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Abstract 

A set of operat ions for construct ing a lgebra ic  specif icat ions in an arbi t rary logical 
system is presented. This builds on the f ramework provided by Goguen and 
Burstal l 's work on the not ion of an inst i tut ion as a formal isat ion of the concept  of a 
logical  system for wri t ing specif icat ions. We show how to introduce free variables 
into the sentences of an arbi t rary institution and how to add quanti f iers which bind 
them. We use this foundat ion to def ine a set of pr imit ive operat ions for building 
specif icat ions in an arb i t rary institut ion based loosely on those in the ASL kernel 
specif icat ion language, We examine the set of operat ions which results when the 
def ini t ions are instant iated in an institution of f i rs t -order  logic and compare these 
with the operat ions found in existing specif icat ion languages. The result of 
instantiat ing the operat ions in an institution of part ial f i rs t -order  logic is also 
discussed, 

"1 Introduction 

Much work has been done on a lgebra ic  specif icat ions in the past ten years. Although 
much has been accompl ished,  there is still no general  agreement on the definit ions of many 
of the basic concepts,  e .g .  s ignature and algebra,  and on which kinds of axioms should be 
used. The d isagreement  ar ises part ly because different def ini t ions are required to treat 
var ious special  issues in speci f icat ion,  such as errors [Gog 77. GDLE 82], coerc ions [Gog 78] 
and part ial  operat ions [BrW 82]; part ly because some specif icat ion methods such as the init ial 
a lgebra approach [ADJ 76] only work under certain restr ict ions on e, g. the form of axioms in 
speci f icat ions; and part ly because of d isagreements over matters of style or taste, These 
fundamental  dif ferences lead to diff iculty in compar ing the results achieved by dif ferent 
approaches and in building upon the work of others. 

The notion of an inst i tut ion [GB 83] provides a tool for unifying all these different 
approaches to specif icat ion by formal is ing the concept of a logical system for writ ing 
specif icat ions. An institution comprises defini t ions of s ignature, model,  sentence (i. e. 
axiom) and satisfaction which obey a few internal consistency condit ions (detai ls in section 
2).  Although it is often not obvious, much of the work which has been done on a lgebra ic  
specif icat ion turns out to be independent  of the part icular def ini t ions of these four notions. In 
such cases it would be highly desirable to make the general i ty explicit  by basing everything on 
an arbi t rary institut ion. This was done in the semant ics of the Clear specif icat ion language 
[BG 80] (where an institution was cal led a " language ' ) .  Sometimes addi t ional  assumptions 
about the base institution are necessary,  as in Clear where use of the init ial a lgebra approach 
requires the assumption that the institution is l iberal ( forgetful  functors induced by theory 
morphisms have left ad jo ln ts) .  Instanttating the base institution in dif ferent ways (and 
changing the low- leve l  syntax accord ingly)  yields a family of specif icat ion languages: 
equat ional  Clear,  er ror  Clear,  cont inuous Clear and so on. 

In early work on a lgebra ic  speci f icat ion (e.  g. [ADJ 76]) it was shown how a col lect ion of 
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a lgebras  could be speci f ied by a theory, i . e .  a s ignature together  with a set of axioms. For 
smal l  spec i f icat ions such an approach  is adequate ,  but it is more convenient  to bui ld large 
and complex  spec i f icat ions in a structured way by putt ing together  small  speci f icat ions.  
Several speci f icat ion languages in addi t ion to Clear support  such a structui 'ed approach to 

speci f icat ion.  These include CIP-I_ [Bau 81]. LOOK [ZLT 82, ETLZ 82]. ASL 
[Wir 82. SW 83, Wit 83] and the constra int  language of [EWT 83]. None of these other 
languages were based on an arb i t rary  insti tut ion (a l though the possibi l i ty of a s imi lar  such 
generat lsat ion was cons idered in [SW 83] and [EWT 83]) and so they are not genera l  in the 
sense that Clear  is. However,  s ince they inc lude features which seem des i rab le  but which 
are not inc luded in Clear,  they are more useful as tools for wri t ing speci f icat ions in the 
par t icu lar  inst i tut ions they treat,  Most useful of al l  would be an ins t i tu t ion-based speci f icat ion 
tool which incorpora tes  the good ideas of all these languages.  That is the goal  of this paper.  
We def ine a set of general  spec i f i ca t ion-bu i ld ing  operat ions based loosely (but not 
exclusively) on those in ASL. 

One novel feature of ASL is a spec i f i ca t ion-bu i ld ing  operat ion abstract  which can be used 
to behavioura/ly abstract f rom a speci f icat ion,  c los ing its co l lect ion of models under  
behavioura l  equ iva lence [GGM 76, Rei 81], This al lows abstract model  speci f icat ions 
[LB 77], of, [Suf 82] in which the des i red behaviour  is descr ibed in some concre te  way, e, g. 
by giv ing a s imple model  which exhibi ts it, Such an operat ion is a necessary ingred ient  in an 
a lgebra ic  speci f icat ion language (as d iscussed in [San 83]) s ince the speci f icat ion of e, g, an 
abstract  data type is supposed to descr ibe  a behaviour  (an input /ou tput  relat ion) without 
regard to the par t icu lar  representat ion used and therefore al l  algebras which real ise the 
desi red behaviour  should be permit ted as models.  Fur thermore,  using convent ional  
speci f icat ion languages which tack operat ions l ike abstract, it is in genera l  diff icult (as in 
Clear)  or  imposs ib le  (as  in the init ial a lgebra  approach of [ADJ 76] and the final a lgebra  
approach  of [Wand 79]) to descr ibe  co l lec t ions of models  which are closed under behaviourat 
equlva lence s ince such a co l lec t ion may conta in a wide range of non - j somorph io  a lgebras.  
However.  this opera t ion  was def ined in [SW 83] in such a way that it is not obvious how to 
genera l ise  it to an arb i t rary  institut ion. (There are some remarks in [SW 83] which suggest  
how this might be done,  but the proposed genera l isat ion does not fit smoothly into the 
inst i tut ional f ramework and anyway the technical  detai ls are wrong, ) The discussion of 
abstract  in the genera l  case is the main contr ibut ion of this paper.  

The key to the ins t i tu t ion-based def ini t ion of abst ract  turns out to be the introduct ion of 
free var iab les into the sentences of the inst i tut ion. We show in sect ion 3 how this may be 
accompl ished,  Free var iab les are necessary because they provide a way of naming 
unreachab le  e lements of models which cannot  be referred to using the operat ions of the 
model alone. Such elements play an important  role in the def ini t ion of behavioural  
abstract ion.  Having in t roduced free var iables into the sentences of an inst i tut ion, we digress 
in the second part of sect ion 3 and show how to add quant i f iers which bind them. This gives 
a const ruct ion for in t roducing quant i f ied var iab les into the sentences of an arb i t rary  

institut ion. 

Bui ld ing on this foundat ion,  we then def ine a set of pr imit ive operat ions for bui ld ing 
spec i f icat ions in an arb i t rary  insti tut ion (sect ion 4) .  The set of operat ions we provide is 
based on those present  in ASL - -  however,  there are a number  of s igni f icant  differences. 
These der ive both from diff icult ies in general ls ing some of the operat ions of ASL to an 
arb i t rary  institut ion ( for  example,  s ince we cannot  easi ly form the union of s ignatures in this 
genera l  sett ing the + operat ion is not genera l ised direct ly) and from extensions which arose 
natural ly in the process of genera l isat ton.  One gap here (main ly  due to space l imitat ions) is 
the absence of a mechan ism for def in ing or apply ing parameter ised speci f icat ions,  atthough 
an appropr ia te  parametertsat ion mechan ism should not be diff icult to genera l tse to an arb i t rary 
insti tut ion, A feature of ASL which remains is the expressive power and f lexibi l i ty necessary  to 
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provide a kernel  for building h igh- leve l  specif icat ion languages. The convenient-to-use 
speci f icat ion-bui ld ing operat ions of the h igh- leve l  language would be def ined by composing 
these low- level  operat ions. It would be natural for such a h igh- level  language to hide some 
of the raw power of the primit ives from the user. 

In sect ion 5 we examine the set of operat ions which results when the general  defini t ions 
are instanttated in an institution of f i rs t -order  logic with equal i ty as the only predicate.  These 
operat ions are compared with those found in existing specif icat ion languages. In part icular,  
the operat ions of ASL can be expressed easi ly in terms of the operat ions we obtain,  but not 
vice versa. The result of instantiat ing the operations in an institution of part ial  f i rs t -order  
logic is considered in sect ion 6. The result ing set of operat ions is compared with the 
operat ions of the early version of ASL in [Wir 82] which also used part ial a lgebras. 

We assume some fami l iar i ty with a few notions from basic category theory,  al though no 
use is made of any deep results. See [AM 75] or [MacL 71] for the defini t ions which we omit 
here. 

2 institut ions 

Fol lowing [GB 83] we introduce institutions to formal ise the notion of a logical system for 
writ ing specif icat ions. An institution consists of a col lect ion of signatures together  with for 
any signature Z; a set of ;E-sentences, a col lect ion of E-models  and a satisfaction relat ion 
between T,-models and ;E-sentences. Note that s ignatures are arbi t rary abstract objects in 
this approach,  not necessar i ly  the usual "algebraic" s ignatures used in many standard 
approaches to algebraic specif icat ion (see e .g .  [ADJ 76]) .  The only "semantic" requirement 
is that when we change signatures,  the induced translat ions of sentences and models 
preserve the satisfact ion relat ion. This condi t ion expresses the intended independence of the 
meaning of a specif icat ion from the actual notation, Formally:  

Def [GB 83]: An institution INS consists of: 

- A category SignlN s (of  signatures) 

- A functor SenlNs: SlgnlNs-~Set (where Set is the category of all sets; SenlN s gives 
for any s ignature ~ the set of ,£-sentences and for any signature morphism 

o: Z-*,~' the function SenlNs(O) : SenINs(~)-->SenlNs(Z') t ranslat ing [ : -sentences to 
[ : ' - sentences)  

- A functor MOdlNs: SignlNs-*Cat°P (where Cat is the category of all categories; x 
MOdlN S gives for any signature T_, the category of ,~-models and for any signature 

morphlsm o: Z-*Z '  the o - reduc t  functor MOdlNs(O) : MOdlNs(~')-*MOdlNs(Z:) 
translat ing ~ ' -mode l s  to Z~-models) 

- A satisfaction relat ion I=Z:,tNsCIMOdlNs(Z)IXSenlNS(Z:) for each signature Z:. 

s u c h  that for any s ignature morphism o: Z--~Z • the translat ions MOdlNs(o) of models and 
SenlNs(O) of sentences preserve the satisfaction relat ion, i, e, for any #ESentN$(,~) and 
M' EIMOdlNS(,~') I 

M'pT? INSSenlNs(O) (t~) Iff MOdlNs(O) (M')  ~=~,INS ~ (Satisfact ion condit ion) 

To be useful as the under ly ing institution of a specification language,  an institution must 
provide some tools for "putting things together".  Thus. in this paper we addi t ional ly  require 

*Of course, some foundational difficulties are connected with the use of this category, as discussed in [MacL 71] .  
We do not discuss this point here, and we disregard other such foundational issues in this paper; in particular, we 
use the term "collection" throughout to denote "sets" which may be too large to really be sets, 
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that the category  Sign has pushouts and init ial objects ( i . e .  is f initely cocomp le te )  and 
moreover  that Mod preserves pushouts and initial objects (and hence finite co l im i ts ) ,  l .e .  
that Mod translates pushouts and init ial objects in Sign to pul lbacks and terminal  objects 

( respect ive ly)  in Cat. 

tn [GB 83] the ca tegory  Sign is not requi red to be cocomp le te ,  but this is requ i red  there of 
any insti tut ion to be used as the basis of a speci f icat ion l anguage  (as  in Clear  [BG 80]) .  Mod 
is not requ i red there to preserve col imi ts ,  however we feet that this is .a natura l  assumpt ion to 
make the semant ics  of spec i f i ca t ion-bu i ld ing  operat ions cons is tent  with our  intuit ions. A 
s imi lar  but (apparent ly )  s t ronger  condi t ion is requ i red  in [EWT 83]. Note that both of these 
requ i rements  are  ent i re ly  independent  of the " log ica l "  part  of the inst i tut ion, i . e .  of sentences 
and the sat isfact ion re lat ion,  and the fact . that  al l  examples of inst i tut ions we can think of 
( inc lud ing  al l  those in [GB 83]) satisfy them indicates that they are not very restr ic t ive in 
pract ice,  

The work of [Bar 74] on abstract  model  theory  is s imi lar  in intent to the theory  of 
inst i tut ions but the not ions used and the condi t ions they must satisfy are more restr ict ive and 
rule out many of the examples we would l ike to deal  with, 

Notat ional  convent ions 

- The subscr ip t  INS is omit ted when there is no danger  of confusion.  

- We will write t = instead of ~=T_. when T- is obvious. 

- For any s ignature morphism o: T--*Z~'. Sen (o )  is denoted just by o and Mod(O) is 
denoted b y _ l o  ( i . e .  for ~)ESen(~).  o ( ~ )  stands for S e n ( a ) ( ¢ ) .  and e . g .  for 
M ' ~ l M o d ( ~ ' ) l .  M ' lc  r stands for M o d ( O ) ( M ' ) ) .  

- For any s ignature T-. ¢~Sen(T-)  and M~IMod(~E) I. we write MI=¢ ) to denote that 
Mk~ for all eel ) .  

Example: the institut ion G E ~ r o u n d  equat_Li0._ns 

An a lgebra i c  s ignature is a pair <S.£b where S is a set (of sort names) and £z is a family 

of sets (£Zw.s)wES*.scS (of  operat ion names) .  We write f : w  ~ s to denote w~ S*. sE S. f~rzw, s. 

An a lgebra ic  s ignature morph i sm o: <S.£b--)<S'.rt'> is a pair <Osort s, Oopns> where Osorts: S---)S ' 
and Oopns is a family of maps [Ow. s, £~w.s £ZO,(w).a(s)]wES,.sE$ where o ( s l  . . . . .  sn) denotes 
Osorts(sl) . . . . .  Osorts(Sn) for s l  . . . . .  snES. We will write o (s )  for Osorts(S). o (w)  for o * (w ]  
and a( f )  for ow.s( f ) ,  where fErZw, s, 

The category  of a lgebra ic  s ignatures AIgSig has a lgebra ic  s ignatures as objects and 
a lgebra ic  s ignature morphisms as morph isms;  the composi t ion of morphisms is the 
compos i t ion of thei r  co r respond ing  components  as funct ions. (This obviously forms a 
category.  ) 

Let T-=<S,FZ> be an a lgebra ic  s ignature.  

A ~r-algebra A consists of an S- indexed  family of car r ie r  sets IAI = (IAts}sE s and for each 

f: s'{ . . . . .  sn- )s  a funct ion fA: IAist x ' ' "  XtAIsn-)lAls" A ~ - h o m o m o r p h i s m  from a T--algebra A to 
a ~ -a l geb ra  B. h: A- )B .  is a family of funct ions {hsJsE $ where he: [AIs-)IBI s such that for any 

f: s l  . . . . .  sn- )s  and a l  EIAIst . . . . .  anEIAlsn hs(fA(a 1 . . . . .  a n) ) = fB ( he1 (a  1) . . . . .  hsn( a n) ) .  

The ca tegory  of T--algebras AIg(T-) has T--algebras as objects and }~-homomorphisms as 
morph isms:  the compos i t ion  of homomorph isms is the compos i t ion of thei r  co r respond ing  
components  as funct ions. (-fhis obviously  forms a category .  ) 

For any a lgebra ic  s ignature morphism o: T--~T-" and T- ' -a lgebra A ' .  the O-reduc t  of A' is 
the T--algebra A ' l o  def ined as fol lows: 

- For s~zS, I A ' l o l  s =def IA' lo(s) ' 
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- For  f: w-~s in T-. fA, to  =def O(f)A'" 

S imi la r ly .  for  a T - ' - homomorph i sm h ' :  A ' ->B  ' where  A'  and B' a re  T-'-algebras. the a - r e d u c t  of 

h' is the T - -homomorph ism h ° Io:  A ' Io - - 'B '  Io defined by ¢ h ' lo)  s %el h~C,~ for s ~S. 

The mapp ings  A 'v - ->A ' ]c  r , h 'P--~h' lo,  form a functor  f rom AIg(T-') to A I g ( ~ ) .  

For  any  algebraic s igna tu re  T-. AIg(T-) con ta ins  an in i t ia l  ob jec t  TT- which is ( to within 
i somorph i sm)  the a lgeb ra  of g round  ;E-terms. f .e .  the ca r r ie rs  ITz~t con ta in  te rms of the 
approp r ia te  sorts which a re  cons t ruc ted  using the opera t ion  symbols  of T- (w i thou t  variables) 
and the opera t i ons  in TT- a re  def ined in the natura l  way ( see  e, g, [ADJ 761). A ground 
T--equation is a pai r  <t,t'> (usua l l y  wr i t ten as t=t ' )  whe re  t, t' a re  g round  T--terms of the same 
sor t ,  i . e .  t,t 'EIT;EI s for  some  sor t  s of T-. 

By def in i t ion,  for any  T--a lgebra A there  is a un ique T - h o m o m o r p h i s m  h: TT--~A. For  any 
g round  term tEITT-I s ( fo r  s in the sorts of T-) we wr i te t A ra ther  than hs(t) to deno te  the va lue 
of t in A. For  any  T--a lgebra A and g round  T--equat ion t=t '  we say that  t=t '  holds in A ( o r  A 
satisfies t=t ' )  wr i t ten Ap t= t ' ,  if tA=t ~. 

Let o: T--->T-' be an algebraic s ignature  morph ism.  The un ique T- -homomorph ism 
h: TT-~TT-,Io de te rm ines  a t rans la t ion  of T-- terms to T- ' - terms, For  a g round T--term t of sor t  s 
we wr i te o ( t )  ra ther  than hs ( t ) .  This in turn de te rm ines  a t rans la t ion  (aga in  deno ted  by o) of 
g round T--equat ions to g round  T-J-equations: o ( t = t ' )  =clef O ( t ) = O ( t ' ) .  

All the above not ions  c o m b i n e  to form the inst i tut ion of g round  equat ions  GEQ: 

- SignGE Q is the ca tego ry  of a lgeb ra i c  s igna tures  AIgSig, 

- For  an a lgeb ra i c  s igna tu re  T_.. SenGEQ(T-) is the set of al l  g round  T--equat ions;  for 
an a lgeb ra i c  s igna tu re  morph ism o: ~-~T-', SenGEQ(O) maps any g round 
T.-equat ion t=t '  to the g round T- ' -equat ion o c t ) = o C t ' ) .  

- For  an algebraic s igna tu re  T-, ModGEQ(T-) is Atg(T-) ;  for  an a lgeb ra i c  s igna ture  
morph ism cr: T~-~T-'. MOdGEQ(O) iS the func tor  - tcr :  AIg(T-.') ~A tg (T - ) ,  

- For  an a lgeb ra i c  s igna tu re  ~. P~,GEQ is the sat is fact ion re la t ion  as def ined above.  

It is easy to check  that  GEQ is an inst i tut ion ( the  sat is fact ion cond i t ion  is a spec ia l  case of the 
Sat is fact ion Lemma of [BG 80 ] ) .  The ca tego ry  AIgSig is f in i te ly  c o c o m p l e t e  ( see  [GB 78] 
Prop. 5) and MOdGEQ: AlgSIg->Cat  °p t rans la tes  f in i te cot imi ts  in AtgSIg to f ini te l imits in Cat  
( see  [BW 8 2 ] ) ,  

For  some fur ther  examp les  of inst i tu t ions see [GB 83]. 

3 Free var iab les  in inst i tut ions 

In log ic ,  f o rmu lae  may conta in  f ree var iab les  (such  fo rmu lae  are ca l led  open). To 
In terpre t  an open  fo rmu la ,  we have to p rov ide  not  on ly  an in te rp re ta t ion  for the symbols  of the 
under ly ing  s igna tu re  (a  mode l )  but a lso  an in te rp re ta t ion  for  the f ree  variables (a va lua t ion  of 
var iab les  into the m o d e l ) .  This prov ides a natura l  way to dea l  with quant i f ie rs .  The need for 
open fo rmu lae  a lso ar ises  in the study of spec i f i ca t ion  languages .  In fact .  we will need them 
to de f ine  one  of the spec i f i ca t i on -bu i l d ing  opera t i ons  (abs t rac t )  in the next sect ion.  But for 
this we need inst i tu t ions in which sen tences  may  conta in  f ree var iab les .  

For tunate ly  we do not have to change  the not ion of  inst i tut ion - -  we can prov ide open 
fo rmu lae  in the p resent  f ramework  ( th is  idea was in f luenced by the t rea tmen t  of var iab les  in 
[Bar  74] ) .  Note that we use here  the term " fo rmula"  ra ther  than " sen tence ' .  which is , 

reserved for the sen tences  of  the under l y ing  inst i tut ion,  

Cons ider  the inst i tut ion GEQ of g round  equat ions ,  Let T-=<S,C~> be an a lgeb ra i c  s ignature ,  
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For  any  S - i n d e x e d  fami ly  of  sets,  ×=[Xs]s~ s . de f ine  ,~(X) to be the ex tens ion  of  ;E by the 
e lemen ts  o f  × as  new cons tan ts  of  the a p p r o p r i a t e  sor ts ,  

Now, any  s e n t e n c e  ove r  E(X)  may be v iewed as an open  fo rmu la  ove r  T. with f ree 

var iab les  X. Given a ,~ -a lgebra  A. to de te rm ine  whe the r  an open E - f o r m u l a  with var iab les  X 

ho lds in A we have f i rst  to f ix a va luat ion of var iab les X into IAI. Such a va luat ion c o r r e s p o n d s  

exact ly  to an ex tens ion  of A to a E ( X ) - a l g e b r a ,  which add i t iona l l y  con ta ins  an in te rp re ta t ion  of 

the cons tan ts  X, 

Given a t rans la t ion  o f  s e n t e n c e s  a long  an a lgeb ra i c  s igna tu re  morph ism o: E ~ E '  we can 
extend it to a t rans la t ion  o f  open  fo rmu lae ,  Roughly,  we t rans la te  an open  T-.-formula with 

va r iab les  X, which is a Z : ( X ) - s e n t e n c e ,  to the c o r r e s p o n d i n g  ~ ' ( X ' ) - s e n t e n c e ,  which is an 

open T~'- formuia with va r iab les  X'. Here  X' resu l ts  f rom X by an a p p r o p r i a t e  renam ing  of sor ts  

de te rm ined  by a (we a lso  have to avoid un in tended  "c lashes"  of va r iab les  and opera t ion  

symbo ls ) .  

The above ideas gene ra l i se  to an a rb i t ra ry  inst i tut ion INS. 

Let Z: be a s igna tu re .  

Any pa i r  ,¢4p,e>, where  e:T:-.~T." is a s igna tu re  morph ism and ~ E S e n ( ~ ' ) ,  is an  open 

~':-formula with va r iab les  "E'-e(T_.)".  ( N o t e  the quota t ion  marks - -  s ince  ~'-e(T_.) makes  no 

sense  in an a rb i t ra ry  inst i tu t ion,  it is on ly  mean ing fu l  as an aid to ou r  in tu i t ion,  ) When we 

use open f o rmu lae  in spec i f i ca t i ons  we will omi t  e if it is obv ious f rom the context .  

If M is a ;E:-modet, MEIMod(T.)  I, then a va luat ion of va r iab les  " Z : ' - e ( E ) "  into M is a 

T-:'-model M'~IMod(T- . ' ) I  wh ich is a e - e x t e n s i o n  of  M, i, e. M ' I e = M ,  

Note  that  in the s tanda rd  log ica l  f r amework  the re  may be no va lua t ion  o f  a set  o f  va r iab les  

into a mode l  con ta in ing  an empty  ca r r i e r ,  S imi lar ly .  he re  a va lua t ion  need not  a lways exist  

(a l t hough  there  may be more  r e a s o n s  fo r  tha t ) ,  For  example ,  in GEQ if e is not  in ject ive 

then s o m e  mode ls  have no e - e x t e n s i o n .  

If cr:,E~E1 is a s igna tu re  morph lsm and <~, e> is an open E - f o r m u l a  then we def ine  the 

t rans la t ion  of <¢,e> a long  o as cr (<#,e>)  =def <o ' (~) ) ,  e'>. where  

o"  
~" ~ E l "  

T o. 
E • ~:1 

a 

is a pushout  in the c a t e g o r y  of  s igna tu res .  

The re  is a ra the r  subt le  p rob lem we have to point  out here :  pushouts  a re  de f ined  only  up 

to i somorph i sm,  so str ic t ly  speak ing  the t rans la t ion  of  open  f o r m u l a e  is not we l l - de f i ned .  

For tunate ly .  f rom the de f in i t ion  of  an inst i tut ion one  may eas i l y  p rove  that  w h e n e v e r  

~: ,Et"~,£1 "" is an  i somorph i sm in Sign with inverse  ~-1 then S e n ( ~ )  : S e n ( Z : l ' ) - ) S e n ( T - 1  - )  is a 

b i ieot lon,  M o d ( L )  : M o d ( E t " ) - - ) M o d ( ~ l  ") is an i somorph ism in Cat  and m o r e o v e r  fo r  any 

~ l ' - s e n t e n c e  ~ e S e n ( E 1  ') and  any  T_,I ' - m o d e l  M]  "EIMod(T-,1 ' )  I 

M'I'Plp' iff M I '  I L-11=~(1¢) 
This shows that  (a t  least  fo r  semant i c  ana lys is )  we can pick out  an a rb i t ra ry  pushout  to de f ine  

the t rans la t ion  of  open  f o rmu lae  and so we may safe ly  accep t  the above  def in i t ion  of 

t rans la t ion .  

Note that  some t imes  we want  to res t r i c t  the c lass  of s igna tu re  morph i sms  which may be 

used ( a s  second  c o m p o n e n t s )  to cons t ruc t  open  fo rmu lae ,  tn fac t ,  in the above  remark  
ske tch ing  how f r ee  var iab les  may be in t roduced  into GEQ we used on ly  a l geb ra i c  s igna tu re  
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inclusions L:Z~--*Z~', where the only new symbols in ,~' were constants.  To guarantee that the 
t ranslat ion of open formulae is def ined under such a restr ic t ion,  we cons ider  only restr ic t ions 

to a co l lect ion ~ of s ignature morphisms which is c losed (at  least) under  pushing out  a long 
arb i t rary s ignature morph isms,  i .e .  for any s ignature morphism o: ~ - ~ 1  if e: T_.~, E]H then 
there is a pushout in Sign 

o '  
r., > ~1'  

ot to. 
a 

such that 8 '~]H. 

Examples of such co l lec t ions Iv( in AIgSIg include: the col lect ion of all a lgebra ic  s ignature 
inc lus ions,  the restr ic t ion of this to inc lusions 8: ~T_, '  such that ~'  conta ins no new sorts, the 
further restr ic t ion of this by the requi rement  that ~' conta ins new constants only (as  above ) .  
the co l lect ion of all a lgebra ic  s ignature morphisms which are onto w. r . t .  sorts, the col lect ion 
of all ident i t ies and the co l lect ion of all morphisms.  Note that most of the above permi t  
var iab les denot ing operat ions or even sorts. 

In the rest of this sect ion we briefly sketch how to universal ly c lose the open formulae 
in t roduced above ( the const ruct ion is based on the not ion of a syntact ic operat ion in 
[Bar 74]) .  It is therefore per iphera l  to the main concern  of this paper  but we would like to 
add some logical  meat to our t reatment  of free var iables.  

Let ]H be a co l lect ion of s ignature morphisms which is c losed under pushing out a long 
arb i t rary  morphisms in Sign. Let ,~ be a s ignature and let <¢~, e> be an open T--formula such 

that 8Egy[, Consider  the universal c losure of <¢, e>, written v<~, e>, as a new z~-sentence, 
The sat isfact ion relat ion and the t ranslat ion of sentences v<f~. 8> along a s ignature morphism 
are def ined in the expected way: 

- A ,~-model sat isf ies v<¢, 8> if each of its e -ex tens ions  satisf ies ¢, i .e .  for any 
M ~lMod (,~) I 

MPV<~,8> iff for any M'EIMod(Z~')I  such that M ' Ie=M,  M'I=~. 

- For any s ignature morphism o: Z~ ,~ I .  o ( v<¢ ,  8>) =def Vcr( <¢, e>), where 
o(<¢, 8>)=<0"(¢), 8"> is the t ranslat ion of <~, e> as an open ,~-formuta (with 
8' c ~[~). 

Note that in the above we have extended our under ly ing insti tut ion INS. Formal ly ,  we can 
def ine the extension of INS by universal  c losure w. r . t .  ~ ,  INSV( ~J), to be the fol lowing 
insti tut ion: 

- SlgnlNSV(IH) is SlgnlN s- 

- For any s ignature ~, SenlNSV(]M)(,~) is the dis jo int  union of SenlN$(T-.) with the 
co l lect ion of all universal c losures v<#, e> of open ;E-formulae, where 8~]lH; for a 

s ignature morph ism o: T-.-->~I SenlNSV ( lv [ ) (o)  is the funct ion induced by SenlNs(o) 
on SeniNs(,~) and by the notion of t ranslat ion of universal ly c losed open formulae 
as def ined above.  

- M°dlNsV(]M) Is MOdlN s- 

- The sat isfact ion relat ion in INSV[ ]M) is induced by the sat isfact ion relat ion of INS 
for INS-sentences and the not ion of sat isfact ion for universal ly  c losed open 
formulae as def ined above.  

The fol lowing theorem guarantees that INS'C(~H) is in fact an insti tut ion. 
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Theorem For any s ignature morph ism o: T ' ~ I ,  open T- fo rmula  <$, e> and T l - m o d e I  

MI ~IMod(T-'I ) I 

MlJoI=V<#, e> iff M]  ko'(¥<~, e>) 

Example Let 11" be the co l lect ion of morphisms L: L - ~  ' in AlgGig such that L }s an 
a lgebra ic  s ignature inclusion and L'  conta ins new constants only. The insti tut ion GEQV(IT) is 
the institut ion of universal ly  quant i f ied equat ions (cf.  [GB 83]) .  If we addi t ional ly  al low ~' to 

contain new operat ion names (not  just constants)  then quant i f icat ion a long morphisms in Tr 

leads to a version of s e c o n d - o r d e r  logic.  

Obviously. other quant i f iers ( there exists, there exist inf ini tely many. there exists a 
unique, for a lmost  all . . . )  may be in t roduced to inst i tut ions in the same manner  as we have 
just in t roduced universal  quant i f lers.  It is also worth ment ion ing that one may simi lar ly 

in t roduce logical  connect ives (cf.  [Bar 74]) ,  Note that by i terat ing this idea we can,  for 
example,  der ive the insti tut ion of f i r s t -o rder  logic from the insti tut ion of ground atomic 

formulae,  

4 Spec i f i ca t ion-bu i ld ing  operat ions 

In this sect ion we descr ibe  a set of s imple operat ions for bui ld ing speci f icat ions in an 
arb i t rary  inst i tut ion. Our intent ion is to provide low- level  operat ions which co l lec t ive ly  give 
suff icient power and f lexibi l i ty to const i tute a kernel for bui ld ing h igh- leve l  speci f icat ion 
languages in any insti tut ion, We intent ional ly  do not def ine a formal  spec i f i ca t ion  language 
but only the spec i f i ca t ion-bu i ld ing  operat ions behind such a language.  The di f ference is 
mainly one of syntax; a l though we provide a suggest ive notat ion for our operat ions,  this is not 
a comp le te  syntax yet because without f ixing a par t icu lar  institut ion the syntax of s ignatures 
and sentences cannot  be f ixed. This att i tude admits certa in informal i ty in the presentat ion 
below. However,  we do take care  to formal ly  def ine the semant ics  of all our operat ions.  

Let INS be an arb i t rary  inst i tut ion, fixed throughout  this sect ion. 

A speci f icat ion desc r ibes  a co l lec t ion  of models  of the same signature.  To fo rmat ise  this, 
for any spec i f i ca t ion  SP we def ine its s ignature Sig[SP]~lSlgnt and the co l lec t ion of its models 
Mod[SP]C:IMod(Sig[SP]) f .  It is more usual to def ine the semant ics of spec i f i ca t ion-bu i ld ing  
operat ions in terms of theor ies in the under ly ing (o r  an extended)  insti tut ion rather than in 
terms of co l lec t ions of models  (as in e, g. C lear ) .  But this is not an opt ion here - -  most of 
the operat ions def ined below cannot  be natural ly viewed on this level. If Stg[SP]=L then we 
cal l  S P a  L-spec i f i ca t ion .  

The  operat ions we provide are the fol lowing: 

- Form a basic speci f icat ion given a s ignature ~ and E-sen tences  ¢. This speci f ies 
the col lect ion of T:-models that satisfy ~. 

- Form the union of two T,-spec i f ica t ions SP and SP',  speci fy ing the col lect ion of 
L - m o d e l s  satisfying both SP and SP', 

- Translate a L -spec i f i ca t i on  to another  s ignature ~'  a long a s ignature morphism 
o: L->,~ '. This together  with union al lows large speci f icat ions to be buil t  from 
smal ler  and more or  less independent  speci f icat ions.  

- Derive a E, ' -spec i f ica t ton f rom a r icher  L -spec l f i ca t i on  using a s ignature morphism 
o: T,.->T!. This al lows detai ls  of a construct ive speci f icat ion to be hidden whi le 
essent ia l ly  preserv ing its co l lect ion of models,  

- Given a L-spec i f i ca t ion  restr ic t  models  to only those which are minimal  extensions 
of thei r  o - r educ t s  for a given or: ,~,--~)" This imposes on the models  of a 
speci f icat ion the addi t ional  constra int  which exc ludes models which are " larger"  
than necessary.  

- Abstract  away from cer ta in  detai ls  of a speci f icat ion,  admit t ing any models which 
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are equivalent  to a model  of the speci f icat ion w. r . t .  some given set of propert ies 
(def ined Using sentences of the inst i tut ion).  

- Close the col lect ion of models  of a speci f icat ion under isomorphism.  

Here is a more  formal  descr ip t ion of the above operat ions (we discuss thei r  instant iat ions 
in a typical  inst i tut ion at a more  intuit ive level in sect ion 5) :  

A bas ic  speci f icat ion is a pai r  <T, d)>, where T-,EISIgnl Is a s ignature and ¢~_Sen(`E) is a set 
of T--sentences, We def ine:  

Sig[<T,.~>] = Z: 
Mod[<T-.,¢>] = { M~IMOd(`E) I I MI =¢ } 

Given lwo `E-specif icat ions SP and SP' (I. e. SIg[SP]=SIg[SP']= T.) thei r  union SP uSP '  is 
def ined as fol lows 

Stg[SP U S P ' ]  = T_ 

Mod[SP U SP']  = Mod[SP] n Mod[SP']  

(where n denotes set-theoretic i n te rsec t ion) .  Note that if SP and SP' are basic 

speci f icat ions <,£,¢~ and <T_,.d)'> then their  union has the same collection of models  as 
<~,d)ud)'> ( th is  t ime u denotes the usual se t - theore t i c  un ion) .  

If SP is a ,E-speci f icat ion and o: ,E-e,~' is a s ignature morphism then we def ine the 
t ranslat ion of SP along o, t ranslate SP by o, by: 

Sig[ t ranslate SP by o] = T., 
Mod[ t rans late SP by o] = ( M '~ IMOd(E ' ) I  I M'Jo~Mod[SP] ) 

if SP is a bas ic  speci f icat ion <`E,d)> then t rans late SP by o has the same co l lect ion of models 
as <`E', o(d))>, where o(d)) is the image of d) under  o ( i .  e, Sen (o )  here ) .  

Note again that using union we can only "put together"  specifications with the same 
signature.  To combine  speci f icat ions with di f ferent s ignatures we have to form a "union 
s ignature"  ( renaming  some of the s ignature symbols if necessary ) ,  t ranslate the 
speci f icat ions into this "union s ignature"  (us ing t ranslate w. r . t .  appropr ia te  s ignature 

in ject ions) and then form the union of the t ranslated speci f icat ions.  All this may be combined 
into one operat ion using an appropr ia te  category of "s ignature inclusions" to form the "union 
s ignature"  as a coproduot  (R. Burstal l ,  pr ivate communica t ion ,  of. also a remark in [GB 83] 
sect ion 6 . 1 ) .  However,  we dec ided to keep two s imple,  more e lementary  operat ions (which 
gives sl ight ly more  f lexibi l i ty) rather  than provide a s ingle h igher - leve l  operat ion.  

If o: ,E'-e,E is a s ignature morphism then from any `E-specification SP we can der ive a 
~ ' -spec i f i ca t ion .  der ive f rom SP by o: 

Sig[der ive from SP by o] = Z;" 
Mod[der lve from SP by o] = [ MIo  I MEMod[SP] } 

For (Zx~:Sen(T,.), Mod[der ive from <,E,d)> by o ] c  Mod[<Z:', o -1(¢)>] ,  where o -1(¢)  is the 

co image of ¢ under  o ( i . e .  S e n ( o ) ) .  Note however that this inclusion may be proper ,  s ince 
somet imes not all the proper t ies  of models  of the der ived specification are expressible using 
just `E'-sentences. The r igh t -hand  side of this inclusion cor responds  to the def ini t ion of the 
der ive operat ion in Clear [BG 80]. 

To def ine restr ic t ion to the minimal  models of a speci f icat ion we need the fol lowing notion: 

Let o: ,E'-*Z: be a s ignature morphism and CCIMod(Z:) l  be a co l lect ion of ,E-models. We 
say that a model  M is o-minimal in C if MEC and if M contains (to within isomorphism) no 
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proper  submodel  from C with an isomorph ic  o - reduc t ,  which we formatise as fol lows: for 

every MIEC,  any monomorph ism m : M 1 - ) M  ( in M o d ( E ) )  such that t a l c  is an isomorphism 
from M]Jo  to Mtc r ( in Mod(T- ' ) )  is in fact an isomorphism Gin Mod(T- ) ) .  

Now, for any s ignature morphism o: T_,'-~T_. and E-spec i f i ca t ion  SP, min imal  SP wrt o 

speci f ies the models of SP which are minimal  extensions of their  o - reduc ts ,  i . e .  : 

S ig[min imal  SP wrt o] = ,!: 
Mod[mln imal  SP wrt o] = { M I M is o -m in ima l  in Mod[SP] } 

To descr ibe  the next specif ication-building operat ion we need some further def ini t ions: 

For any s ignature E, set of E -sen tences  ¢~_Sen(E) and ,E-models M ] , M 2 e l M o d ( E ) I ,  we 
say that M] is '~-equivalent to M2 if for any ~E~, M]l=e iff M2P¢, 

Then, for any s ignature morph isms e: T.-~E', o: E"-~E" and models  M c I M o d ( E ) l .  

M'EIMod(T-, ' ) i ,  we say that M' is a o- fu l l  e-extension of M if it is a e -ex tens ion  of M, t .e .  

M ' Ie=M.  and its o - r e d u c t  is reachab le ,  i. e, M ' I o  is LE.,-minimal in IMod(Z~")t, where for any 
s ignature T,] we use the notat ion ~E1 to denote the unique morph ism from the init ial object  in 
Sign to E] ( the " inc lusion" of the "empty s ignature" into Z~I). 

For any s ignature rnorphisms 8: ,E-~,E' and o: T_."-~T_,'. set ¢)'C_Sen(E') of open ,~-formulae 
with var iables " ~ ' - e ( E ) "  and E -mode ls  M ] , M 2 E I M o d ( E )  I, we say that M] is ~'-equivalent to 
M2 via e on o if there are o- fu l l  e -ex tens ions  M ] ' , M 2 ' ¢ I M o d ( ; E ' ) I  of M1 end M2, respect ive ly,  
such that M I '  is ~'-equivalent to M2". (For  an intuit ive descr ip t ion of the meaning of this 
def ini t ion in a typical  si tuat ion see sect ion 5. ) 

Now, for any E-specif ication SP, s ignature morph isms e: ,E---)Z' and o: ,£"-*,E' and set 
• "_CSen(E') of open E- fo rmu lae  with var iables "E , -e (E ) . ' ,  the speci f icat ion 
abst ract  SP wrt  ¢)' via e on o ( intui t ively) ignores the proper t ies specified in SP as much as 
possib le without af fect ing ~ '  where o determines which e lements  of models  must be 
cons idered when in terpret ing ¢~', i . e .  it admits any model  @'-equivalent  vie e on o to a model 
of SP: 

S ig [abst ract  SP wrt ¢)' via e on o] = 
Mod[abst ract  SP wrt ¢" via e o n  o ]  = 

{ M ] ~ I M o d ( E )  I I M] is ¢ ' - e q u i v a l e n t  to M2 via e on o for some M2eMod[SP] } 

Note that a model  of SP need not, in genera l ,  be a model  of abst ract  SP wrt ¢ '  via e on o. 
In fact, it is if and only if it has a o- fu l l  e -ex tens ion .  

Final ly. for any E-spec i f i ca t ion  SP, the speci f icat ion Iso c lose SP is def ined by: 

SigLlso c lose SP] = 
Mod[ iso c lose SP] = { MCIMod(E) l  I M is isomorphic  to some model M1EMod[SP] } 

Observe that there is no guarantee in the def ini t ion of an insti tut ion that the sat isfact ion 
relat ion is preserved under isomorphism of models.  Thus, even the collection of models  of a 
basic specification need not be c losed under isomorphism.  Also note (see sect ion 5) that 
the co l lect ion of models  of der ive from SP by o need not be c losed under isomorphism even if 
the collection of models  of SP is. However,  the remain ing operat ions do preserve c losure 
under  isomorph ism.  

5 A standard case 

The def in i t ions of the spec i f i ca t ion -bu i ld ing  operat ions we gave in the test sect ion were so 
genera l  that they may be dif f icult  to understand,  We wil l now cons ider  what the operat ions do 
in the fami l iar  context  - -  the institut ion FOEQ of f i r s t -o rder  logic with equal i ty as the only 
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pred icate symbol - -  and compare  them with operat ions in exist ing speci f icat ion languages.  

We def ine this insti tut ion as fol lows: 

- SlgnFoEQ is AIgSig (i. e. SignGE Q , the category of a lgebra ic  s ignatures and their  
morph isms) .  

- MOdFOEQ IS MOdGE Q (i,  e, for any a lgebra ic  s ignature ,~, MOdFoEQ(T') is the 
ca tegory  of T--algebras and for any a lgebra ic  s ignature morphism o': ~ T - ' .  

MOdFoEQ(O) is the o - r e d u c t  functor from MOdFoEQ(T:') to MOdFoEQ(T-)), 

- For any algebraic s ignature T_,. SenFoEQ(T_,) is the set of c losed f i r s t -o rde r  
formulae with opera t ion  symbols  f rom ~ and the equal i ty as the only pred icate 

symbol :  for any a lgebra ic  s ignature morphtsm o: E-->~', SenFOEQ(O) is the 
t ranslat ion of T--formulae to T- ' - formulae def ined in the natural way. 

- The sat isfact ion relat ion is determined by the standard not ion of sat isfact ion of 
f i r s t -o rder  sentences, 

This c lear ly  forms an inst i tut ion (deta i ls  in [GB 83]) .  Moreover,  our assumpt ions that the 
category of s ignatures is f ini tely cocomplete and that MOdFoEQ translates finite col imits in 
SignFOEQ to l imits in Cat obviously  hold here too: in fact, these parts of the institut ion are 
exactly the same as in GEQ, 

In the fol lowing we analyse the spec i f i ca t ion-bu i ld ing  operat ions def ined in sect ion 4 in the 
f ramework of the above insti tut ion of f i r s t -o rder  logic.  

There is hardly anything to be said about  basic speci f icat ions.  All speci f icat ion languages 
provide a syntact ic tool for l ist ing a set of axioms over a given s ignature,  a l though usually they 
di f fer in which formulae are acceptab le .  F i rs t -o rder  equat ional  axioms are relat ively powerful 
compared  with e . g .  equat ions in [ADJ 76] or universal  Horn axioms in [ADJ 80], 

In examples we use a syntax cor respond ing  to that of Clear: 

Bool = sorts bool 
opns true, false: ~ b o o l  

not: bool--* boot 
or:  bool ,  boo l - *boo l  

ax iomsVx,  true or x = true not ( t rue)  = false 
Vx. false or x = x not( fa lse)  = true 
Vx. x=true v x=fatse 

(Of course,  or and v are formal ly  not the same here, ) 

The union operat ion dif fers from the cor respond ing  opera t ion  in other speci f icat ion 

languages (e. g. + in Clear or ASL) in that it works only for speci f icat ions of the same 
s ignature,  and so it prov ides no d i rect  way for putt ing together  spec i f icat ions over different 
signatures.  To do this, we have to use union together with the t ranslate operat ion,  which 
int roduces new sorts and operat ion symbols to a speci f icat ion (and renames old ones) .  

The sum of two spec i f icat ions (as def ined in ASL) may now be expressed as fol lows: 

SP + SP' =def ( t rans la te  SP by L) u ( t rans la te  SP' by L') 

where L: )i-~)iu~, and ~': T-'-*T-UT-' are the inclusions of T- and ~ ' ,  respect ively,  into their  set -  
theoret ic  union ~U~'.  To avoid unintended confusion of symbols  with the same names in 
and T_.' instead of using the inc lus ions L and L' we need in ject ions which rename the 
common symbols  as requ i red (as in C lear ) .  

An operat ion s imi lar  to enr ich in Clear ( ident ica l  when there are no symbol c lashes) may 
be def ined in terms of the union and the basic specification operat ions:  

e n r i c h  SP by sorts S opns £~ axioms 4) =def SP + < <sorts(SP) uS. opns(SP)  u£~, ~> 
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Note that  the t rans la te  ope ra t i on  c o r r e s p o n d s  d i rec t ly  to the TRA o p e r a t o r  of  [EWT 83], 

The der ive  ope ra t i on  is, in a sense ,  dual  to t rans la te .  It may be used to r e n a m e  and to 

h ide some  of the sor ts  and ope ra t i on  symbols  of  a spec i f i ca t ion ,  It is exact ly  the same as 

der ive  in ASL [SW 83, shor t  vers ion  only]  and c o r r e s p o n d s  d i rec t ly  to the re f lec t ion  (REF) 

ope ra to r  in [EWT 83]. The in tent ion is the same as that of  der ive  in C lear ,  but the mean ing  is 

s l ight ly  d i f fe ren t  as ment ioned  in sec t ion  4. 

Note that the co l lec t ion  of mode ls  of der ive  f rom SP by o need not to be c losed  under  

i somorph ism even if Mod[SP] is. This p h e n o m e n o n  occu rs  when o is not in ject lve on sor ts .  

When fo r  two sor ts  s and s '  c r ( s ) = a ( s ' ) ,  der ive  f rom SP by o requ i res  the carr iers of sor ts  s 

and s" to be ident ica l  ra the r  than only  i somorph ic .  (See  be low fo r  some fu r ther  d iscuss ion  on 

this point .  ) 

The mtn lmal  operat ion res t r ic ts  the mode ls  of a specif icat ion SP to on ly  those a lgeb ras  

which con ta in  ( to  within i somorph i sm)  no p r o p e r  subalgebra which is a mode l  of  SP with the 

same o- reduct .  In par t i cu la r ,  in the inst i tut ion of  f i r s t - o r d e r  log ic  the def in i t ion  of  min imal  as 

given in sec t ion  4 s tates that  if an a lgeb ra  A is a model  of  the speci f icat ion min ima l  SP wrt  o 

then A is a mode l  of  SP and w h e n e v e r  B is a mode l  of  SP which is a s u b a l g e b r a  of  A such 

that  B t o = A I o  , then A=B. M o r e o v e r ,  if Mod[SP] is c losed  unde r  i somorph i sm then the 

converse of this imp l i ca t ion  is t rue as well.  In general ,  however ,  this need not be the case. 

The min imal  ope ra t i on  is s im i la r  to the GEN operator of [EWT 83] ra ther  than to the 

reachable opera t ion  of ASL [SW 83] o r  the use of f in i te ly  gene ra ted  a lgeb ras  in CIP-L 

[Bau 81]. In fac t ,  min imal i ty  does  not gua ran tee  teachab i l i t y  ( and  hence ,  fo r  example ,  the 

induct ion p r inc ip le  need not hold in min imal  a lgeb ras )  a l though  teachab i l i t y  does imply 

minimal i ty :  

NN = sor ts  nat 
opns zero:  - * n a t  

suco:  nat--* nat 
axioms 3x. s u c c ( x )  = x 

Nat~ = min imal  NN wrt LSig[NN] 

(Reca l l  that  /'Sig[NN] is the i nc lus ion  of  the empty  s igna tu re  into Sig[NN].  ) Mode ls  of  NN 

conta in  ( up  to i somorph i sm)  e i t he r  a f in i te  s e g m e n t  of  na tura l  numbers  Eq, {0 . . . . .  n) with 

s u c c ( n ) = n  and an a rb i t ra ry  unreachable par t  o r  e lse  lq t oge the r  with an a rb i t ra ry  u n r e a c h a b l e  
par t  con ta in ing  at leas t  one  e l emen t  x such that  s u c c ( x ) = x ,  The only  mode ls  of Nat(~ a re  (up  

to i somorph i sm)  f in i te  s e g m e n t s  of ~1, {0 . . . . .  n) with s u c c ( n ) = n  and al l  e l emen ts  reachab le ,  

or  e lse ~I t oge the r  with exact ly  one  u n r e a c h a b l e  e lemen t  ~ such that  s u c c ( w ) = ~ .  

An opera t ion  which is l ike r e a c h a b l e  in ASL [SW 83] may be de f ined  in te rms of min imal  as 

fo l lows:  

reachable SP wrt o" =def SP + min imal  <Sig[SP], ~> wrt o 

The r e a c h a b l e  ope ra t i on  of ASE is in fact  a spec ia l  case  of the above:  

reachable SP on S =def r e a c h a b l e  SP wrt 

where  ~ is the inc lus ion  of  the s igna tu re  < s o r t s ( S P ) - S ,  ¢> into Sig[SP], 

N a t - s e g  = r e a c h a b l e  NN wrt ~Sig[NN] = reachable NN on [nat} 

Now, the only  mode ls  o f  N a t - s e g  a re  ( up  to i somorph ism)  f in i te s e g m e n t s  o f  l'q, {0 . . . . .  n) 
with s u c c ( n ) = n  and al l  e l emen ts  reachab le .  

Our s p e c i f i c a t l o n - b u i l d i n g  operat ions do not  prov ide the poss ib i l i t y  to requ i re  in i t ia l i ty o r  

f r eeness  ( u n l e s s  ax ioms l ike data cons t ra in ts  [GB 83] a re  a l ready  p resen t  in the under ly ing  
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inst i tut ion).  We could easi ly add such an operat ion.  In pract ice, however,  this requires a 

ser ious restr ic t ion on the under ly ing insti tut ion which in the standard case exc ludes axioms 
more powerful  than universal  Horn formulae (see  [MM 83], a lso [Tar 83]) a l though note that 
formal ly  it is possib le to give a semant ics  for data constra ints  without this restr ic t ion [Tar 84], 
Anyway, we do not cons ider  such an operat ion necessary ;  see [SW 83] for fur ther d iscussion 
on this point. 

The der ive operat ion  al lows one to hide some of the sorts and operat ion  symbols  of a 
speci f icat ion.  This also causes some of the proper t ies of its models  to be h idden,  s ince they 
cannot  be expressed using the remain ing operat ions.  However.  this is not real abstract ion 
yet s ince the structure induced by the hidden operat ions remains.  To do real abstract ion we 
can pick out a set of proper t ies we would like to preserve and then use the abst rac t  operat ion.  

The proper t ies we would l ike to preserve must be expressed as sentences of the under ly ing 
institut ion. However,  to deal  proper ly  with unreachab le  e lements of models (dubbed  "junk" in 
[BG 8"1]) we have to use open formulae rather than (c losed)  sentences,  Why not just forbid 
junk? Al though unreachab le  e lements seem to be of no consequence ,  there is an example 
( In f in i te-Set)  in [SW 83] which shows how an unreachab le  e lement  in a model  of SP can 
become reachab le  and useful in enr ich SP by opns . . . .  Fur thermore,  junk natural ly ar ises 
when we " forget"  opera t ions using der ive,  which co r responds  to the si tuat ion where an 
a lgebra  which is reachab le  when viewed from a low level becomes non - reachab le  when viewed 
from a h igher  level of abstract ion.  

The most natura l  way one may view abst rac t  in the insti tut ion of f i r s t -o rder  logic is, we 
think, the fol lowing ( this g ives a d i rect  genera l isat ion of abst rac t  in ASL - -  see below) : 

Given a ,~-speci f lcat ion SP, extend ;E by as many var iab les X as necessary  to name all  the 
e lements of a lgebras  you would like to deal  with, Then give the set ¢ of proper t ies which are 
to be preserved under  abstract ion.  These proper t ies must be expressed as T-(X)-sentenoes.  
The abstract ion of SP with respect  to 4) is given by the speci f icat ion 

abstract SP wrt • via ~ on ~' where ¢: T,-->~,(X) is the a lgebra ic  s ignature inclusion and 
L': X'-*;E(X) is the inclusion into ~"(X) of the a lgebra ic  s ignature X with sorts 

{sEsorts(T-.) I X s is n o n - e m p t y }  and constants X as the only operat ions.  This speci f ies 
( roughly)  the co l lect ion of E -a lgeb ras  which satisfy the same formulae of ¢3 as models of SP. 
More formal ly ,  a ,~-algebra A satisf ies abst ract  SP wrt ¢~ via L on ¢' If and only if there is a 
,~-algebra B which sat isf ies SP and var iable valuat ions vA: X-->IAI and ve: X'* IBI which are 
sur ject ive on sorts in which X is non -empty  such that for any formula ¢~¢~, ~ holds in A under 
the valuat ion v A if and only if ¢ holds In B under  the valuat ion v B . 

Cons ider  the fo l lowing example:  

Nat = min imal  < T. { Vx. 0 ~ s u c c ( x ) ,  Vx, y. ( succ (x )=succ (y )  ==) x=y) } > wrt  LT_ 

where T, = sorts nat opns 0: --*nat succ:  nat'-*nat 
Nat -even = enr ich  Bool+Nat by opns even: nat->bool 

axioms even(0)  = true e v e n ( s u c c ( O ) )  = false 
Vx: nat, e v e n ( s u c c ( s u c o ( x ) )  = even(x )  

All models of Nat are Isomorphic  to the standard model  of the natural numbers.  (Note  that 
for this specif icat ion mlnlmal i ty  guarantees reachabl l i ty .  ) Each model  of Nat -even Is the 
combinat ion of a model  of Nat with a model of Bool (see above) with an extra operat ion even. 
We can abstract  from Nat -even preserv ing only the proper t ies of booleans and the behaviour  
of even as fol lows: 
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Nat- rood = abst rac t  Nat -even wrt • via L on L' 

where: X is a set of var iab les with Xnat=~ and at least two e lements of sort bool ,  
~: Z;-*;E(X) and ~'; X" *~ (X)  are a lgebra ic  s ignature inc lus ions,  and 

= ( t=t' I t . t"  are ~'!-terms of sort  bool with var iab les X ), 
where T, = S ig [Nat -even]  and X is der ived from × as above.  

All models  of Nat- rood are isomorph ic  e i ther to the natural numbers modulo n, for some 

hE(2, 4, 6 . . . .  ) or  to n~ itself with arb i t rary  junk of sort  nat  in both cases.  

Observe that the above condi t ion means that there are "cor respond ing  parts" of A and B in 
which exact ly the same formulae of • hold. This is not the same as the requ i rement  that 
exact ly the same fo rmulae of • hold in all of A and B. Namely,  if two a lgebras  are 
• - e q u i v a l e n t  via ~ on ~' then (assuming that • is c losed under  r enam ing  of var iab les)  they 
are equivalent  w, r, t. the set of formulae which results from universal ly  c los ing al l  ~E~, but 
not vice versa; here is an example:  

Suppose ,~ = s o r t s  s o p n s  f: s-~s and A, B are E -a lgeb ras  such that IAIs=IBIs={0, 1,2),  

fA (0 )= fB (0 )= ] ,  fA ( ] )= fB  (1 )=0 ,  fA(2)=2 but fB (2 )= ] ,  

A: 0,¢ ~'1 2 ~~) B: 0.~ ~'l ~ ' 2 

Then A and 8 are equivalent  w , r , t ,  the formula Vx . f ( x )=x  because nei ther A nor 8 satisf ies 
it. but they are not equiva lent  w , r . t ,  the set of formulae ( f ( x l ) = x l ,  f (x2)=x2 . . . .  } because 
for any sur ject ive var iab le valuat ion A satisf ies at least one of the formulae in this set whi le 8 

satisf ies none of them. 

The idea of compar ing  a lgebras w, r, t. a set of formulae also appeared  in [Pep 83]. The 
di f ference is that there only c losed formulae were cons idered .  The two approaches  are 
equiva lent  if one al lows his c losed formulae to be infinitary. In fact, two T -a lgeb ras  are 
equivalent  in our sense w . r , t ,  a set • of ~ ( X ) - s e n t e n c e s  (with ~ and ~' as above) if and 
only if they are equiva lent  w. r . t .  the fol lowing c losed E-sen tence :  

3 X . ( / ~  { V y : s . V [ y = x l  xcX S) I s~sorts(Zb & X s ~  ) & / ~ ) )  

where V and /~  denote tnf initary d is junct ion and con junct ion,  respect ively.  Note that the 
size of X depends  on the cardtnat i ty  of the a lgebras  we would like to deal  with, so even in the 

standard case of countab le  a lgebras  L~t w logic may not be suff icient. 

We can further spec ia l ise  our  abst rac t  operat ion to get  the abst rac t  opera t ion  of ASL. 
Namely,  whenever  W_CITT(X)I is a set of terms (TT(X)  is the ;E-algebra of ;E-terms with 
var iab les X, see e . g .  [ADJ 76)) then the ASL speci f icat ion abst rac t  SP wrt W is equivalent  to 
our  abst rac t  SP wrt EQ(W) via ~, on ~', where EQ(W) is the set of al l  equat ions t=t" such that 
t and t '  are terms of the same sort  which belong to W and ~ and ~" are as above.  

The abs t rac t  operat ion  may be used to relax the interpretat ion of a spec i f ica t ion  to all 
models  which are behavioura l ty  equiva lent  to a model  of the speci f icat ion ( th is is ca l led 
behav iourat  abst rac t ion  in ASL [SW 83] - -  see this paper  for examp les ) .  

Suppose that ;E is an a lgebra i c  s ignature and tN and OUT are  subsets of the sorts of ~. 
Now, cons ider  all computa t ions which take input from sorts IN and give output in sorts OUT; 

this set of computat ions cor responds  to the set ITE(XlN) tOU T of ;E-terms of sorts OUT with 
var iables of sorts IN, Two a lgebras  are equivalent  in our sense with respect  to the set of 

equat ions EQ(ITz;(XIN)louT) if they are behavioura l ly  equivalent ,  that is they have matching 
input /ou tput  relat ions. Note that this covers the not ions of behavioura l  equiva lence with 
respect  to a single set OBS of observable sorts which appear  in the l i terature. For example,  
in [Rei 8 ] ]  and [GM 82] we have IN=sor ts (E) ,  OUT=OBS; in [Sch 82], [SW 83] and [GM 83] 

IN=OUT=OSS; and in [GGM 76], [BM 8 ] ]  and [Kam 83J IN=~ and OUT=OBS. 
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The abs t rac t  opera t ion  usual ly  does not appea r  expl ic i t ly  in spec i f i ca t ion  l anguages  ( the  
only  except ion  we know about  is ASL) ; ins tead,  it is somehow inc luded in the not ion of 
imp lemen ta t i on  of one  spec i f i ca t ion  by ano ther .  The inc lus ion of abs t rac t  as an expl ic i t  
spec i f i ca t i on -bu i l d ing  opera t i on  a l lows us to use a very  s imp le  and e legan t  def in i t ion of 
imp lemen ta t i on  ( see  [SW 83] for de ta i l s ) ,  On the o the r  hand,  abs t rac t  makes  in fe rence  more  
comp lex  because  it is not  m o n o t o n e  (a t  the level  of  theor ies )  in the sense that  th ings t rue in 
SP need not  be t rue in abs t rac t  SP wrt  . . . .  

The Iso c lose  ope ra t i on  c loses the co l lec t ion  of mode ls  of a spec i f i ca t ion  under  
i somorph ism.  The on ly  s i tuat ion which the co l lec t ion  of mode ls  of a spec i f i ca t ion  may not be 
c losed under  i somorph ism a l ready  is when the spec i f i ca t ion  con ta ins  a use of 
derive from , . .  by o where  o is not in ject tve on sorts.  It would be easy to "fix" der ive  by 
chang ing  the def in i t ion so that  the resu l t  is au tomat i ca l l y  c losed under  i somorph ism ( th is  was 
the a l te rna t ive  adopted  in ASL [SW 83, long ve rs i on ] ) ,  Ano the r  poss ib le  "so lu t ion ' ,  which 
turns out  to y ie ld  exact ly  the same express ive  power ,  is to rest r ic t  de r i ve  by a l lowing on ly  
s igna tu re  morph i sms  which are  in ject tve on sorts.  We pre fer ,  however ,  to adop t  ne i the r  
so lu t ion,  re ta in ing  both de r i ve  (as  it is def ined now) and Iso c lose,  This is cons is ten t  with 
ou r  po l icy  of  p rov id ing  ope ra t i ons  which are  as e l e m e n t a r y  as poss ib le ,  It a lso  leaves open  
the possib i l i ty  of  spec i fy ing co l lec t ions  of  mode ls  which a re  not c losed under  i somorph i sm:  
desp i te  the we l l - known  a rgumen ts  that c losure  under  i somorph ism is natura l ,  we feel  that  
there  is no harm in prov id ing such f lexibi l i ty,  

6 A par t ia l  case 

A goocl test for the gene ra l  def in i t ions in sect ion 4 is to cons ide r  the i r  ins tant ia t ion in 
severa l  s ign i f icant ly  d i f fe rent  inst i tu t ions.  In this sec t ion  we discuss the resul t  of ins tant ia t ing 
in an inst i tu t ion of  par t ia l  f i r s t - o rde r  log ic .  This is an in teres t ing  case  to examine  because  
the ca tego ry  of par t ia l  T- -a lgebras as def ined be low is suf f ic ient ly  d i f ferent  f rom the ca tego ry  of 
total  T- -a lgebras d iscussed in sec t ions  2 and 5 that  the def in i t ions of ope ra t i ons  ( l i ke  m in ima l  
and abst rac t )  which depend  on the s t ruc ture  of this ca tegory  a re  put to a non - t r i v i a l  test. 

Let T-=<S,R> be an a lgeb ra i c  s ignature ,  A par t ia l  T--algebra is just  l ike a ( to ta l )  T--a lgebra 
except  that  some  of its ope ra t i ons  may be part ia l .  Formal ly .  a par t ia l  T -a l geb ra  consis ts  of 
an S - i ndexed  fami ly  of sets IAI = (IAIs)sE s and for each  f: s]  . . . . .  s n ~ s  a poss ib ly  par t ia l  
funct ion fA: IAIsl x" • • XlAIsn->lAIs • A (weak) T--homomorphtsm f rom a par t ia l  T--a lgebra A to a 
par t ia l  T- -a lgebra B. h: A--*B. is a fami ly  of ( to ta l )  funct ions {hs}sE s where  hs: IAIs--*IBI s such 
that  for any  f: s ]  . . . . .  sn'-*s and a l~ lA Is l  . . . . .  an~lAisn 

fA(a l  . . . . .  a n) de f ined ===} f B ( h s l ( a l )  . . . . .  hsn(a n ) )  de f ined and 

hs( fA(a 1 . . . . .  a n ) )  = f B ( h s l ( a l )  . . . . .  hsn(a n))  

( [BrW 82] would cal l  th is a total Z ; - h o m o m o r p h i s m ) .  If m o r e o v e r  h sat isf ies the cond i t ion  

f B ( h s l ( a l  ) . . . . .  hsn(a n) ) def ined ==) fA(a 1 . . . . .  a n) def ined 

then h is ca l led  a strong T--homomorphism. 

The ca tego ry  of par t ia l  T . -a lgebras PAIg(T.) has par t ia l  ~ - a l g e b r a s  as ob jects  and strong 
T- . -homomorphisms as morph tsms ;  the compos i t i on  of h o m o m o r p h l s m s  is the compos i t i on  of 
the i r  co r respond ing  c o m p o n e n t s  as funct ions.  (Th is  obv ious ly  fo rms a ca tegory .  ) 

The def in i t ion of the o- reduc t  func tor  --IG: PAIg(T- ' ) ->PAIg(~)  where  o: T'--->Z;, is an 
a lgeb ra i c  s igna tu re  morph i sm is exact ly  the same  as in the total  case ;  s e e  sec t ion  2. 

A par t ia l  f i rs t -o rder  ~.-sentence is a c losed f i r s t -o rde r  fo rmu la  bui l t  f rom T--terms using 
the log ica l  connec t i ves  -I. A, V and ==~. the quant i f le rs  v and 3.  and the a tomic  fo rmu lae  
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Ds(t) and t=t' (s t rong equal i ty  [BrW 82]) for each sort s in T- and terms t,t 'EtTT_(X)I s ( i . e .  
t , t '  are T--terms of sort  s with var iables X),  

Suppose A Is a part ial  T--algebra. Then A satisf ies an atomic  formula Ds(t) under  a 
valuat ion v:X-'- tAt,  wri t ten At=vDs(t) ,  lff the value of t in A under  v is def ined (we omit  the 
def ini t ion of the value of a term in a part ial  a lgebra  under  a valuat ion;  see [Bur 82] or [Ret 84] 

for deta i ls ) .  A part ial  T-,-algebra A satisf ies an atomic  formula t=-t' (where t , t '~ {Tz; (X) I  s for 
some sor t  s in T-) under  a ( total )  valuat ion v :X~ IA I ,  written Al=vt=t', tff 

AP'vDs(t) and A~vDs( t ' ) ,  or 
Al=vDs(t) and Al=vDs(t ') and the values of t and t' in A under v are the same. 

Sat isfact ion of (c losed)  part ial  f i r s t -o rder  T--sentences is def ined as usual, but note that v 
and 3 quanti fy only over  def ined values, 

The above def in i t ions amount  in the obvious way to an inst i tut ion PFOEQ of part ial  f i rs t -  
o rder  logic.  The sat isfact ion condi t ion foito~,:s f rom the fact that FOEQ is an insti tut ion and 

that def inedness of terms is preserved under  change  of s ignature.  Moreover ,  StgnpFOE Q is 
f ini tely cooomple te  (as  ment ioned in sect ions 2 and 5) and MOdpFoE Q translates finite col imi ts 

in SignpFOE 0 to l imits in Cat. 

The result of instanttat ing the genera l  def in i t ions of sect ion 4 in PFOEQ gives a set of 
operat ions which in some respects resemble  those in the ear ly version of ASL descr ibed in 
[Wir 82] def ined in the context of part ial a lgebras  (ca l l  this language "part ial  ASL", but note 
that it is s igni f icant ly  di f ferent from the ASL descr ibed in [SW 83]) .  One d i f ference,  however,  
is that in part ial  ASL the co l lect ion of models  of any specif icat ion was c losed under renaming 
of sorts and operat ions,  i .e .  if Sig[SP]=T~ and T-,=-Z~ ' .  then Mod[SP] conta ins part ial 
; " - a l g e b r a s  as well as part ial  ;E-algebras, This feature could be obta ined by changing the 

def ini t ion of MOdpFoE o and ~=,~,PFOEQ but we prefer  to omi t  it. 

The comments  regard ing  basic spec i f icat ions and the operat ions u t ranslate,  der ive and 
iso c lose (and how to def ine + in terms of U and t ranslate)  in sect ion 5 apply without change 
here. More interest ing are the operat ions minimal  and abstract .  

Intuit ively speak ing,  the minimal  operat ion gives rather unexpected results. One would 
expect  that min imal  SP wrt o should give the least -def ined and smal lest  (wrt o) models of 
SP, but instead it g ives the smal lest  (wrt o) models  of SP in each class of equal ly-def ined 
models.  There seems to be no way to restr ict  to the min ima l ly -de f ined  part ial  a lgebras in a 
co l lect ion of models  using the operat ions we have s ince strong homomorph isms cannot  relate 
a lgebras  unless they are equal ly  def ined. This means that there is no way to express the 
mdef  operat ion of part ial  ASL, which restr icts a co l lect ion of part ial  a tgebras to the ones 
which are min imal ly  def ined and reachab le  (and which satisfy t r ue , f a l se ) ,  We can def ine an 
operat ion which restr icts to reachable models 

reachable SP wr tcr  =def SP U minimal  <Sig[SP], ¢> wrt o 

which at least gives the possibi l i ty of per forming proofs by structural  induct ion, 

Abst ract  works in a way s imi lar  to that described in sect ion 5. The use of abstract  for 
behavioural abstract ion is s l ight ly di f ferent,  s ince the proper t ies to be preserved must Include 
def inedness of the results of "observable"  computat ions.  If T- is an algebra ic  signature and 
IN, OUT are subsets of the sorts of T- as in sect ion 5, behaviourat  equivalence in the context  
of part ial  a lgebras  becomes equ iva lence in our sense with respect to the set of formulae 

EQ(ITT-(XIN)IOUT) u ( D s ( t )  I tEITT-(XIN)t s for s~OUT ) . Partial ASL inc ludes no operat ion 
s imi lar  to abstract, 

We could get  min imal  to work as expected by chang ing the institut ion PFOEQ, The change 
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needed is to use weak E -homomorph i sms  as the morphisms of PAIg(T-) in p lace of strong 
~--homomorphisms.  Then mdef as in part ial ASL can be expressed,  a lbei t  in a rather 
unsat is factory way: 

mdef  SP =def (SP U min imal  <SIg[SP]. D> wrt t, sig[sP]) + Bool 

where D = { Ds(t) I t is a ground Sig[SP]- term of sort  s and MkDs(t)  for all MEMod[SP] } 
and Bool is a speci f icat ion of the booleans including the axiom true#false.  

But now abst ract  does not work as expected (no te  that its def in i t ion uses the not ion of 
T,-reachabtt i ty =clef mintmal l ty  in IMod(T-)1, which changes  when the morphisms of PAIg(T-) are 
changed - -  now only total ly undef ined part ial  T--algebras are T - - reachab le ) ,  

There is yet another  possibi l i ty  which makes both minimal  and abstract  work as expected in 
the part ial  case,  Namely,  we can view (some of) the def inedness axioms of a speci f icat ion 
as a part of its s ignature,  (A l though this might  seem like a s t range mixture of syntax with 
semant ics ,  s imi lar  mixtures have appeared  e lsewhere - -  [BR 83] inc ludes equat ions in 
s ignatures which def ine the domains  of operat ions,  and [GDLE 82] inc ludes informat ion in 
s ignatures regard ing  which operat ions may produce er ror  values. ) More formal ly ,  we can 

use an insti tut ion ]PFOEQ of part ial  f i r s t -o rder  logic where the category  of s ignatures is the 
ca tegory  of theor ies in PFOEQ conta in ing only def inedness axioms. Thus, a s ignature in 

]PFOEQ is a pair  <T-, D> where T- is an a lgebra ic  s ignature and D is a set of def inedness 
formulae over T-; a s ignature morphism o: <T-,D>~<~",D'> in ]PFOEQ is an a lgebra ic  s ignature 
morphtsm o: T-~T-" which preserves the def inedness axioms,  i .e .  if dED then O(d) ED'; for 

any s ignature <T_ D>, Mod]PFOEO(<T-, D>) is the ca tegory  of al l  part ial  T--algebras which satisfy 
(a t  least) D with weak homomorph isms as morphisms.  Sen~FOE Q and sat isfact ion are as in 
PFOEQ. 

Now the minimal  operat ion works in the intended way, as in the institution PFOEQ with 
weak homomorph isms.  Observe that for any s ignature <T,, D>, a <T-, D>=reachable model  ( i .  e. 

a L<T-,D>-rninimat model  in MOd~FoEO(<T-, D>)) is a min ima l ly -de f ined model  with no 
unreachab le  e lements ,  as in tended.  This means that abst ract  as def ined in sect ion 4 works 
nicely too. But note that to abstract  with respect  to a set of formulae with var iables X we now 
have to abstract  via a s ignature inclusion which extends the s ignature <T-, O> to 

<T,(X),D U O(X)>, where D(X) =def (Ds (x )  I SEsorts(T-),  x~X s } states that all "constants"  X 
have def ined values. 

Note that in the above we started from the inst i tut ion of part ial f i r s t -o rder  log ic ,  ident i f ied 
in it a "subinst i tut ion" of "stat ic" sentences and then used theor ies of this sublnst i tut ion as the 
s ignatures of another  inst i tut ion. This seems to be an interest ing way of bui ld ing a new 
institut ion from an old one which perhaps deserves a more careful  invest igat ion. 

7 Conc lud ing remarks 

In this paper  we at tempted to def ine a set of pr imit ive and genera l  spec i f i ca t i on -bu i l d i ng  
operat ions which when tnstanttated in any inst i tut ion prov ide a powerful  but tow- level  tool for 
speci f icat ion.  We tested the ins t i tu t ion-based genera l  def in i t ions of these operat ions by 
examining the result  of Instantiat ing them in two di f ferent ways: in an insti tut ion of total f i rs t -  
o rder  equat ional  logic (sect ion 5) and in an insti tut ion of part ial f i r s t -o rder  logic (sect ion 6) .  
In formulat ing the def in i t ions we also cons idered the result of instant lat ing them in two other 
inst i tut ions - -  an er ro r  insti tut ion based on [Gog 77] and an insti tut ion of cont inuous atgebras 
based on [ADJ 77] - -  but due to space l imitat ions we are unable to present  the detai ls  of 
these invest igat ions here.  

The quest ion of whether the def in i t ions we have given are real ly genera l  natural ly ar ises;  
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maybe the re  is some inst i tut ion which we have not cons i de red  in which the ope ra t i ons  we have 

de f ined  work  in an unexpec ted  way, Indeed.  whenever one gene ra l i ses  on the basis  of  a 

smal l  co l lec t ion  of examples  one must c h o o s e  between al l  the gene ra l i sa t i ons  which a r e  

d i f fe ren t  in gene ra l  but which co inc ide  in the par t i cu la r  examples  one has at hand.  For  

example ,  in the def in i t ion  of the min imal  ope ra t i on ,  to r ep resen t  the c o n c r e t e  not ion of 

in ject ive h o m o m o r p h i s m s  we used just  m o n o m o r p h i s m s  ra ther  than say equa l i se rs  or  ex t remal  

m o n o m o r p h i s m s  ( o r  more  gene ra l l y  we could  pa rame te r i se  ou r  def in i t ion  by an image 

fac to r i sa t ton  system as in [Tar 84 ] ) .  All of  these poss ib i l i t ies  work equa l l y  well in each  of ou r  

example inst i tu t ions,  We can try to test our  gene ra l i sa t i ons  by compa r i ng  them with o ther  

ava i lab le  gene ra l  de f in i t ions .  So fo r  example  we can show that  - -  under  certain not very 

res t r ic t ive  cond i t i ons  - -  min imal  c o r r e s p o n d s  to "gene ra ted "  as de f ined  in [GB 83] ( no te  

however  that  the def in i t ion  of  [GB 83] works on ly  in l ibera l  inst i tu t ions,  and this is a s t rong 

res t r i c t i on ) .  

Ano the r  natura l  quest ion c o n c e r n s  ou r  dec is ion  to a l low the spec i f i ca t ion  of co l lec t ions  of 

mode ls  which a re  not c losed  under  i somorph i sm and ou r  ca re fu l  t rea tmen t  of  mode ls  

con ta in ing  u n r e a c h a b l e  e lements .  We chose  this cou rse  because  we canno t  see any rea l ly  

compe l l i ng  reason ,  e i the r  p ragmat i c  or  techn ica l ,  fo r  assuming  that al l  usefu l  co l lec t ions  of 

mode ls  a re  c losed  under  i somorph i sm or  that only r eachab le  mode ls  are worth cons ide r i ng .  

On the o ther  hand,  we a lso  know of  no compe l l i ng  reason  why these assumpt ions  (espec ia l l y  

the fo rmer )  are  unreasonable. By leav ing the cho i ce  to the speci f ier  ( o r  to the d e s i g n e r  of  a 

h i gh - l eve l  spec i f i ca t ion  l anguage  which bui lds upon ou r  kernel  ope ra t i ons )  we prov ide the 

f reedom to exp lo re  all poss ib i l i t ies  wi thout u n n e c e s s a r y  res t r ic t ions .  

A l though the reader might  have the impress ion  that  we have been ca r r i ed  away in ou r  

pursui t  o f  genera l i t y ,  we t r ied to res is t  the u rge  to th row in u n n e c e s s a r y  general lsat ions. So 

for  example ,  it is c l ea r  that iso c lose  can be gene ra l i sed  to give an ope ra t i on  which can c lose 

under  dif ferent c lasses  of morph i sms ,  and not just  unde r  i somorph ism.  'This gene ra l i sa t i on  

might  even be usefu l ;  note that c losu re  under  ( s o u r c e s  of)  m o n o m o r p h i s m s  gives c losure  

under  s u b a l g e b r a s ,  and c losu re  under  ( ta rge ts  of)  ep imo rph i sms  gives c losu re  under  

quot ients .  We do not c la im to o f fe r  every  poss ib le  ope ra t i on  on co l lec t ions  of  models ,  only a 

few in teres t ing ones  which we know are useful .  This is a lso part  o f  our  just i f icat ion fo r  

omit t ing an opera t ion  which rest r ic ts  to the init ial or  f inal  e lemen ts  in a co l lec t ion  of models .  

We are not comp le te ly  sat is f ied with our  def in i t ion  of abst rac t .  It seems just too 

comp l i ca ted ,  a l though  its complex i ty  s tems d i rec t ly  f rom the di f f icul ty of  co r rec t l y  gene ra l i s i ng  

an impor tan t  deta i l  in the def in i t ion  of abs t rac t  in ASL. We are act ive ly  invest igat ing 

a l te rnat ive  de f in i t i ons ;  the most  p romis ing  one  at the moment  seems  to be the fo l lowing:  

S ig [abs t rac t  SP wrt ~ '  v ia e] = Z~ 
Mod [abs t rac t  SP wrt ~" via e] = 

{ M ]E IMod(F - ) I  I M]  i s ~ ' - e q u i v a l e n t  to M2 via e for  some M2EMod[SP] ] 

where  MI  is ~' -equiva/ent  to M2 via e if fo r  any e - e x t e n s i o n  of M]  there  is a ~ ' - e q u i v a l e n t  

e - e x t e n s i o n  of M2 and v ice versa.  Unfor tunate ly .  we just  do  not know yet exact ly  how this 

def in i t ion  re la tes  to the def in i t ion  of abs t rac t  in ASL and whe the r  it is powerfu l  enough  to 

express  behav ioura l  abs t rac t ion ,  

One p rob lem which we have not touched  on is the prov is ion of a i ns t i t u t i on -based  

parameter isat ion mechan ism.  We do not an t i c ipa te  that this would be very di f f icul t ;  the 

m a c r o - l i k e  parameter lsat ion mechan i sm  in ASL shou ld  general ise without p rob lems.  

Parameter isat ion m e c h a n i s m s  based on the idea that  spec i f i ca t i ons  a re  just t heo r i es  which 

use the pushout  in the ca tego ry  of t heo r ies  to de f ine  app l i ca t ion  ( such  as those  in C lear ,  

LOOK and o ther  l anguages )  would be more  di f f icul t  to g e n e r a l i s e ,  a l though p robab ly  this cou ld  

be done.  
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It would be interest ing to try to build a h igh- level  specif icat ion language on top of the 
kernel which we def ine here. Such a h igh- level  language most l ikely would not lend itself to 
the general i ty  of an arbi t rary institut ion, since there are probably useful operat ions on 
specif icat ions which could only be defined in a part icular institution or in a restr icted class of 
institutions. 
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