Skip to main content

Calcul du rang des ∑-arbres infinis regulers

  • Contributed Papers
  • Conference paper
  • First Online:
CAAP '81 (CAAP 1981)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 112))

Included in the following conference series:

Abstract

Let ∑ be a finite craded set. The regular ∑-trees can be encoded into data sequences, using the scalar iterative expressions (as in EXEL-language [1]). The complexity of scalar iterative expressions can be defined in various way and so it is for regular ∑-trees. Here, we present a method for calculating the "rank" of such a tree, with and without concatenation.

In the flow chart case, our algorithm allows to decide if a chart G is (syntactically) reducible to some GREn-chart. Recall that the request of Kosaraju [9] for a "structural characterization" of the GREn-charts is till now an open question.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

Bibliographie

  1. ARSAC J., NOLIN L., RUGGIU G., VASSEUR J.P., "Le système de Programmation EXEL", Revue technique Thompson-CSF, vol. 6, 3 (1974).

    Google Scholar 

  2. COUSINEAU G., "Trans formations de programmes itératifs", in Programmation, Proc. of the 2nd international symposium on Programming, B. Robinet Ed., Paris (1976-DUNOD) 53–74.

    Google Scholar 

  3. COUSINEAU G., "Arbres à feuilles indiciées et transfonmations de programmes", Thèse es Sci-Mathématiques, Université de Paris VII (1977).

    Google Scholar 

  4. COUSINEAU G., "An algebraic definition for control structures", Theoretical computer Science 12 (1980) 175–192.

    Google Scholar 

  5. BLOOM S.L., ELGOT C.C., "The existence and Construction of fnee iterative theories", J. Comput. Syst. Sci. 12 (1976) 305–318.

    Google Scholar 

  6. ELGOT C.C., BLOOM S.L., TINDELL R., "On the algebraic structure of Rooted Trees", J. Comput. Syst. Sci. 16 (1978) 362–399.

    Google Scholar 

  7. IANOV I.I., "The logical schemes of algorithms", Problemy Kibernet., 1 (1960) 82–140.

    Google Scholar 

  8. KASAI T., "Translatability of flowcharts into UHILE programs", J. Comput. Syst. Sci. 9 (1974) 177–195.

    Google Scholar 

  9. KOSARAJU R., "Analysis of structured programs", J. Comput. Syst. Sci., 9 (1974) 232–255.

    Google Scholar 

  10. JACOB G. "Structural Invariants fon some classes of structured orograms", MFCS 78, Zakopane (Poland); Lect-Notes in Comput. Sci. no 64.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Egidio Astesiano Corrado Böhm

Rights and permissions

Reprints and permissions

Copyright information

© 1981 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Jacob, G. (1981). Calcul du rang des ∑-arbres infinis regulers. In: Astesiano, E., Böhm, C. (eds) CAAP '81. CAAP 1981. Lecture Notes in Computer Science, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-10828-9_66

Download citation

  • DOI: https://doi.org/10.1007/3-540-10828-9_66

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-10828-3

  • Online ISBN: 978-3-540-38716-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics