Abstract
Let ∑ be a finite craded set. The regular ∑-trees can be encoded into data sequences, using the scalar iterative expressions (as in EXEL-language [1]). The complexity of scalar iterative expressions can be defined in various way and so it is for regular ∑-trees. Here, we present a method for calculating the "rank" of such a tree, with and without concatenation.
In the flow chart case, our algorithm allows to decide if a chart G is (syntactically) reducible to some GREn-chart. Recall that the request of Kosaraju [9] for a "structural characterization" of the GREn-charts is till now an open question.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
Bibliographie
ARSAC J., NOLIN L., RUGGIU G., VASSEUR J.P., "Le système de Programmation EXEL", Revue technique Thompson-CSF, vol. 6, 3 (1974).
COUSINEAU G., "Trans formations de programmes itératifs", in Programmation, Proc. of the 2nd international symposium on Programming, B. Robinet Ed., Paris (1976-DUNOD) 53–74.
COUSINEAU G., "Arbres à feuilles indiciées et transfonmations de programmes", Thèse es Sci-Mathématiques, Université de Paris VII (1977).
COUSINEAU G., "An algebraic definition for control structures", Theoretical computer Science 12 (1980) 175–192.
BLOOM S.L., ELGOT C.C., "The existence and Construction of fnee iterative theories", J. Comput. Syst. Sci. 12 (1976) 305–318.
ELGOT C.C., BLOOM S.L., TINDELL R., "On the algebraic structure of Rooted Trees", J. Comput. Syst. Sci. 16 (1978) 362–399.
IANOV I.I., "The logical schemes of algorithms", Problemy Kibernet., 1 (1960) 82–140.
KASAI T., "Translatability of flowcharts into UHILE programs", J. Comput. Syst. Sci. 9 (1974) 177–195.
KOSARAJU R., "Analysis of structured programs", J. Comput. Syst. Sci., 9 (1974) 232–255.
JACOB G. "Structural Invariants fon some classes of structured orograms", MFCS 78, Zakopane (Poland); Lect-Notes in Comput. Sci. no 64.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1981 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Jacob, G. (1981). Calcul du rang des ∑-arbres infinis regulers. In: Astesiano, E., Böhm, C. (eds) CAAP '81. CAAP 1981. Lecture Notes in Computer Science, vol 112. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-10828-9_66
Download citation
DOI: https://doi.org/10.1007/3-540-10828-9_66
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-10828-3
Online ISBN: 978-3-540-38716-9
eBook Packages: Springer Book Archive