properly),

(3) programs which did more than was asked for (for example
by using elaborate output layout).

The programs in categories (2} and (3}, which under- ox
over-achieved the specifications, can be regarded as not
expressing the same algorithm as the rest, and were therefore
excluded on grounds of comparability. The importance of
excluding these programs was not fully realised at the start
of the experiment, and they were inadvertently included in
the sample for the first assignment. The measurements for
this assignment may therefore be slightly less reliable than
those for the other two, though since the algorithm was
comparatively simple we believe that the number of programs
erroneously included was quite small. The final sample sizes,
after all eliminations, were 423, 376, and 343 for the three
assignments respectively.

A significant characteristic of the assignments was that
each program expressed a known algorithm, and thus (in theory
at any rate) could be associated with a known value of V*.

This implied that no approximations were necessary in calculat-
ing the various measures on the programs, particularly £ and A.
It also implied that this group of p ogramgs could be used to
test the wvalidity of the estimators and A. Unfortunately

the determination of V* proved to be more difficult than the
available literature suggested. The problems which arose, and
our solutions to them, are described in more detail in

section 4.2.

Each assignment submitted to a tutor for assessment was
marked on a scale 0 (very poor) to 4 (very good). This gave
us the opportunity to investigate any correlation between the
effort E required to write (and understand) a program and the
tutor's subjective assessment of the worth of the program as
indicated by the mark awarded. Of course any such correlation
could be clouded by the role in the marking scheme of factors
such as adequacy of comments, which are guite unrelated to
program construction. For the third assignment we therefore
asked the tutors to give their subjective opinion of each
program's clarity on a scale 0 (lowest) to 10 (highest), and
investigated whether any correlation existed between this
measure and E. Eleven tutors were involved, giving a wide
cross-section of experienced opinion, and each tutor assessed
between 30 and 80 programs for each assignment.

199

3.2 General programs

During the semester the students ran a large variety of
programs which were not formally assessed. Some of these
programs were copied from lecture notes or text books, and
some were written as programming exercises. The number of
programs which were syntactically correct, and could therefore
be included in the sample was 11,744. This number includes
preliminary attempts at assignments, since we had no way of
distinguishing assignments from other programs except by what
was submitted for assessment.

The algorithms expressed by the programs in this sample
were unknown and hence the corresponding values of V* were
also unknown. This meant the measures L, E, and X for this
sample could not be fomputed and had to be replaced by the
estimates Z: Et and A. However, provided that the accuracy
of the estimators was confirmed by measurements on the
assignments, the general programs were intended to provide
a useful extension of the total sample. The extent to which
this intention was fulfilled is discussed in later sections.

4. MEASUREMENTS AND RESULTS

4.1 Counting scheme

The PASCAL compiler used by students was modified to
provide the operator and operand counts nl, n2, NI, and N2.
The precise counting scheme used reguired some consideration
as the available literature gave few examples, none of them
for PASCAL. However, by trying to follow the philosophy
which appears to have gquided earlier workers we were able to
adopt a scheme which seemed reasonable. Our resolution of
some possibly contentious problems is outlined below.

(1) Only executable text was counted, all declarative text
being ignored.

(2) Composite symbols such as repegt...until and for...to...do
were considered as single operators.

(3) Each distinct procedure call was regarded as a separate
operator, and commas between parameters were counted as
operators only for procedures (such as readln) which are
variadic.

(4y if...then and if...then...¢lse were regarded as separate
operators, and cagse...of was regarded as a single operator
irrespective of the number of case labels used.

(5) The colon in output field width specifications was regarded
as an operator, and the field width itself as an operand.

The question of whether a different choice of counting
scheme would greatly affect our results is an open one. Work
on PL/1 programs (Elshoff, 1978) suggests that some measures,
such as ¥, are insensitive £ changes in the counting scheme,
while others, such as # and A, are more sensitive. Unfortunately

200

we did not have the rescurces to test Elshoff's conclusion
by trying various counting schemes in our own experiment.

4.2 Determination of V* for assignments

The conventional derivation of V* is to regard the
minimal form of an algorithm as a procedure call with two
operators (the procedure name and a grouping symbol) and
as many operands as there are conceptually distinct parameters.
Since each symbol is used only once,

V* = (2 + nd% log,(2 + nd*)

where n2* is the number of parameters. Thus the calculation
of V* is straightforward provided the parameters can be
readily enumerated.

Unfortunately this was not the case with the algorithms
for our three assignments. How many outputs, for example,
are there from a simulation, and how many inputs does a piece
of English text represent? The accessible literature provides
little guidance: all the examples we can find are of programs
which transform readily identifiable inputs into readily
identifiable results. Furthermore, the inputs and outputs
of these programs are unstructured atomic data items, whereas
those of our own algorithms seem to need a specification of
their structure as part of their definition. It seems
important that this structure be taken into account when
determining the minimum number of symbols in which each
algorithm can be expressed. One way of doing this is to
describe the input and output in terms of abstract structuring
operations, such as sequence and pair, as well as the atomic
data items themselves. The results of this approach are
given below.

Agsignment 1

input structure : sequence of pairs (subject, grade)
input symbols : seguence operator, palr operators, subject, grade
output structure: sequence of triplets (credit, ervror flag 1,
error flag 2)
output symbols : sequence operator, triplet operator, credit,
flag 1, flag 2

Since the input segquence maps one-one to the output sequence,
the sequencing operator need appear only once in a description
of the algorithm. Hence V¥ = 10 1og,10 = 33.22

Assignment 2

input structure : single integer (period of simulation)

input symbols : period

output structure: sequence of pairs (hours, minutes)

output symbols : sequence operator, pailr operator, hours,
minutes

Since no symbol is used more than once, V* = 7 log27 = 19.65

201

Assignment 3

sequence of characters

sequence operator, character

sequence of groups of characters (words)
sequence operator, grouping operator, character

input structure
input symbols
output structure
output symbols

.
:

gince the two sequence operators are different,
v* =7 10927 = 19.65

A different approach to deriving V¥ is to use the relation
V#=LV, and to subgtitute the estimator 2 for L. This produces
an approximat%on * whose proximity to V* is governed by the
proximity,of L to L. Of course it would be foclish to use a
value of I derived from the sample of student programs, since
one of the aims of the experiment was to test the validity of
such a value. However, one program outside the sample which
could be used is the "ideal" program for the assignment in
question. Some justification for this is that the program
contains no "impurities", and therefore should produce an
estimator ﬁ which is close to the true value L (Halstead, 1977).
Although it is clearly dangerous to argue from a sample of one,
we feel that this derivation of an approximation to V?* serves
as a useful supplement to the value of V* obtained earlier.

To put it bluntly, two derivations are better than one, partic-
ularly when neither is confidently arrived at. The values
obtained by both means are shown in Table 1. V¥ is the value
obtained by analytic derivation, while ¥* is that obtained from
the ideal program. Since the discrepancies are small but signifi-
cant, both values were used in subsequent calculations.

A A
y#* v (V* - V%) / v*
Assignment 1 33.22 26.72 0.195
Assignment 2 19.65 22.57 -0.149
Assignment 3 19.65 17.34 0.118
Table 1

4.3 The length estimator ﬁ

The operator and operand counts for each program in fthe
gample were recorded, and from these the values of N and ¥
were computed. The validity of as an approximation to N
was assessed by computing the mean and variance of the ratio
N/N over all programs. The results were

N/ﬁ: Mean = 1.075 Variance = 0.072 Sample size = 12,886

202

The results suggest that ﬁ is a good estimator for N, even

in the domain of student programs. This extends the area of
application of the estimator beyond those already established
by other workers. However, we do not regard as a particularly
important measure, since if it is possible to gather the data

to compute # then it should alsc be possible to gather the data
to compute N itself,

4.4 The level estimator 2

The level estimator ﬁ for each program was computed directly
from the operator and operand counts. The true level [was
computed for those programs (viz. the assignments) for which
V* was known - oy at least for which we had a reasonable value.
The validity of as an estimator for I was then assessed by
computing the mean and variance of the ratio L/L(=E/E) over
all assignments. The results, using both values of V% as
derived in section 4.2, are shown in Table 2.

Assignment | Sample 14 Vad ﬁ/L { = EV%V
number size Mean Std. Mean, Variance, Std.
Dev. Dev.
1 423 491 158 33.22 1.04 0.084 0.29

26.72 1.30 0.130 0.36

18.65 1.39 0.093 0.30

2 376 596 423 1} o5 571 1.21 0.071 0.27

19.65 | 0.93 0.045 0.21

3 343 963 575 | 1734 1.05 0.057 0.24
Table 2

Of the three means derived from the analytic computation

of V* two are reasonably close to unity, while the other
(Assignment 2) is not. The average of the three means is 1.12.
0f the means derived from the estimate of V#* only one (Assignment
3) is close to unity. The average of these means is 1.19. In
all cases the standard deviation is about one guarter of the mean.
n our view these results indicate that for the programs studied

does give a rough estimate of L, but that the estimate is tco
unreliable to be useful.

4.5 The language level A

The language level A { = LV*) was computed for all
assignments, using both values of V* as derived in section 4.2.
The results are shown in Table 3.

203

Assignment | Sample 4 v A
number size Mean std. Mean, Variance, Std.
Dev. Dev.
33.22 2.42 0.386 0.62
1 423 491 158 26.72 1.57 0.161 0.40
192.65 0.68 0.028 0.17
2 376 | 596 423 | 5557| 0.90 0.045 0.22
19.65 0.41 0.005 0.07
3 343 963 575 17.34 .32 0.004 0.06

Table 3

It is apparent that whichever value of V* is taken the
value of A declines sharply over the three assignments, and
certainly does not display the constant behaviour claimed by
Halstead. On reflection we do not find this surprising: indeed
what is surprising is the supposition that X ever could be
constant over a range of programs written in the same language.

Since A = LV%,
and L = V*/V,
we have A = (V*)2/V

Thus for A to be constant it is necessary for V* to vary with

the square root of V. Now V* depends on the number of parameters
of the algorithm, while V depends on the internal complexity of
the algorithm. It seems most unlikely that the complexity of

an algorithm is in any mathematical sense related to the number
of parameters. Indeed, to take a single example, there is an
infinite number of algorithms of widely varying complexity (and
hence widely varying V when implemented in a particular language)
which can all be expressed in the form y := f(x) and which all
therefore have V* = 410924.

In our view the only value of X is as a basis for comparison
of different programming languages. If the same algorithm is
expressed in languages A and B then the ratio A_/X_ can be
regarded as a measure of the relative expressive power of the
languages. However, this ratio is equal to V_/V , so the value
of X as a measure distinct from V is negligib?e.A

4.6 Correlation between effort measures and marks awarded

Two methods were employed for computing an effort measure
for the assignments. The first was to compute the measure F
from the relation E = V2/V*, using both values of V* obtained
in section 4.2. The second was to compute the estimator 2 from

204

the relation % = V/ﬁ. The closeness of these measures for
each of the assignments is shown in the last column of Table 2,
and has been discussed in section 4.4.

Since the effort measure is claimed to be an inverse
measure of the "goodness™ of a program, we plotted histograms
showing the distribution of both E and @ against the marks
awarded by tutors. Programs with a mark of 0 were omitted
since their number was too small to be a walid sample. These
histograms are shown in Figures 1-3. (Only the histograms for
values of F computed from the analytically derived value of V¥
are shown; those for ¥ computed from the estimated value of V*
display a similar shape with a lateral transposition.)

It is clear that the histograms indicate no startling
correlation between either £ or £ and the marks awarded. In
particular, given a program with a certain value of E (or A&)
it would be quite impossible to infer what mark the program
had been given. However, there are some general overall patterns:
the mean and the variance of both Z and tend to decrease as
the number of marks awarded increases. The extent to which this
is true is illustrated in Figures 4-6, which plot the mean and
standard deviation of £ and against marks for each of the three
assignments. (The kink in the graphs for Assignment 2 (Figure 5)
is perhaps explained by the small number (4) of programs awarded
a mark of 1.)

One further point is worth noting. The measure % we have
used here is identical to the measure £ which Gordon (1979) has
suggested is a better measure of pxogra% clarity than E. If
Gordon's suggestion is valid, and if the marks awarded bear any
relation to program clarity (as they should), then one would
expect a higher correlation between @ and the mark than between
E and the mark. This expectation is not borne out by the
evidence of Figures 1~6. We shall return to this point in the
next section, which discusses direct assessment of program clarity.

4.7 Correlation between effort measures and clarity

As mentioned in section 3.1 the tutors marking Assignment 3
were asked to give a subjective assessment of the clarity of
each program. Clarity was assessed independently of the mark
awarded, the aim being to isolate that guality of a program which
might most closely correlate with the effort measures EF and £.
The result is indicated in Figures 7 and 8, which show the
distribution of EF and £ over clarity. Programs with clarity O
and 1 were omitted, since their number (3} was too small to be
a valid sample.

The observations to be made about these histograms are
similar to those made in section 4.6 about the histograms over
marks awarded. There is no useful correlation between either
E or and the clarity of the programs, and certainly no basis
for inferring the clarity of a program from either F or #.

il

b

Mark=2
(Sample=70)

23

20+

So so
Lo} L
364 3k
z
20p Lot
of ﬂ 10]
oLl M 0
0 200+ o
(6
Mark=1
(Sample=19)
A
E
$oy o
for 4o
3o 0}F
%
o 2o}

0]

A

Ml il ll

w03

x/03

20+

205

o} L‘l
o L"rrl-\——ﬂ pany
o o3

20l +
Mark=3
(Sample=158)
A
E
o
GOk
30}
%
2o
w‘m
o]
4 2o+
Xio? 4

30w

4

o w1
[+

+
wlo?
Mark=4
{sanple=175)
A
E
Y
Lo
3o0p
x
Zop
o4
o a
+
%(6* 2

PIGURE 1 DISTRIBUTION OF EFFORT MEASURES OVER MARKS AWARDED (ASSIGNMENT 1)

E E
¢ §i
or 4o
30, 30}
4
ZOI- 2ot
ol =18
| o] a Fr}
o 1+ so{«z-
¥io3 xio®
Mark=1 Mark=2
(Sampie=4) (Sample=33}
A A
g g
S 5o
fop- 4o
3o 30
%
2oF Jop
oy 1 fop
1 {
ol 1] § 0 oo
+
o3 °© xo? =

FIGURE 2 DISTRIBUTION OF

Zor

[—
° Sojt
xio? 4

Mark=3
{Sampie=131)

>

e xio% el

E
50
for
-l
a
4 o 4
+
o xio?
Mark=4
{Sample=208)
A
E
5
4ot
301
4
ps
04
o a 7
el +
»ic®

EFFORT MEASURES OVER MARKS AWARDED (ASSIGNMENT 2)

208

[J]
t
[

so S0 ()

bot o fot
3of 30 30

% % %
pald 2o+ Zob
for ’JLL” o} f‘lﬂ_LL—r ol
o [o o -
ot oo+ o o 1oo]# o et o o os ool
Mark=1 Mark=2 Mark=3 Mark=3
(Sample=15) {Sample=41) iSample=188} {Sample=100)
A A I N
E E E E

5 $o 50 5o
bor o o 0

3ok ot 30 3o

% % % %

2 20+ Zor ok

© ﬂ> M o} o o}
AN Lot il .

o looj4
wo? i o rio® IGOI + o xio* !aoi-j— o xio? fm{i‘

FIGURE 3 DISTRIBUTION OF EFFORT MEASURES OVER MARKS AWARDED (ASSIGNMENT 3)

Effort gffort

3
*o Mean Ry Standard Deviation

20]

Z

FIGURE 4 MEAN AND STANDARD DEVIATION OF EFFORT MEASURES AGAINST MARK (ASSIGNMENT 1)

207

effort effort
xio® wo*
30k Hean 30k Standard Deviation
\E
Z' Z
2ot 2
A
B o e~
B - -

o

[. N Maxk O Mark

! 2 3 4 2

W
L

FIGURE 5 MEAN AND STANDARD DEVIATION OF EFFORT MEASURES AGAINST MARK (ASSIGNMENT 2)

effort effort
3

o 116}
r 2

e Mean Standard Deviation

10 for

Mark
L

I 2 3 A 2 3 A

FIGURE 6 MEAN AND STANDARD DEVIATION OF EFFORT MEASURES AGAINST MARK (ASSIGNMENT 3)

208

01 so oy
o 12 40 3
ot 30 301 %0
% N % 9 ¥
Zor - [Zo' ﬂ 20 2ok
i | . |
Io- rJH " 4 or H rg‘l 0 ioF
| | ! Iy
oL L ol Hi o °
oyt ool + jof xio* fool+ 4 vi® fooiF o wiod o
Tlarity=2 Clarity=2 Clarity=4 Clarity=5
(Sample=1l) {Sample=9) {sample=25} (Sample=29}
50 Sor 50 soy Y
i do; 4ot 40{ jor
]
301 30- 3ok 30t 3or
% 7] 1 7| 5
2 2 2 2ot 20t
|
fol JUULH 0 Jr‘rl_q& 1o oL JL o}
o 1 0 P 0 o0 0 0 ﬂ
0 yof Iol+ 0 4ot ool o s lod+ 0 NS 0 foo]+
Clarity=6 Clarity=7 Clarity=g Claraty=3 Claxity=10
{Sample=§4} {Sample=67} {Sample=75} fSample=48} {Sample=13)
FIGURE 7 DISTRIBUTION OF E OVER CLARITY (ASSIGNMENT 3)
5o 50 5o
% éor 40 O+ ‘
|
30 30 il 30} | 3 |
% % 1 % L% !
or po) j Zor i 2o} |
!
10 | - N]
o LI o L ol 1 A I b %
o wio? feol+ o ciod ol 0 et ookt o wod foolt
Clarity=2 Zlaraty=3 Clarity=4 Clarity=5
{Sample=11) (Sample=9) (Sample=25) (Sample=29)
) % * L i
Gor to- w0 éo‘g- éoi-
3o§- 30- ks 3°|f 30~ F
%o L% % b z i
Tor . 2of 2ok ; ZDT Zor ‘
‘ ! , : i Pl
/or } /oir "U o} | /o(/ai» g
ol L‘J-Ll e o H e R R ‘ ol [
0 Lof o+ o ot ool 0 L ol o ot oot o wot ot
Clarity=6 Clarity=7 Claritysé Tlarity=38 Claraty=10
{Sample=64} {Sample=67} {Sample=75) {Sample=48} {Sample=13}

A
FIGURE 8 DISTRIBUTION OF E OVER CLARITY

(ASSIGNMENT 3)

209

effort effort
for for
o x/0®

Standard Deviation

Clarity, O

Z z,L 6 9 o Z 4 [3 R 0

CclL arity'

FIGURE 9 MEAN AND STANDARD DEVIATION OF EFFORT MEASURES AGAINST CLARITY (ASSIGNMENT 3)

210

However, one can detect an overall decline in the mean values

of both £ and as the clarity increases, as is illustrated

in Figure 9. Figure 9 also illustrates a decline in the standard
deviation of both £ and % as the clarity increases.

Figures 8 and 9 also indicate that Gordon's measure ¥ (=§)
is no better indicator of clarity in this context than Z.

5. SUMMARY AND DISCUSSION

The results of our experiment will probably disappoint the
advocates and disciples of software science. There are a few
observations which lend support to the theory, but most of our
results are either negative or too weak to be useful. In terms of
our original aims we can summarise them as follows:

(1) The correlation between the effort measures and the tutors’
assessment of merit and clarity was small. We can say nothing
more specific than that the better programs tended to have
lower effort measures, and that these measures were less widely
dispersed than for the poorer programs. There are certainly no
grounds for using the effort measures as the basis for automatic
grading of programs.

{2) The reliability of the length estimato & was good, at least in
the mean. However, the variance of N/l indicates that there were
a significant number of programs for which the estimate was not
particularly accurate. In any case, for reasons indicated earlier,
we do not regard as a particularly important measure.

The level estimator 2 is far more important, since from it one
can derive a value for E, even when V* is unknown. Unfortunately
this estimator did not prove very reliable - it showed an average
discrepancy from L of nearly 40% on one assignment, and the
average discrepancy over all assignments was between 10% and 20%.
One reason for this may be that our values of L were themselves
inaccurate, and we shall discuss this possibility in a moment.

{3) We could find no justification whatever for using A to quantify
the language level of PASCAL. Oux cbservations show that X was
by no means constant and for reasons discussed earlier, we would
not expect it to be. In our view a meaningful measure of language
level can only be relative, and can be established only by
comparing the volumes of a number of algorithms programmed in
different languages.

We would stress that our findings, other than that relating to
language level, should not be taken as an indictment of software
seience as a whole. Our experiment investigated the application of
the science to an area where, as far as we know, it had not been
applied before. The results indicate only that in thig area software
science has little to offer. Some possible reasons for this are
discussed below.

21

Firstly, it could be argued that the failure to produce many
positive results is due to weaknesses in the way the experiment was
conducted. Some of these weaknesses derive from the fact that our
data base was transient, in the sense that the only opportunity to
measure each program was on the single occasion it passed through
the compiler (we did not have the resources to store the source code
of all 13,000 programs). This meant that it was impossible, for
example, to see how the results would have varied with different
counting schemes. Similarly, there was only one opportunity to
make subjective assessments of programs - at the time of marking by
tutors - before they were handed back to the students and disappeared
into limbo. This meant that an anomalous measurement could not be traced
back to the source and the reason for the anomaly adduced: all
measurements had to be taken at face value.

Another major weakness lies in the derivation of V* {and hence
L and E). As described in section 4.2 we had congiderable difficulty
in deciding what the value of V* should be, and felt obliged to use
two values in all calculations performed. 1In our defence we might
mention that we performed the same calculations with other, less
likely, values of V* (covering the range 6 log2 6 to 10 log2 i0),
and although the numeric results naturally vary, the same negative
conclusions apply.

A third weakness may lie in our marking scheme for assignments,
which was probably too coarsely grained. A finer grain may have
shown up greater differences between "good" and "bad" programs. An
attempt to provide a fine grain of assessment, and at the same time
to eliminate spurious factors in the marking scheme, was made by
obtaining the clarity measure for Assignment 3. In the event the
results from the clarity measure were no better than those from the
basic marking scheme.

Perhaps the most plausible reason for our largely negative results
is that student programs are often badly written, particularly in the
early stages of learning. They do not always use language features to
best advantage, and they often contain impurities. The presence of
impurities is often gquoted in the literature as being the cause of
anomalies in software science measures: it seems that in the case of
student programs the impurities may be sufficient to render the science
almost useless. This conclusion will certainly be drawn by those who
prefer to attribute our results to deficiencies in the sample rather
than deficiencies in the theory.

In summary we feel that our experiment, despite its weaknesses,
indicates that software science has little to offer in the area of
student programming. It may also have limitations in other fields:
if the science is ever to emerge as a major tool these limitations
need close investigation.

ACKNOWLEDGEMENTS

We would like to thank Dr. Jean-Louis Lassez for his comments on
the original plan for this experiment, and Dr. Jim Welsh for his
contributions to our discussions. We are also grateful to the tutors
for providing their experience and to the students who unwittingly
acted as guinea pigs.

212

REFERENCES

Elshoff J.L. {(1978) "An invegtigation into the effects of the
counting method used on software science measurements”,
ACM Sigplan Notices, Vol 13, No 2.

Fitzsimmons A., Love T. {1978) "A review and evaluation of software
science”, ACM Computing Surveys, Vol 10, No 1.

Gordon R.D. {1979) "A gualitative justification for a measure of
program clarity", IEEE Trans. on Software Engineering,
vel 5, No 2.

Halstead M.H. (1977) "Elements of Software Science", Elsevier
North-Holland, N.Y.

van der Xniijff D.J.J. (1978) "Software physics and program analysis",
Australian Computer Journal, Vol 10, No 3.

213

(%0INIV180 110383 INYHJ 0S°"*%)

(=" *09I071I0 SHO¥YE YIVQ ONx)

(xSAGVED TIVdx)

(xID2ACENS OYTYA#TS)

(xI23I09N0S W02 SINTOS 10383 NSISSV«)

(30VYD JITVANIS)

(x13K SAOUHI ¥IVQ ONx)
(31T INTNd GRV*"°y)
(x*""HIV¥d VIVQ IXIN OVFUx)

(xSYIVd YLVA 30 °"ON»)

{»03LDILAQ WONEF VEAVQ 3T F0UIs)
(+SY¥IVA VIVO 40 *ON “7I04INOD dODTx)
(xE0IVA INTOd 1T0I¥D “AAVED “HO03 LD3CE0Ss)

<

T(.10WPENS NI

£0.306Y49 oY

(¥

XIANdddV

qQALITLIA (SHIMOHNT ON

N

oxm

RHTIFLTYM
£(d3)3414¥
NRB L
HOHHRd ION AT
{9 =: ao
NIBL
= 3QV¥9) WO (T = 3QVyEn) JI1
fanyv
ORF
IANL w1 WOHAT
HoddEs PR XN R
NI93R
TSYIHLN

16

{L
$T0E “00€
ia

N e

v
L
i
-l
~
bl
L]
-4

40 rg0s 8svo
foxn
aINYE = Youya
qouNE L XTLYUM
N1938
NTHL
< FJavyn) ¥0 (T > Igves) ar
4ASTIVE =t HONE3
L0I0YYD “rans)Firye
£(3QVyD “rENSINTIOVIY

Nioae

04 N 03 T =¥

¥ Nod

L(NINTUYHN

INYETOON
£9A9FLRT
£YFIHLRT 24D FRAVHH

NTD94
LR k]
'NO'T
‘ergns
T4

1SSV 4YdN0¥d

7y
v
ny
6t
af
LE
9t
SE
bE
£8
43
€
[i3
¥
74
LT
oz
T4
ve
£2
77
§24
14
3¢
(31
Lt
1
ot
vi
1
71
11
01
«

4]

A

N

214

MILIFL30 (SINOWNA ON

~anv
{xA¥OOIN S.NIODD IY 40iSs) Z1 = HI "YiING
(RY “HY 7D “HIINTIITUR
NIRL
(=300H IHL KO GINTHOHE L00-INYHds) osn W3 41
£an7
oNT
T¢H3 =% HO
10 =2 WD
HIs3q
NTHL
(=3INOQ HNOH NAI07TI JIHLONVs) 09 = H) 3T
(=*RIN ¥ AE SHONVAGY ¥I0710s) LI4HD =% WD
N300 ¥OLASKAN) {487 =1 SHINDVIS
(23ASVD TYHHONs) NIDHH
ASTT
ANBL =3 NINITIS
NTRL
(xSAITLIS ¥I0TOx) SRINDILS 1OK GNY {({0f = HD) d0 {5«HD unxuvv a1
fang
T+HY =1 BY
{0 =3 WY
RIDFE
NIHL
{+3INOT dO0H IVOIDY HIHIONVYS) 09 = WY 47
(x"NIR ¥ AG SIONVAQY SAYRIY BNIL TWALIVR) IT+RY = WY
(+d00] HOTLVINNIS NYIVHs) Lv3dad
(. 9HIL THNLOY FRIL W20 < JNTILINN
£3589V =t ONINOTLS
{ <0887 1Y SIPYIS AO0TIs) 10 =2 WD
0 =¥ WO
£0 =t WY
10 =% WY
NTO7E
{%ONTEDILS ST NOOTD NYHB 308is) INVEI008 TONINOILS
{<SKIH ¢ SEAOH Y3072 ¥ “T¥RAI¥a) {8A99IRY WT “HD PNY “HY
H¥A

1785V MYH9084

215

¢ »AUYSSADIAN AT (399714 080" WIVI INTHd»)
{xQu0M ISYT 30 ¥ALLIT *ISTx)

(xd0O077 A9VHOLS ¥ 1RANT 40 ONF¥)

(«(Q¥0M 3INQ HIIN SNIWECQ 40 ONTw)

(xG40M IHL FYOLS*"" x)

(x***08 771¥IT1400 V LONx)

(xQVTY AQVAYTY IXILI NVISx)
(»STIVOITANG ¥O4 ¥OOT DL ASTIWILINT »)

(xSAIVAS HIIM QIOM (¥ds)

(x11 TUONDT ISTRHAHIOC***%)
(= "HILIVEVHD THOLS***¥)

(" *NINL"""»)

(%***9ND7T 001 LON CHO% A1)

(x"HVHD DTLIAVHATY HOVE HITN TWI0e)
(«INAIOD WIIOVAVHD FSTIVILINIS)

(KT LI O¥3Y"°"s)

(x**°030% ¥ SVM FRIHI d1x)

(xANY 47 QNOK LXIN 30 L¥VIS 04 MDO0Ts)

(»d0OD7T FAYN0LS 3 INdNIx)
(xLNADD QHOM ASTIVIIINTS)

(x1X31 403 FHVYOLSe)

(xQ¥OM INTIUND %)

(x$3LYITTI00 YOS HO¥VIS NI UESNx)

(x@N0M LS¥T A0 ALIVAYHD LST “ATLIVAVHD INTYNODx)
(xRa¥YITTXAY “INNOD (80M “INNOD YILDOVEYEDX)

(xLX31 NT SOHOR 40 "ON “XVAx)
(+040K HFd SHUVHD 40 “ON “X¥W«)

agin31ag (S)youys ON

*aNv £9

an3 %9

N1FI TN 19

0. ,)ILYEM 09
NIHL (3

AR = CTILTIIXIL AT fag
£(CTAXTLIFITEN LS
Rinag 95

0g INOG® 04 T =% T ¥04 Lo
4139 =% Ax¥ v

ang 15

§ =: CINJAMILXIL 0s
£14INOGN =T INDOM 4
NI938 b

NIHI Ly

aNADd LON 37 9y

foN3 "y

T+Y =1 1 (3%

£8 = (T3IX3L =% CGNaOd £¥

NIDu" 42

0a gNagd 10N ONY (INDOmM => I) 3TIHM w

€3877¥4 =t gNROA 0¥

41 =3 1 (33

¢4, . =% €I fE

08 ATIR3 01 INOWD =3 T 303 Le

(.2, < HD)Y ¥0 {.¥., > BD) TIINL QF

(1a)ayss 13

Hd K ¥E

T+INDHT =% LNOHD et
{43 =t CINJHOIS [
RI9¥s TE

NTHL ng

WITHD => LNDHD 47 x4
1LVIday ne

{1 =3 INORD [x4

NIDdEe ne

NTHL Sz

403 LON 3T ve.

£a03 40 (.2, => "u1) ONY (LY. =< MDY TIIRN £Z

(HD)Qya¥ 7e
Iyagay 12
HIDuE® n7

00 307 LON 7TITHM &1

1 =3 INDOM a4t

w1999 (A4

£99NTHLS 40 C[WITOM ** TIAVIEY 1iX3l o3
1EONTHIS S vl

INVEI0DE 2aNN0d et

£5YHD S AEN ‘UD 1

LYADALNT 3T ZINDOM “INDHD i1

MVA 0T

ZYYHD 40 EWITIBD °* TIAVHEY QINOV4 = BIONIMLS
4dAL

~
o
#oH

WITHD

A

7

i

9

WITOM &
v

1SNOD ¢
4

T

{ESSY WYHO0Ud

