
PROCEEDINGS OF THE SYMPOSIUM ON 
LANGUAGE DESIGN AND PROGRAMMING METHODOLOGY 
SYDNEY, 10-11 SEPTEMBER, 1979 

AN EXPERIMENT IN SOFTWARE SCIENCE 
Dan B. Johnston and Andrew M. Lister 

Department of Computer Science 
University of Queensland 

ABSTRACT 

This paper describes an experiment which was 
undertaken for two purposes: firstly to test the 
applicability of software science in the realm of 
student programming, and secondly to obtain quantit- 
ative inferences about the programming language 
PASCAL. The results suggest that software science 
offers little in the area studied, and possible reasons 
for this are discussed. 

1. INTRODUCTION 

Software science (Halstead, 1977; Fitzsimmons and Love, 1978; 
Van der Knijff, 1978) is an embryonic experimental science which 
attempts to analyse programs in terms of certain basic measures on 
them. It is concerned with quantifying such program properties as 
comprehensibility, likelihood of error, and effort to write, and 
with establishing relationships, or "laws", which allow these 
quantities to be predicted from simple measures such as counts of 
operators and operands. The aim of the experiment described in this 
paper was to investigate the validity of the software science laws 
in the domain of student programming, and in this context to see 
what, if anything, software science can tell us about the merits of 
PASCAL as a programming language. 

More precisely, the experiment was designed to investigate the 
following areas: 

(i) The correlation between the measure of "goodness" of a program 
provided by software science and the subjective assessment of 
the same program by a practised programmer (in this case a 
tutor marking the program for assessment). In particular we 
were interested to learn whether the software science measures 
could form a reliable basis for automatic grading of programs. 

(2) The accuracy of certain approximations in software science. 

(3) The language level of PASCAL, in the sense of "high" or "low", 
as quantified by software science. 



196 

A notable feature of the experiment was the large number of 

sample programs measured: about 13,000 programs written by over 
500 students. Indeed the availability of this large sample was 

a compelling reason for performing the experiment - the opportunity 

seemed too good to waste: The sample is described in detail in 

section 3 of the paper after a brief presentation of notation in 

section 2. Section 4 details the measurements made and the results 
obtained, and section 5 discusses what conclusions can be drawn. 

2. SOFTWARE SCIENCE MEASURES 

The fundamental measures of software scienceu from which all 

others are derived, are (for any program) 

nl - number of distinct operators used 
n2 - number of distinct operands used 

N1 - number of operator occurrences 

N2 - number of operand occurrences 

The vocabulary of the program is 

n = nl + n2 

and the program length is 

N = N1 + N2 

The volume of a program, which is the minimum number of bits required 

to hold it, is 

V = Nlog2n 

The potential volume V* of an algorithm is the volume of the minimal 

program required to express it. Such a minimal program assumes the 

algorithm to be implemented as a procedure built into the language 

used, and therefore comprises only a single procedure call. V * is 
a property of an algorithm, and is independent of the progran~ning 

language used. 

The ratio 

L= V*/V 

is the level of a program, and measures the degree of compaction which 

would be achieved if the language used allowed the algorithm to be 

expressed in its minimal form. 

The effort required to write a program is given by 

E= V/L 

This formulation of E is based on the number of mental discriminations 

required to write the program, and is therefore an indicator of the 
probable number of errors in the program, the time required to write 
it, and the effort required to understand it. The measure of "goodness" 

of a program which expresses a given algorithm in a given language is 

inversely related to E. 

The final measure of software science is the l~a~e level of 
a programming language, given by the product 

h = LV* 



197 

which is asserted to be constant over all well-written programs in 
the language. ~ is the quantitative measure which corresponds to 
intuitive ideas of the level of a programming language. 

Calculation of the quantities above for a particular program 
requires the measurement of nl, n2, N1, and N2 for the program, 
together with a knowledge of V* for the corresponding algorithm. 
If N1 or ~ are not available the estimator 

A 
N = nl log 2 nl + n2 log 2 n2 

is claimed to be a good approximation to the length N, and if V* is 
unknown then 

L = (2 x n2)/(nl x N2) 

can be used as an approximation to the program l~vel L (which can 
in turn be used to compute approximations E and h for E and h). 
Justification of the estimators N and L is given by Halstead (1977) 
on both theoretical and empirical grounds. 

3. THE SAMPLE PROGRAMS 

The data for the experiment consisted of 12,886 syntactically 
correct PASCAL programs submitted by over 500 first year students 
to the University of Queensland's central computer during the first 
semester of 1979. Syntactically incorrect programs were excluded 
from the sample since the measurements on these would have been 
somewhat arbitrary. The sample programs can be divided into two 
classes; assi~nen~8, which form part of each student's assessment, 
and general programs, which students run for interest but which are 
not assessed. The relevant characteristics of each class of programs 
are described below. 

3.1 Assignments 

Each student was expected to submit three assignments for 
assessment. The assignments may be briefly described as follows~ 

Assignment i. A program to read the subject codes and examination 
grades of a hypothetical student, to validate the data, and print 
out either the credit points obtained for each subject or an 
indication of a data error. 

Assignment 2. A program to simulate the action of a faulty clock 
over a 12 hour period, printing the actual time at hourly intervals 
as measured by the clock. 

Assignment 3. A program to read a piece of English text, print all 
its distinct words, and to indicate with an asterisk all the distinct 
words which have the same initial letter as the final word. 

"Ideal" programs for each assignment, written by the lecturer in 
charge of the course (Lister), are given in the Appendix. 



198 

Of course not all students submitted all three 
assignments, and the sample size was further reduced by 
eliminating 

(i) programs which still contained syntax errors, 

(2) programs which failed to meet the stated specifications 
(for example by simply not working properly), 

(3) programs which did more than was asked for (for example 
by using elaborate output layout). 

The programs in categories (2) and (3), which under- or 
over-achieved the specifications, can be regarded as not 
expressing the same algorithm as the rest, and were therefore 
excluded on grounds of comparability. The importance of 
excluding these programs was not fully realised at the start 
of the experiment, and they were inadvertently included in 
the sample for the first assignment. The measurements for 
this assignment may therefore be slightly less reliable than 
those for the other two, though since the algorithm was 
comparatively simple we believe that the number of programs 
erroneously included was quite small. The final sample sizes, 
after all eliminations, were 423, 376, and 343 for the three 
assignments respectively. 

A significant characteristic of the assignments was t~hat 
each program expressed a known algorithm, and thus (in theory 
at any rate) could be associated with a known value of V ~. 
This implied that no approximations were necessary in calculat- 
ing the various measures on the programs, particularly E and I. 
It also implied that this group of p~ogram~ could be used to 
test the validity of the estimators E and ~. Unfortunately 
the determination of V ~ proved to be more difficult than the 
available literature suggested. The problems which arose, and 
our solutions to them, are described in more detail in 
section 4.2. 

Each assignment submitted to a tutor for assessment was 
marked on a scale 0 (very poor) to 4 (very good). This gave 
us the opportunity to investigate any correlation between the 
effort E required to write (and understand) a program and the 
tutor's subjective assessment of the worth of the program as 
indicated by the mark awarded. Of course any such correlation 
could be clouded by the role in the marking scheme of factors 
such as adequacy of comments, which are quite unrelated to 
program constraction. For the third assignment we therefore 
asked the tutors to give their subjective opinion of each 
program's clarity on a scale 0 (lowest) to i0 (highest), and 
investigated whether any correlation existed between this 
measure and E. Eleven tutors were involved, giving a wide 
cross-section of experienced opinion, and each tutor assessed 
between 30 and 80 programs for each assignment. 



199 

3.2 General programs 

During the semester the students ran a large variety of 

programs which were not formally assessed. Some of these 

programs were copied from lecture notes or text books, and 
some were written as programming exercises. The number of 

programs which were syntactically correct, and could therefore 

be included in the sample was i1,744. This number includes 
preliminary attempts at assignments, since we had no way of 
distinguishing assignments from other programs except by what 

was submitted for assessment. 

The algorithms expressed by the programs in this sample 

were unknown and hence the corresponding values of V* were 

also unknown. This meant the measures L, E~ and ~ for this 

sample could ~ot be ~omputed and had to be replaced by the 
estimates bj ~ and I. However, provided that the accuracy 

of the estimators was confirmed by measurements on the 

assignments, the general programs were intended to provide 

a useful extension of the total sample. The extent to which 
this intention was fulfilled is discussed in later sections. 

4. MEASUREMENTS AND RESULTS 

4.1 Counting scheme 

The PASCAL compiler used by students was modified to 

provide the operator and operand counts nl, n2j N1, and N2. 

The precise counting scheme used required some consideration 

as the available literature gave few examples, none of them 

for PASCAL. However, by trying to follow the philosophy 
which appears to have guided earlier workers we were able to 

adopt a scheme which seemed reasonable. Our resolution of 

some possibly contentious problems is outlined below. 

(I) Only executable text was counted, all declarative text 

being ignored. 

(2) Composite symbols such as re_~peat...until and for...to...do 
were considered as single operators. 

(3) Each distinct procedure call was regarded as a separate 

operator, and commas between parameters were counted as 

operators only for procedures (such as readln) which are 

variadic. 

(4) if...then and if...then...else were regarded as separate 
operators, and dase...ofwas regarded as a single operator 
irrespective of the number of case labels used. 

(5) The colon in output field widthspecifications was regarded 

as an operator, and the field width itself as an operand. 

The question of whether a different choice of counting 
scheme would greatly affect our results is an open one. Work 
on PL/I programs (Elshoff, 1978) suggests that some measures, 

such as V, are insensitive t~ changes in the counting scheme, 
while others, such as E and A, are mere sensitive. Unfortunately 



200 

we did not have the resources to test Elshoff's conclusion 

by trying various counting schemes in our own experiment. 

4.2 Determination of V ~ for assignments 

The conventional derivation of V* is to regard the 
minimal form of an algorithm as a procedure call with two 

operators (the procedure naxne and a grouping symbol) and 

as many operands as there are conceptually distinct parameters. 

Since each symbol is used only once, 

V* = (2 + n~*) iog2(2 + n2*) 

where n2* is the number of parameters. Thus the calculation 

of V* is straightforward provided the parameters can be 

readily enumerated. 

Unfortunately this was not the case with the algorithms 

for our three assignments. How many outputs, for example, 

are there from a simulation, and how many inputs does a piece 

of English text represent? The accessible literature provides 

little guidance: all the examples we can find are of programs 

which transform readily identifiable inputs into readily 

identifiable results. Furthermpre, the inputs and outputs 

of these programs are unstructured atomic data items, whereas 

those of our own algorithms seem to need a specification of 

their structure as part of their definition. It seems 
important that this structure be taken into account when 

determining the minimum number of symbols in which each 

algorithm can be expressed. One way of doing this is to 

describe the input and output in terms of abstract structuring 
operations, such as sequence and pair, as well as the atomic 

data items themselves. The results of this approach are 

given below. 

Assignment 1 

input structure : sequence of pairs (subject, grade) 

input sln~bols : sequence operator, pair operators, subject, grade 

output structure: sequence of triplets (credit, error flag i, 

error flag 2) 

output symbols : sequence operator, triplet operator, credit, 

flag i, flag 2 

Since the input sequence maps one-one to the output sequence, 
the sequencing operator need appear only once in a description 

of the algorithm. Hence V* = i0 log210 = 33.22 

Assignment 2 

input structure : single integer (period of simulation) 

input symbols : period 
output structure: sequence of pairs (hours, minutes) 
output symbols : sequence operator, pair operator, hours, 

minutes 

Since no symbol is used more than once, V* = 7 log27 = 19.65 



201 

Assignment 3 

input structure : sequence of characters 
input symbols : sequence operator, character 

output structure: sequence of groups of characters (words) 
output symbols : sequence operator, grouping operator, character 

Since the two sequence operators are different, 

V* = 7 iog27 = 19.65 

A different approach to deriving V* is to use the relation 
V*=LV, and to substitute the estimator ~ for L. This produces 
an approximation V* whose proximity to V* is governed by the 
proximitYAof L to L. Of course it would be foolish to use a 
value of L derived from the sample of student programs, since 
one of the aims of the experiment was to test the validity of 
such a value. However, one program outside the sample which 
could be used is the "ideal" program for the assignment in 
question. Some justification for this is that the program 
contains no "impurities", and therefore should produce an 
estimator ~ which is close to the true value L (Halstead, 1977). 
Although it is clearly dangerous to argue from a sample of one, 
we feel that this derivation of an approximation to V* serves 
as a useful supplement to the value of V* obtained earlier. 
To put it bluntly, two derivations are better than one, partic- 
ularly when neither is confidently arrived at. The values 
obtained by both means are shown in Table i. V* is the value 
obtained by analytic derivation, while ~* is that obtained from 

the ideal program. Since the discrepancies are small but signifi- 

cant, both values were used in subsequent calculations. 

v~ ~ (v~ - ~ )  / v~ 

Assignment 1 33.22 26.72 0.195 
Assignment 2 19.65 22.57 -0.149 
Assignment 3 19.65 17.34 0.118 

Table 1 

4.3 The lengt h estimator 

The operator and operand counts for each program in ~e 
sample were recorded, and from t~ese the values of N and N 
were computed. The validity of N as an approximation to N 
~ assessed by computing the mean and variance of the ratio 

over all programs. The results were 

N~: Mean = 1.075 Variance = 0.072 Sample size = 12,886 



202 

The results suggest that ~ is a good estimator for N, even 
in the domain of student programs. This extends the area of 

application of the estimator beyond those already established 

by other workers. However, we do not regard ~ as a particularly 

important m~asure, since if it is possible to gather the data 

to compute N then it should also be possible to gather the data 

to compute N itself. 

4.4 The level estimator 

The level estimator ~ for each program was computed directly 

from the operator and operand counts. The true level L was 

computed for those programs (viz. the assignments) for which 

V* was known - o~ at least for which we had a reasonable value. 

The validity of b as an estimator for L was t~en assessed by 

computing the mean and variance of the ratio L/L(=E/E) over 

all assignments. The results, using both values of V* as 
derived in section 4.2, are shown in Table 2. 

As s ignmen t 
number 

Sample 
size 

423 

376 

343 

v v* t/L < = F/~) 
Mean Std. Mean, Variance, Std. 

Dev. Dev. 

33.22 1.04 0.084 0.29 
491 158 

26.72 1.30 0.130 0.36 

596 423 

963 575 

19.65 1.39 0.~093 0.30 
22.57 1.21 0.071 0.27 

19.65 0.93 0.045 0.21 

17.34 1.05 0.057 0.24 

Table 2 

Of the three means derived from the analytic computation 

of V* two are reasonably close to unity, while the other 

(Assignment 2) is not. The average of the three means is 1.12. 

Of t~e means derived from the estimate of V* only one (Assignment 
3) is close to unity. The average of these means is 1.19. In 

all cases the standard deviation is about one quarter of the mean. 

~ n our view these results indicate that for the programs studied 

does give a rough estimate of L, but that the estimate is too 

unreliable to be useful. 

4.5 The languageo level 1 

The language level I ( = LV* ) was computed for all 

assignments, using both values of V* as derived in section 4.2. 

The results are shown in Table 3. 



Assignment 

number 

H 

Sample 

size 

423 

376 

343 

203 

Y 

Mean Std. 

Dev. 

491 158 

596 423 

963 575 

V* 

33.22 
26.72 

19.65 

22.57 

19.65 

17.34 

1 

Mean, Variance, Std. 

Dev. 

2.42 0.386 0.62 

1.57 0.161 0.40 

0.68 0.028 0.17 

0.90 0.049 0.22 

0.41 0.005 0.07 

0.32 0.004 0.06 

Table 3 

It is apparent that whichever value of V* is taken the 

value of I declines sharply over the three assignments, and 

certainly does not display the constant behaviour claimed by 

Halstead. On reflection we do not find this surprising: indeed 
what is surprising is the supposition that I ever could be 

constant over a range of programs written in the same language. 

Since I = LV*, 
and L = V*/~ 
we have ~ = (V*)2/V 

Thus for I to be constant it is necessary for V* to vary with 

the square root of V. Now V* depends on the number of parameters 

of the algorithm, while V depends on the internal complexity of 

the algorithm. It seems most unlikely that the complexity of 

an algorithm is in any mathematical sense related to the number 

of parameters. Indeed, to take a single example, there is an 

infinite number of algorithms of widely varying complexity (and 
hence widely varying V when implemented in a particular language) 

which can all be expressed in the form y := f(x) and which all 
therefore have V* = 41og24. 

In our view the only value of I is as a basis for comparison 

of different programming languages. If the same algorithm is 

expressed in languages A and B then the ratio IA/IB can be 
regarded as a measure of the relative expressive power of the 

languages. However, this ratio is equal to V /V , so the value 
• A 

of I as a measure distinct from V is negligible. 

4.6 Correlation between effort measures and marks awarded 

Two methods were employed for computing an effort measure 

for the assignments. The first was to compute the measure E 

from the relation E = V2/V ~, using both values of V* obtained 
in section 4.2. The second was to compute the estimator ~ from 



204 

~A 
the relation = V/L. The closeness of these measures for 

each of the assignments is shown in the last column of Table 2, 

and has been discussed in section 4.4. 

Since the effort measure is claimed to be an inverse 
measure of the "goodness" of a program,&we plotted histograms 

showing the distribution of both E and E against the marks 
awarded by tutors. Programs with a mark of 0 were omitted 

since their number was too small to be a valid sample. These 

histograms are shown in Figures 1-3. (Only the histograms for 

values of E computed from the analytically derived value of V ~ 

are shown; those for E computed from the estimated value of V ~ 

display a similar shape with a lateral transposition.) 

It is clear that the histog{ams indicate no startling 
correlation between either E or E and the marks awarded. In 

particular, given a program with a certain value of E (or ~) 

it would be quite impossible to infer what mark the program 

had been given. However, there are someAgeneral overall patterns: 

the mean and the variance of both E and E tend to decrease as 
the number of marks awarded increases. The extent to which this 

is true is illustrated in Figures 4-6, which plot the mean and 

standard deviation of E and E against marks for each of the three 

assignments. (The kink in the graphs for Assignment 2 (Figure 5) 
is perhaps explained by the small nttmber (4) of programs awarded 

a mark of 1.) 

One further point is worth noting. The measure ~ we have 

used here is identical to the measure E which Gordon (1979) has 
c 

suggested is a better measure of program clarity than E. If 

Gordon's suggestion is valid, and if the marks awarded bear any 

relation to program clarity (as they&should), then one would 

expect a higher correlation between E and the mark than between 

E and the mark. This expectation is not borne out by the 
evidence of Figures 1-6. We shall return to this point in the 

next section, which discusses direct assessment of program clarity. 

4.7 Correlation between effort measures and clarity 

As mentioned in section 3.1 the tutors marking Assignment 3 
were asked to give a subjective assessment of the clarity of 

each program. Clarity was assessed independently of the mark 

awarded, the aim being to isolate that quality of a program ~hich 
might most closely correlate with the effort measures E and ~. 

The result is indicatej in Figures 7 and 8, which show the 

distribution of E and E over clarity. Programs with clarity 0 

and 1 were omitted, since their number (3) was too small to be 
a valid sample. 

The observations to be made about these histograms are 

similar to those made in section 4.6 about the histograms over 
marks awarded. There is no useful correlation between either 

E or ~ and the clarity of the programs, and certainly noAbasis 
for inferring the clarity of a program from either E or E. 



N
I 

~ 
--

 
I 

~ 
~ 

~ 
~ 

~i ~ 

o°
 

,~
 
.~
 

ff
l 

o 
~ 

~ 
~ 

~
 

~
 

o
 

~
 

o
 

~
 

~
 

~
 

S"
 

o
 

~
 

o
 

~
 

~
 

~
 

S
 ~
 

o 
.

.
.

.
 

ii
 

v 

~ 
-
-
r
.
T
.
-
-
 

0 0"
I 



206 

E 

:t 
% 3° i 

'°i 
4 

O 

E 

:1 

O ~[0~ fool+ 

Mark=l 
(Sample=15) 

Mark=2 Mark=3 
{S~mple=41) ~Sample=188) 

Mark=3 
(Sample=lO0) 

3¢ 
% 

E~ 

/oo 

E 

o ~< [ 0  3' 

FIGURE 3 DISTRIBUTION OF EFFORT MEASURES OVER MARKS AWARDED (ASSIGNMENT 3) 

Effort 

~ b  3 

2c 

I¢ 

l 

Effort 

Mean ~J0~ Standard Deviation 

2~ 

f; 

t 2 5 4- 

FIGURE 4 MEAN AND STANDARD DEVIATION OF EFFORT MEASURES AGAINST MA~, (ASSIGNMENT i) 



207 

effort 

2~ 

2¢ 

effort 

M~an 30i 

2O 

¢ 

Standard Deviatlon 

Fmrk 

FIGURE 5 MEAN AND STANDARD DEVIATION OF EFFORT MEASURES AGAINST MARK (ASSIGNMENT 2) 

effort effort 

4o 

2o 

/0 

Mark I 0 

4 

Standard Deviatlon 

Mark 

FIGURE 6 MEAN AND STANDARD DEVIATION OF EFFORT MEASURES AGAINST MARK (ASSIGNMENT 3) 



2or ! 

0 ~(0 ) 0 x[O ~ 

Clarlty=2 Clarlty=3 
[Sample=ll) FSample=9) 

208 

'°I 
% 3° I 

°I, ' 
r q 

o ~io~ /ooi+ 

7 
clarlty=4 Clarity=5 
~sample=25) (Sample=29) 

0 0 xlO ~ (00[+ 

3Or 

Z ~ 3° I 7o20! 
[ok 

o xlo3 lodl+ xlO~ ! 0 XlO~ 

Clazlty=6 Clar!ty=7 Clarlty=8 Clar~ty=9 Claxitf=lO 
{Sample=64) {S~ple=67) {Sample~75) ~sample=48) (sample=f3) 

FIGURE 7 DISTRIBUTION OF E OVER CLARITY (ASSIGNMENT 3) 

o x loS  Icol~ o xlo] lmie 0 + 

1 i 

o 

Clarlty=2 CLarity=3 Clarlty=4 Clarlty=5 
! Sample~ll] ,[ S ~ilp le =9 ) fSample=25) (Sample=29) 

To 

0~0 o x~o I + O ~lo~ !ooi+ °O ~tO~ ]ool~ o x(0 ~ loq÷ 

Clarlty=6 Clarlty=7 Clar~ty=8 clarl ty=9 Clarl ty=l 0 
( Sample=64 ) (S~mple=67) (sample=75) {sample=48) (Sampl e=13 ) 

A 
FIGURE 8 DISTRIBUTION OF E OVER CLARITY (ASSIGNMENT 3) 



effort 

,td 

/;k% 

Mean 

20g 

effort 

7o 
/O ~ 

~0 

70 

~o 

" ~o 

~o 

7o 

O Clarity I 
2 ~ ~ ~ ,o 

Standard Deviation 

70 

2o 

1o 

0 
2 

h 

\ // 

/o 

FIGURE 9 MEAN AND STANDARD DEVIATION OF EFFORT MEASURES AGAINST CLARITY (ASSIGNMENT 3) 



210 

However, one c~n detect an overall decline in the mean values 

of both E and E as the clarity increases, as is illustrated 

in Figure 9. Figure 9 also illustrates a decline in the standard 

deviation of both E and ~ as the clarity increases. 

Figures S and 9 also indicate that Gordon's measure E (=~) 
c 

is no better indicator of clarity in this context than E. 

5. SUM~RY AND DISCUSSION 

The results of our experiment will probably disappoint the 

advocates and disciples of software science. There are a few 

observations which lend support to the theory, but most of our 

results are either negative or too weak to be useful. In terms of 

our original aims we can summarise them as follows: 

(1) The correlation between the effort measures and the tutors' 

assessment of merit and clarity was small. We can say nothing 

more specific than that the better programs tended to have 
lower effort measures, and that these measures were less widely 

dispersed than for the poorer programs. There are certainly no 

grounds for using the effort measures as the basis for automatic 

grading of programs. 

A 
(2) The reliability of the length estimato~ N was good, at least in 

the mean. Howeverf the variance of N/~ indicates that there were 

a significant number of programs for which the estimate was not 

particularly accurate. In any case, for reasons indicated earlier, 

we do not regard N as a particularly important measure. 

The level estimator ~ is far more important, since from it one 

can derive a value for E, even when V ~ is unknown. Unfortunately 

this estimator did not prove very reliable - it showed an average 

discrepancy from L of nearly 40% on one assignment, and the 
average discrepancy over all assignments was between 10% and 20%. 

One reason for this may be that our values of L were themselves 

inaccurate, and we shall discuss this possibility in a moment. 

(3) We could find no justification whatever for using I to quantify 

the language level of PASCAL. Our observations show that I was 

by no means constant and for reasons discussed earlier, we would 

not expect it to be. In our view a meaningful measure of language 

level can only be relative, and can be established only by 

comparing the volumes of a number of algorithms programmed in 

different languages. 

We would stress that our findings, other than that relating to 

language level, should not be taken as an indictment of software 
science as a whole. Our experiment investigated the application of 

the science to an area where, as far as we know, it had not been 
applied before. The results indicate only that in this area software 

science has little to offer. Some possible reasons for this are 

discussed below. 



211 

Firstly, it could be argued that the failure to produce many 
positive results is due to weaknesses in the way the experiment was 
conducted. Some of these weaknesses derive from the fact that our 
data base was transient, in the sense that the only opportunity to 
measure each program was on the single occasion it passed through 
the compiler (we did not have the resources to store the source code 
of all 13,000 programs). This meant that it was impossible, for 
example, to see how the results would have varied with different 
counting schemes. Similarly, there was only one opportunity to 
make subjective assessments of programs - at the time of marking by 
tutors - before they were handed back to the students and disappeared 
into limbo. This meant that an anomalous measurement could not be traced 

back to the source and the reason for the anomaly adduced: all 
measurements had to be taken at face value. 

Another major weakness lies in the derivation of V ~ (and hence 
L and E). As described in section 4.2 we had considerable difficulty 
in deciding what the value of V * should be, and felt obliged to use 
two values in all calculations performed. In our defence we might 
mention that we performed the same calculations with other, less 

likely, values of V ~ (covering the range 6 log 2 6 to i0 log 2 i0), 
and although the numeric results naturally varz the same negative 
conclusions apply. 

A third weakness may lie in our marking scheme for assignments, 
which was probably too coarsely grained. A finer grain may have 
shown up greater differences between "good" and "bad" programs. An 
attempt to provide a fine grain of assessment, and at the same time 
to eliminate spurious factors in the marking schem~ was made by 
obtaining the clarity measure for Assignment 3. In the event the 
results from the clarity measure were no better than those from the 
basic marking scheme. 

Perhaps the most plausible reason for our largely negative results 
is that student programs are often badly written, particularly in the 
early stages of learning. They do not always use language features to 
best advantage, and they often contain impurities. The presence of 
impurities is often quoted in the literature as being the cause of 
anomalies in software science measures: it seems that in the case of 
student programs the impurities may be sufficient to render the science 
almost useless. This conclusion will certainly be drawn by those who 
prefer to attribute our results to deficiencies in the sample rather 
than deficiencies in the theory. 

In summary we feel that our experimen~ despite its weaknesses, 
indicates that software science has little to offer in the area of 
student programming. It may also have limitations in other fields: 
if the science is ever to emerge as a major tool these limitations 
need close investigation. 

ACKNOWLEDGEMENTS 

We would like to thank Dr. Jean-Louis Lassez for his comments on 
the original plan for this experiment, and Dr. Jim Welsh for his 
contributions to our discussions. We are also grateful to the tutors 
for providing their experience and to the students who unwittingly 
acted as guinea pigs. 



212 

REFERENCES 

Elshoff J.L. (1978) "An investigation into the effects of the 
counting method used on software science measurements ~', 
ACM Sigplan Notices, Vol 13, No 2. 

Fitzsimn~ns A~, Love T. (1978) "A review and evaluation of software 
science", ACM Computing Surveys, Vol i0, No I. 

Gordon R.D~ (1979) "A qualitative justification for a measure of 
program clarity", IEEE Trans. on Software Engineering, 
Vol 5, No 2. 

Halstead M.H. (1977) "Elements of Software Science", Elsevier 
North-Holland, N.Y. 

Van de, Knijff D.J.J. (1978) "Software physics and program analysis", 
Australian Computer Journal, Vol i0, No 3. 



A
P

P
E

N
D

IX
 

1 
P
R
O
G
R
A
M
 

A
S
S
I
;
 

2 3 
~

A
~

 
4
 

S
D
B
J
I
 
G
R
A
D
E
,
 

C
P

: 
I
N
T
E
G
E
R
;
 

b 
I
.
 

~
: 

i
N
T
E
G
E
R
;
 

(,
 

E
R
R
O
R
:
 

U
O
O
L
E
A
N
;
 

V 

b
E

G
1

N
 

i
0
 

F
O
R
 
~ 

:
=
 
i 

T
O
 
N 

D
O
 

I
I
 

~
E
G
I
N
 

i
z
 

R
E
A
D
L
N
(
S
U
B
J
.
 

G
R
A
D
E
)
;
 

1
3
 

~
R
J
T
E
(
S
U
B
J
I
 

G
R
A
D
E
)
~
 

1
4
 

E
R
R
O
R
 

:
=
 
F
A
L
S
E
;
 

l
u
 

IF
 
C
G
R
A
D
E
 

(
~

)
 

O
R
 (

G
R

A
D

E
 

>
 

7
) 

1
~

 
T

H
£N

 
1
7
 

D
E

G
IN

 
I~

 
W

R
IT

E
("
 

E
R
R
O
R
 

IN
 

G
R

A
D

E
');

 
I
~
 

~R
R
O

R
 
;
=
 
T
R
U
E
 

2
0
 

E
N
d
;
 

2
1
 

C
A
S
E
 
S
D
B
J
 
O
F
 

2
2

 
1
0
0
,
 

I
i
0
:
 

2
3

 
C

P
 
:
=
 
~
;
 

2
4
 

2
0
0
.
 

2
0
1
,
 
3
0
0
,
 

3
0
1
:
 

2
b
 

C
P
 
:
=
 
7
;
 

2
b
 

J
g
0
.
 

3
~
I
:
 

2
7
 

C
P

 
:
=
 

5
; 

2
8
 

O
T
H
E
R
S
:
 

2
~
 

H
E
G
I
N
 

~
O
 

.R
IT

E
("

 
E
R
R
O
R
 

I
N
 

S
U

d
J
S

C
T

')
; 

3
1
 

E
R
R
O

R
 
:
=
 
T
R
U
£
 

3
2

 
E
N
D
 

3
3
 

~
U
;
 

3
~

 
I
F
 
(
G
R
A
D
E
 

= 
I
)
 
O
R
 
(
G
R
A
D
E
 
: 

2
)
 

3
5
 

T
H
E
N
 

3
6
 

C
P
 

:
=
 
O
;
 

3
7
 

i
F
 
N
O
T
 

E
R

R
O

R
 

Jb
 

T
H
E
N
 

3
9

 
~

R
IT

~
(C

P
);

 
4
0
 

W
R
I
T
E
L
N
 

4
1
 

~
N
~
 

4Z
 

E
N
D
.
 

N
O

 
L

R
~

O
~

(S
) 

D
E

T
E

C
T

E
D

 

(
*
S
U
B
J
E
C
T
 
C
O
D
E
u
 
G
R
A
D
E
.
 
C
R
E
D
I
T
 
P
O
I
N
T
 
V
A
L
U
E
*
)
 

(
*
L
O
O
P
 
C
O
N
T
R
D
L
u
 
N
O
.
 
O
F
 
D
A
T
A
 
P
A
I
R
S
*
)
 

(
*
T
R
U
E
 
I
F
 
D
A
T
A
 
E
R
R
O
R
 
D
E
T
E
C
T
E
D
*
)
 

(
*
N
O
.
 

O
F 

D
A

T
A

 
P
A
I
R
S
*
)
 

(*
R

E
A

D
 

N
E

X
T

 D
A

T
A

 
P

A
IR

.*
**

) 
(*

..
.A

N
D

 
P

R
IN

T
 

IT
*)

 
(*

N
O

 
D

A
T

A
 

E
R

R
O

R
S 

Y
E

T
*)

 
(*

IN
V

A
L

ID
 

G
R

A
D

E
*)

 

(*
A

S
S

IG
~

 
C

R
E

D
IT

 
P

O
IN

T
S

 
FO

R
 

S
O

B
JE

C
T

*
) 

(*
[~

V
A

L
ID

 
S

U
B

JE
C

T
*

) 

(*
F

A
IL

 
G

R
A

D
E

S
*)

 

(*
N

O
 

D
A

TA
 E

R
R

O
R

S
 D

E
T

E
C

T
E

D
..

.*
) 

(*
*

..
S

O
 

P
R

IN
T

 
C

R
E

D
IT

 
O

B
T

A
IN

E
D

*)
 

r
o
 

c
o
 



1
 

P
R
O
G
R
A
~
 
A
S
S
2
;
 

2
 

J
 

V
A
E
 

4 
A
H
~
 
A
H
~
 
C
H
,
 
C
H
:
 
X
B
T
E
G
E
R
;
 

5
 

S
T
I
C
K
I
N
G
:
 
B
O
Q
L
E
A
N
;
 

b
 

7 
B

~
G

IN
 

A
H

 
:=

 
O
;
 

A
M
 

:=
 
0
;
 

1
0
 

C
H

 
:=

 
O

; 
1
1
 

C
H

 
:=

 
O

} 
1

2
 

S
T

IC
K

IN
G

 
~

=
 
Y

A
LS

E
; 

1
5
 

~
R

IT
~

L
N

(*
 

C
L
O
C
K
 
T
I
M
E
 

1
~

 
R
E
P
E
A
T
 

1
5
 

A
M

 
:=

 
A

M
+

I;
 

Ib
 

IF
 

A
M

 =
 
b
O
 

1
7
 

T
H
&
N
 

I
~
 

B
E

G
IN

 
1

~
 

A
M

 
=
=
 
O
;
 

2
0
 

A
H
 
:
=
 
A
H
*
I
 

2
1
 

E
N
D
;
 

2
2
 

I
E
 
(
(
C
H
 
=
 
C
H
~
5
)
 

O
R

 
(
C
H
 
=
 
3
0
)
)
 
A
N
D
 
N
O
T
 
S
T
I
C
K
I
N
G
 

2
3

 
T
B
R
N
 

2
4
 

S
T
I
C
K
I
N
G
 
:
=
 
T
R
U
E
 

2
5

 
~

L
S

E
 

2
6

 
B

E
G

IN
 

2
7
 

S
T
I
C
K
I
N
G
 
=
=
 
F
A
L
S
E
~
 

2
8
 

C
H

 
:=

 
C

H
+

I;
 

2
9
 

IF
 
C
M
 
=
 
6
0
 

3
0

 
T
H
~
N
 

3
1

 
B

K
G

IN
 

3
2

 
C

M
 

:=
 

O
; 

3
3
 

C
H
 
:
=
 
C
H
+
I
 

3
4

 
E
N
O
 

3
b
 

~
N

D
; 

3
6

 
I
F
 

C
M

 
=
 

0 
3
7
 

T
H
E
N
 

3
8
 

~
R
I
T
E
L
N
(
C
H
a
 
C
M
a
 
A
H
j
 
A
N
)
 

3
9

 
U
N
T
I
L
 

C
H

 
=

 
1
2
 

4
0
 

~
N

D
. 

(
~
A
C
T
U
A
L
 
&
 
C
L
O
C
K
 

H
O

~
R

S
 

&
 
M
I
H
S
 ~
)
 

(
*
T
R
U
E
 
W
H
E
N
 
C
L
O
C
K
 

IS
 
S
T
I
C
K
I
N
G
*
)
 

(
*
C
L
O
C
K
 
S
T
A
R
T
S
 

A
T

 
Z
E
R
O
S
)
 

A
C
T
U
A
L
 
T
I
N
E
'
)
;
 

(
*
M
A
I
N
 
S
I
M
U
L
A
T
I
O
K
 
L
O
O
P
*
)
 

{
*
A
C
T
O
A
L
 
T
I
M
E
 
A
L
W
A
Y
S
 
~
V
A
N
C
E
S
 
B
Y
 
A
 
H
I
~
.
*
)
 

(
*
A
N
O
T
H
E
R
 
A
C
T
U
A
L
 
H
O
U
R
 
D
O
N
E
 ~
)
 

(
*
C
L
O
C
K
 
S
T
I
C
K
S
*
)
 

(
*
N
O
R
M
A
L
 
C
A
S
E
*
)
 

(
*
U
N
S
T
I
C
K
 
C
L
O
C
K
*
)
 

(
*
C
L
O
C
K
 
A
D
V
A
N
C
E
S
 
B
Y
 
A
 
H
I
S
.
 ~
)
 

(
*
A
N
O
T
H
E
R
 
C
L
O
C
K
 

H
O

O
R

 D
O
N
E
*
)
 

(
*
P
R
I
N
T
-
O
U
T
 
R
E
Q
U
I
H
E
O
 
O
N
 
T
H
E
 
H
O
U
R
 *
)
 

(
*
S
T
O
P
 
A
T
 
C
L
O
C
K
'
S
 
M
I
D
O
A
¥
*
)
 

N
O
 
E
R
r
O
R
(
S
)
 
U
E
T
E
C
T
E
U
 



I
 

P
R
O
G
R
A
M
 
A
S
S
3
~
 

2
 j 

C
O

N
ST

 
4
 

C
H
L
I
M
 

= 
8
;
 

5
 

W
D
L
I
M
 
=
 
2
0
;
 

b
 

7
 

T
Y
P
E
 

U
 

S
T
R
I
N
G
8
 
=
 
P
A
C
K
E
D
 
A
R
R
A
Y
E
I
 
.
°
 

C
H

L
IH

] 
O
F
 

C
B

A
R

; 

i
0
 

~
A
k
 

l
l
 

C
H
C
N
~
,
 
W
O
C
~
T
,
 
I
:
 
I
N
T
E
G
E
R
;
 

1
2
 

C
[1

j 
K
E
Y
:
 
C
H
A
R
;
 

1
3
 

F
O
U
~
D
:
 
B
O
O
L
E
A
N
;
 

1
4
 

S
:
 
S
T
R
I
N
G
B
;
 

1
5
 

T
E
X
T
:
 
A
R
R
A
Y
E
I
 

..
 

~
O

L
IM

I 
O
F
 
S
T
R
I
N
G
S
;
 

1
7
 

~
E
G
I
~
 

I
H
 

~
D
C
N
T
 
;
=
 
D
;
 

1
9
 

~
H
I
L
~
 
N
O
T
 
~
O
F
 
D
O
 

ZU
 

~
E
G
I
N
 

2
1
 

~
E
P
E
A
T
 

2
2
 

R
E
A
D
(
C
H
)
 

23
 

U
N
T
I
L
 

(C
I1

 
>
=
 
°
A
'
)
 
A
N
D
 

(C
h

 
<
=
 
"
Z
 °
)
 

O
R

 
E
O
F
;
 

2
4
 

I
F
 
N
O
T
 
E
O
F
 

25
 

T
M
~
N
 

2
~
 

~
E
G
[
N
 

2
7
 

C
d
C
N
T
 
:
=
 
i
;
 

z~
 

R
E
P
E
A
T
 

2
~
 

I
F
 
C
H
C
N
T
 
<
=
 
C
H
L
£
M
 

3
0
 

T
H

~N
 

3
1
 

~
E
G
I
N
 

3
~
 

S
[
C
H
C
N
T
3
 
:
=
 
C
H
;
 

3
3
 

C
H
C
N
T
 

~=
 
C
H
C
N
T
+
I
 

3
4

 
E
N
D
;
 

3b
 

R
E
A
D
(
C
H
)
 

3
~

 
U

N
T

IL
 
(
C
H
 
<
 

"A
 °

) 
O
R
 
(
C
H
 
>
 
°
Z
'
)
;
 

3
7
 

F
O
R
 
I
 
:
=
 

C
H

C
N

T
 
T
O
 
C
~
L
I
H
 

D
O

 
3
d
 

S
K
I
]
 
1
 =
 
°
 
°
~
 

3
9
 

• 
I=

 
I
;
 

4
0
 

~
'
O
U
N
D
 
:
=
 
F
A
L
S
E
;
 

~
I
 

a
H
I
L
E
 
(
I
 
<
:
 
M
D
C
N
T
)
 
A
N
D
 
N
O
T
 
F
O
U
N
D
 
D
O
 

4
~
 

B
E
G
I
N
 

4
3
 

F
O
U
N
D
 
:
=
 
T
E
X
T
E
I
3
 
=
 
S
;
 

4
4
 

I
 
:
=
 
I
÷
l
 

~
 

E
N
D
;
 

4
6

 
I
F
 
N
O
T
 

FO
U

N
D

 
4~

 
T
H
E
N
 

4
U
 

B
E
G
I
N
 

4
~

 
~
D
C
H
T
 
1
=
 
N
D
C
N
T
+
I
;
 

5
0
 

T
E

X
T

E
M

D
C

N
T

~
 
:
=
 
S
 

5
1
 

E
~
D
 

~
 

E
N
D
 

5
3

 
~

N
O

; 
5

4
 

K
E
Y
 
:
=
 
S
I
l
]
;
 

b
o
 

F
O
R
 
I
 
:
=
 
I
 

T
O

 
~
O
C
N
T
 
D
O
 

5
6

 
B
E
G
I
N
 

5
7
 

M
R
I
T
E
(
T
E
K
T
E
I
]
)
;
 

5
~
 

I
F
 
T
E
X
T
E
I
]
E
I
]
 
=
 
K
E
Y
 

5
9
 

T
H
E
N
 

6
0
 

M
R
I
T
E
(
"
 
*
"
)
;
 

6
1
 

M
R

IT
E

L
N

 
6

2
 

E
N
D
 

6
3

 
E

N
D

. 

N
O
 

E
R

R
O

R
(S

) 
D
E
T
E
C
T
E
D
 

(
*
M
A
X
°
 
N
O
.
 
O
F
 
C
H
A
R
S
 
P
E
R
 
W
O
R
D
*
)
 

(
*
H
A
X
.
 
N
O
*
 
O
F
 
W
O
R
D
S
 
I
N
 
T
E
X
T
*
)
 

(*
C

U
A

R
A

C
T

E
R

 
C

G
U

N
T

~ 
N

O
R

D
 

C
O

U
N

TH
 

A
U

X
IL

IA
R

Y
*

) 
(*

C
D

R
H

E
N

T
 

C
H

A
R

A
G

T
E

R
e 

IS
T

 
C

D
A

R
A

C
T

E
k 

O
F 

L
A

S
T

 
m

O
hD

*)
 

(*
U

S
E

D
 
I
N
 

S
E

A
R

C
H

 
F
O
R
 

D
U

P
L

IC
A

T
E

S
*)

 
(
*
C
U
R
R
E
N
T
 
W
O
R
D
*
)
 

(
*
S
T
O
R
A
G
E
 
F
O
R
 
T
E
X
T
*
)
 

(
*
I
N
I
T
I
A
L
I
S
E
 
M
O
R
D
 
C
O
U
N
T
*
)
 

(
*
I
N
P
U
T
 
&
 
S
T
O
R
A
G
E
 
L
O
O
P
*
)
 

(
*
L
O
O
K
 
F
O
R
 

S
T

A
R

T
 
O
F
 

N
E

X
T

 
W
O
~
D
 
f
F
 

A
N

Y
*)

 

(*
IF

 
T

H
E

R
E

 
N

A
S

A
 

~
O

R
D

..
**

) 

(
*
.
.
.
R
E
A
D
 
I
T
 
I
N
*
)
 

(
*
I
N
I
T
I
A
L
I
S
E
 
C
!
I
A
R
A
C
T
E
R
 
C
O
U
N
T
*
)
 

(*
D

E
A

L
 

w
IT

H
 

E
A

C
Ii

 
A

L
P

H
A

be
T

IC
 

C
H

A
R

°*
) 

{
*
I
F
 
~
O
R
D
 

N
O

T 
T
O
O
 
L
O
N
G
*
*
.
*
)
 

(*
..

.T
U

b
N

..
*

*
) 

(*
*

*
°S

T
O

H
b

 
C

H
A

R
A

C
T

E
R

..
.*

) 

(
*
*
.
.
O
T
H
E
R
k
I
S
E
 
I
G
N
O
R
h
 
I
T
 =
)
 

(
*
P
A
D
 
W
O
R
D
 
W
I
T
H
 
S
P
A
C
E
S
*
)
 

(
*
I
N
I
T
I
A
L
I
S
E
 
T
O
 
L
O
O
K
 
f
'
O
R
 D
U
P
L
I
C
A
T
E
b
*
)
 

(
*
S
C
A
N
 
T
E
X
T
 
A
L
R
E
A
D
Y
 
R
E
A
D
*
)
 

{
*
N
O
T
 

A
 

D
U

P
LI

C
A

T
E

w
 

S
O

.°
-*

) 

(*
..

.S
T

O
R

E
 

T
H

E
 

W
O

R
D

*)
 

(*
E

~
D

 
O

F 
D

E
A

L
IN

G
 

~
IT

H
 

O
N

E
 

W
O

R
D

*)
 

(*
E

N
D

 
O

F 
[N

P
U

T
&

 
S

TO
R

A
G

E
 

L
O

O
P

*)
 

(
*
I
S
T
*
 
L
E
T
T
E
R
 
O
F
 
L
A
S
T
 
W
O
R
D
*
)
 

(
*
P
R
I
N
T
 
E
A
C
H
 
,
O
R
O
,
 
F
L
A
G
G
E
D
 
I
F
 
N
E
C
E
S
S
A
R
¥
*
)
 

0
1
 


