
A P A T H O R D E R I N G F O R P R O V I N G T E R M I N A T I O N O F
T E R M R E W R I T I N G S Y S T E M S

D. Kapur, P. Narendran
Computer Science Branch

Corporate Research and Development
General Electric Company

Schenectady, NY

G. Sivakumar t
Dept. of Computer Science

University of Illinois,
Urbana-Champaign, IL

A B S T R A C T

A new partial ordering scheme for proving uniform termination of term rewriting systems is

presented. The basic idea is that two terms are compared by comparing the paths through

them. It is shown that the ordering is a well-founded simplification ordering and also a strict

extension of the recursive path ordering scheme of Dershowitz. Terms can be compared under

this path ordering in polynomial time.

1. I N T R O D U C T I O N

Term rewriting systems have been found to be widely applicable in many areas of computer

science and mathematics, including word problems, unification problems, decision procedures

for equational theories, theorem proving, program transformation and synthesis, polynomial

simplification, analysis and design of specifications, proving properties by induction, etc. In

most of these applications, the Knuth-Bendix completion procedure [11] and its extensions dis-

cussed in [1,8,9,13,15] play a crucial role. However, the successful use of the completion pro-

cedure crucially depends upon the ability to prove the termination of term rewriting systems

that are generated during the course of the completion procedure to obtain a canonical set of

rewrite rules. In this connection, many termination orderings have been proposed in the litera-

ture including the original Knuth-Bendix ordering based on weights [11], paths of subterm ord-
ering [16], polynomial ordering [12], recursive path ordering (RPO) [2] and its extension based

on lexicogTaphic status (LRPO) [7], and recursive decomposition ordering (RDO) [6] and its ex-

tension based on lexicographic status (RDOS) [14].

In RRL, a rewrite rule laboratory under development at the Computer Science Branch at

General Electric Corporate Research and Development Center, we have implemented RPO as a

This work was done when Sivakumar was a graduate student in the Dept. of Mathematical Sciences,
Rensselaer Polytechnic Institute, Troy, NY. Kapur and Sivakumar were partially supported for this
research by the NSF grant MCS-8211621.

174

way to establish the termination of term rewriting systems [10]. By and large, our experience

has been positive with LRPO in terms of its performance and its applicability to a wide range

of term rewriting systems; however in some examples, we have found LRPO to be weak to

handle terms which are intuitively simple to handle [10]. In this paper, we develop a new ter-

mination ordering based on paths in terms which is intuitively simple to understand and which

is an extension of RPO.

In the next section, we study examples illustrating what is lacking in RPO. We analyze the

definition of RPO pointing out weaknesses in different aspects of the definition of RPO. Sec-

tion 3 introduces the ordering based on paths. In Section 4, it is shown that the pat h ordering

is a simplification ordering and has the substitution property, which implies that it can be used

for proving termination of term rewriting systems [2]. We also show that the new ordering is a

strict extension of recursive path ordering. In Section 5, we prove that comparison of two terms

under the path ordering can be done in polynomial time; we show an upper-bound of

O (] s ts ~ I t [5), where l s I and I t [are the size of terms s and t being compared.

Section 6 is a brief discussion of how the proposed ordering can be extended to incorporate lex-

icographic status of function symbols [7]. In Section 7, we outline an extension to the path

ordering which further generalizes it. In Section 8, we discuss how the path ordering relates to

RDO and RDOS.

2. A DISCUSSION OF RECURSIVE PATH ORDERING (RPO)

Consider the equation a (b (x)) ---~ c (d(x)) with the precedence a > d and b > c. Under

RPO the terms a(b(x)) and c(d(x)) are incomparable, since b(x)~c(d(x)) and

d(x) ~ a (b (x)). But, in our mind, it is clear to us that this equation should be oriented as

a(b(x)) --* c(d(x)) , since a 'takes care of' d and b 'takes care of' c. In the next section we

make this notion of 'taking-care-of' more precise and thereby define the new ordering.

At this point it will be helpful to take a look at 'recursive path ordering' (RPO) and discuss

i~ weaknesses.

2.1 D E F I N I T I O N OF R P O

Let > denote a quasi-ordering of a set E (i.e, a reflexive and transitive relation on E) and

be the equivalence relation ~ N < . Let > denote the partial ordering > - < ; in other

words, a > b if and only if a ~ b and -~ (b ~ a). A partial ordering > is well-founded if
there exists no infinite descending sequence e I > e 2 > ..- of elements of E . A well-founded

partial order > on a set E can be extended to the set of multiscts on E as follows:

M 1 >> M 2 if and only if for each z c M 2 - M 1 , there i s a ~/ ~ M I - M 2such tha t ~/ > z .

A finite multiset M is written by enumerating its elements and enclosing them within braces.

Let ~ be a quasi-ordering of a set of function symbols F . Then terms

s : f (s l , " - - , s , n) a n d t ---- 9(t l , - - ' , t ~) are equivalent (denoted b y s ~-~ t) if and only

if f ~-~ 9, m ---~ n and there is a permutation ~" of the set {1 ,n} such that s i ~-~ t~(1) for

all 1 < i < n.

175

Given a quasi-ordering > of a set of function symbols F , the recursive path ordering (>)
rpo

on terms generated by F can be defined as follows:

(a) s = . f (s l , . . . , s m) 2> t = z if and only i f x c Var(s), the set of variables in a.
rpo

(b) s = S (s l , ' ' ' , s m) > t = g (t i, . . . ,Q) if and only if
rpo

(1) f > g and s > t~ for a l l i , l < i < n , or,
rpo

(2) f ~-~ g and { s i , . . . , s r~ } > > { t i , ' . . , t ~ }, or,
rpo

(3) si > t for s o m e i , 1 < i < m.
rpo

2.2 W H E R E R P O D O E S N O T W O R K

We give below a few examples of terms which can definitely be ordered by the intuitive

concept of paths but which RPO cannot order.

1) a c 2) * *

I t / \ / \
b d k k a a

I I I 1 I \ I \
x x x y xyx

b > c a n d a > d . * > k > a .

Let t = f (t i , " " , t ~) , s = g (s l , " - - , s , ~) ,

3) * *

/ \ / \
h h h h

/\ /\ /\ /\
axay xyxy

I I
x y

any precedence.

M l = { t l , " ' ' , Q } and

M 2 = {s [, ' ' " ,s,a}. Now when RPO tries to order these terms it first compares root-

symbols. There are 3 cases:

I) f > g. Then RPO needs t > s;. This is most powerful and needs no change.
rpo

2) f , - ~ 9 . T h e n R P O n e e d s M z > > M 2.
rpo

This is not really the best case for this demands that for every s s. in M 2 - M l there is a

single term tj in M l - M 2 such that t i 2> s; . This may not be suited when for each path in
rpo

s; there are paths in different ty 's which are "bigger". (See examples 2, 3). So we need to treat

the terms collectively.

3) .f ~I . Here again RPO is not ideal for it needs a single term tj such that ty ~ s. We
rpo

176

also do not remember the root (topmost) operator f of t any more even though it may be

needed to make a path "bigger' .(See example 1).

3. P A T H O R D E R I N G

Let F be a finite set of function symbols of fixed arity and V be a denumerable set of vari-

ables. By T(F , V) we denote the set of all possible terms that can be constructed using F and

V. For a term t , Vat(t) denotes the set of all variables that occur in t . For example,

Var(f (z ,y ,g(y))) ~ {x ,y} . The size of a term s is the total number of function and vari-

able symbol occurrences in s and is denoted by I s I- By f (... t ...) we denote a term that

contains the term t as an immediate (top-level) subterm.

A term rewriting system P over a set of terms T (F , V) is a finite set of rewrite rules of the

form/,. --, r,. where / i , r i E T (F , V) . W e w r i t e t =~ t: to indieate that t h e t e r m t t c a n b e

derived from the term t by a single application of a rule P to one of its subterms. P is said to

be uniformly terminating if there exist no infinite sequences of terms t i E T (F , V) such that

t~=> t2=>

3.1 PATHS

A path is a sequence of two-tuples ending possibly in a variable, with the following proper-

ties: Let P ---- < f l, t l > ..- < f u , t8 > { x } be a path. Then

1. f i is the top level function symbol of t i for 1 < i < n.

2. t~+ l is an immediate subterm of t; for 1 < i < n - l , and

3. if P ends in x then z is an immediate subterm of t B .

A p a t h P ~-- < f l , t l :> ... < f a , t a > { z } is a full path in a term t if and only i f t l - t

and either (i) t n is a constant, or (ii) P ends in a variable z . (See Figure 1.)

Full paths can be formally defined as follows:

(a) If t ----- x , a variable, then x is the only full path in t .

(b) If t ---- b, a constant, then < b, b > is the only full path in t .

(e) If t ~- f (t l , • • • ,l m) then a full path in l is < f , t > . p , where p is a full path in

some t i .

Examples:

(l) t ---- f (x , y) . < f , f (z , y) > z and < f , f (z , y) > y are the full paths.

{~) t = f (g(x),h(b ,y)). The full paths are

i. < f , f (g (x) , h (b , y))><g , g (x) > x ,

i i . < f , f (g (x) , h (b , y))><h , h (b , y) > < b , b >,

iii. < f , f (g (x) , h (b , y)) > . < h , h (b , y) > y .

3.2 P A T H C O M P A R I S O N

i. Paths ending in different variables are incomparable

177

ii. A variable is incomparable with any two-tuple. (This ensures that a path ending in a con-

stant is never greater than a path ending in a variable.)

iii. To compare paths ending with the ,'~:mle variable we drop the variable from the end of

both paths and compare the remaining sequences of two-tuples.

Let P := < f l, t l > < f z, t2> .'. <.fro, t m > { z } be a path. With every two-tuple

< / i , ti > we can associate a left-context (LC) and a right-context (RC) defined as:

R C (< f i , t i > , P) : < f / + l , t i+ l> --" < f r a , tra :>{x} where i < m, and

{ z } i f i = m .

L C (< f i , t i > , P) = < f l, t l > .-. < f i - l , t i - l > , w h e r e i > l, and

X i f i ~-1.

(See Figur~ 1 and 2. One can visualise the right-context of a tuple as below and the left-

context as above the corresponding node in the tree representation of a term.)

/!\ X;'\
I
Y

The path shown here is

<f, f(o(a,x,x), f(x,h(y))){f, f(x,h(y))) x

F i g u r e 1.

P = <f, t:>

< - - - L C - - - > < - - - R C - - - >

Figure 2.

Let PI -~ < f l, t l > ... <I ra , tm :> and P2 "-~ <g l , sl:> "-" <g~, s,L > be two sequences of

two-tuples. P1 ~> P2 if and only if for all < g i , sY > in P2 there exists < f l , t / > in P l such
P

that

a. f~ > gj or

b. f ~ .'~ gj and

1. RC(<) '~, t i > , PI) ~ R C(<g i , s i > , P2) or

2. R C (< f ~ , ti > , P I) "~ RC(<gi , s i > , P2) and t i ~ s i or

3. RC(<. f l , t i > , PI) "~ RC(<g/ , s j > , P2), tl "~ sj and

L C (< f i , t i >, PI) > LC(<g/ , si > , P2)
P

~78

where P l ~ P2 (the paths are equivalent) if m = n and f,. ~ g; and t i ,-~ s i for all

1 < i < n, and term comparison (>) is defined in the next section. (The subscript P in >
T P

will be omitted whenever it is obvious from the context.)

We often express this as '< f i , t i > takes care of <gY, sy > ' . Clearly, if < f~, t~ > takes

care of < g j , s i > , then f l > g]- Checking whether a two-tuple in one path takes care of a

two-tuple in another is done in the following sequence: First compare the two function sym-

bols, then the right contexts, then the terms in the two-tuples and finally the left-contexts.

Lemma 1: Let P1, P2, Ps be paths such that P3 = <] , t > P l for some term t and

P l > P2- Then Pa > P2.

Lemma 2: Let P1, P2, Ps be paths such that P l = < f , t > PI ' , P3 ----- < g , s > P2,

PI > P2 and / > g. Then P~ > P~.

Sketch of the Proof: Assume the contrary. Let Ql = < / , t > Q I ' and Q2 constitute a

shortest counterexample in terms of IQtl + IQ2I. Let Q~ = < g , s >Q2 with / > g such

that Ql ~ Q3. Then there exists a tuple < h , u > in Qa which is not taken care of by any

tuple in Ql.

Clearly < h , u > ~ < g , s > since < f , t > takes care of < g , s >. Thus there exists j

such that < h , u > ---- <gy, s i > in Q2- But since @1 > Q2 there must exist a tuple

< / i , tl > in Q 1 such that either

(a) f ; > gy, or

(b) f ; ~ g1 and RC(</ , . , t i > , @l) > RC(<gy, s i >, @2), or

(c) f i "~ gi, R C (< f i , t; > , Qa) ~" RC(<gi , s I > , Q2) and t i > s], or

(d) f i ~ g l , R C (< / ; , t i > , Q 1) ~ RC(<g/ , s 1 > , Q2), ti ~ s] and

L C (< f ; , te>, Q1) > LC(<gj , s i > , Q2).

It is easy to see that (d) is the only possibility. But then

LC(<g], s i >, Q3) ---- < g , s > LC(<g/ , s y > , Q¢), and [LC(<f l , t~ > , Ql)[+ ILC(<gj,

s1 > , Q2)[< tQI[+ IQ21 and the minimality of QI and Q2 leads us to a contradiction. [:]

Lemms 3: Let PI , P2, Pa, P4 be paths such that Ps = < f , t > Pl , P4 ---- < f , s > P2

for some s ,t . Then PI > P2 and t > s implies Pa > P4-
T

Lemma 4: Let P~, P:~, QI and Q2 be paths such that QI -----" < f , t > PI,

Q 2 = < f f , s > P 2 a n d f ~.~ f t . T h e n Q! > Q 2 a n d t ~ s impliesPl > P2-

Lemma 5: Let PI, P2, P3, P4, P5 be paths such that P4 ----- P1 Pa and P5 --= P2 P3- Then

PI > P2 implies P4 > Ps-
(Intuitively, attaching equivalent paths to the right does not alter the ordering relation.)

179

3.3 T E R M C O M P A R I S O N

Let M := { s i , s2, ... , s m } be a multiset of terms. By MP(M) we denote the union of the

multisets of all full paths in each s~..

E x a m p l e : L e t M = { f (a , b) , f (a , b) } .

M R (M) = { <] , f (a,b) > < a , a >, < f , f (a,b) > < b , b >,

< f , f (a , b) > < a , a > , < f , f (a , b) > < b , b > }.

We deliberately abuse the notat ion when M is a singleton set and write M P (t) instead of

M r ({t }). Note that MP(s) -.~ MR (t) if and only i f s ~ t .

D e f i n i t i o n : (i) If s is a non-variable term and t is a variable then s > t if and only if s con-
T

tains t . (ii) s = f (sl, ... ,sin) and t = 9 (t i , "" ,tn)" Let M1 ---- { s l , -" ,sin },

M 2 - - { t l , . . . , t , } . T h e n s > t if and only if
T

a. f > g and s > t i for a l l i , l < i < n , or
T

b. 1" ~- 9 and MP(MI) >> MR(M2), or
P

c. f ~>~ g and MP(s) >) MP(t) .
P

Note that the path-comparisons that are done during term-comparison may necessitate

further comparisons of terms. Let u i and v I be two terms that have to be compared while

comparing ,i and t. It can be seen that either u i must be a proper subterm of s or v i must be a

proper subterm of t. The only case where this may not be obvious is (ii)c, where

s ~-- f (s 1 ,s , ,) , t ---- g (t l , ... , tn) and f ~ g . But, even though every full pa th of s

starts with the tuple < f , s > and every full path of t starts with the tuple < g , t > , we

have no occasion to compare s and t again, since < f , s > cannot ever take care of

g, t > . Thus the algorithm for term-comparison terminates, or, in other words, the ordering

scheme is well-defined.

E x a m p l e s :

(1) s ~ f ~ f ~--- t

/R Ilk
/ l \ i l k

/ I \ x g c with precedenceb > c.
a g b / \ \

/ 1'\ \ x y y
x x y y

Since the top-level function symbols are the same, we have to compare the multisets of all

full paths in the immediate subterms, MP({ a(x), g (z , y), b(y) }) and

MP({ x, g,[x,y), c(y)} .

i P ({ a (x) , b (y) }) = { < a , a (x) > x , < b , b (y) > y } . M P ({ x , c (y) }) - ~ { z , < c , c (y) > y } .

180

Clearly < a , a (x) > z > z . < b , b (y) > y > <c,c(y)>y since < b , b (y) > takes care of
P P

<c, c(y)>.

(2) s --~ f
/ \
/ \

a b

I I
x y

> g ~ t
/ \
/ \

x y with a > g and b > g.

MP(s)---- {<f ,s><a,a(x)>x, <f ,s><b,b(y)>y}
Since f and g are incomparable, we have to compare MP(s) and MP(t), where

and MP(t) = {<g,t>z,
<g,t>y}.

< f ,s > < a , a (z) > >
P

< f , s > < b , b (y) > >
P

(3) s ~--- a >

I
b

I
C

I
X

< 9 , t > since < a , a (z) > takes care of < 9 , t > . Similarly

< g ,t > . (Note also that s and t are incomparable under RPO.)

p ----. t

I
a with a > p and b ~-~ q.

I
q

I
X

Since a > p , we have to compare a{b(c(x))) and a (q (z)) and then again since the top-

level symbols are both a 's, we end up comparing < b,b (c (z)) > < c , c (x) > and < q,q (x) > .

It can be seen that < b , b (c (z)) > takes care of < q , q (x) > since the former has a bigger

right context.

It should be noted here that in the ease when all function symbols are monadic, we can

treat paths merely as strings formed by the function symbols. Consider the two-tuples

< f ,s > in path P and < g ,t > in path Q . Now it is not hard to observe that if f ~-~ g and

the right-contexts are equivalent, then s ~ t also. Hence it is quite unnecessary to keep the

(4) s ~ f a --~ t

l I
b b

I I
c c with f > a.

I I
X X

We compare f b c and a b c . a is taken care of by f . T h e b in a b c is taken care of

by the b in f b c since the latter has a bigger left-context. Similarly, f b > a b and thus

t h e e in f b e takes care of t h e c i n a b e.

L e m m s 6: s > t if and only ifMP(s) > > MP(t).
T P

terms around.

>

181

MP (s) >> MP (t) implies that MP (s) A MP(t) = 0.
P

C o r o l l a r y 6.1: s > t implies f (... s ...) > t .
T T

T h e o r e m 1: (a} > is a partial ordering on terms.
T

(b}~ > is a partial ordering on paths.
P

4. P R O P E R T I E S OF T H E O R D E R I N G

A partial ordering > on terms is a simplification ordering if it satisfies the following proper-

ties (See [2]):

(1) s > t implies f (... s ...) > f (... t ...), (replacement)
(2) f (... t ...) > t , (subterm)

for any terms f (... s ...) and [(... t ...).

T h e o r e m 2: > satisfies the subterm and replacement properties.
T

Proof : Follows from Lemma 6. []

T h e o r e m 3: > is closed under substitutions.
T

Basle Idea: A major share of the effort is in proving the following two propositions:

(1) For all substitutions a, s! :T t l implies a(st)>T a(tl).

(2) Let P I ---- < f l , s l > "" <fro, sr~ > and P2 ----" <gl, t l>. . .<g~ ,ts > be two variable-free

paths. Then for all substitutions a,

a(Px) = < ' f i, ~r(s l)> ... < f ~ , , ¢(sm)> > < 9 , , ¢ (t l) > ... <gin, a (Q) > = a(P2).
P

We prove this by simultaneous induction on]s l] +]t 1]- [~l

T h e o r e m 4: > is an extension of the recursive path ordering (RPO).
T

Ske tch o f the P roof : It can be easily observed that s --~ t implies s --- t . We prove that
rpo T

s > t impliess > t by induction on Is I + I t I.
rpo T

The case when t is a variable and s is a term containing t is trivial.

L e t s ~- - f (s 1 , sm} , t ----~ g(t 1 t n) , M l ~ - { S l , . . . , s , ~ }and

M 2 ---~ (t it, ... , t, }. The following cases have to be considered:

1. f > 9. Then, by the definition of RPO, s > t; for all i , 1 < i < n . Since
rpo

[s [+ [tii < I s] + t t I for every i , we get s > t i for 1 < i < n. Thus
T

s > ! by definition.
T

182

2. f ~-~ g. RPO requires that for every t I in M 2 - M 1 there exist s i in M 1 - M 2 such that

s i > t i . Again, by induction hypothesis, s i ~ t I implying MP(si} > > MP(t /) by Lem-
rpo P

ma 6. Thus MP(M 1 - M2) > > MP(M 2 - M{) and the result follows.
P

3. f ~ g . Therefore there exists i such tha t s; > t . I f s~ ~ t t h e n s l ~ , ~ t , M P (s i) ~ - ~
rp~o rpo T P

M P (t) and by Lemma 1, M P (s) > > M P {t). Hence the result.
P

If s i > t , then by induction hypothesis s i > t and the rest of the proof can be carried
rpo T

out in a similar fashion. ~J

The path ordering also has the incrementality property desired of a termination ordering

that is built on the fly to ensure the termination of rewriting systems generated by the Knuth-

Bendix completion procedure in the process of computing a canonical system. The following

theorem states that as the new precedence relations between function symbols are added, they

do not upset the old ordering relation among terms; only terms which were not comparable

earlier can be compared.

a b
T h e o r e m 6: Let > and > be two partial orderings of the set of function symbols F such

b a a b
that > properly contains > . Then for all terms s , t in T (F , V) s > t implies s > t .

T T
5. COMPLEXITY OF C O M P A R I N G TERMS USING P A T H ORDERING

Given two terms s and t and a quasi-ordering ~ of the set of function symbols F , it can

he determined whether s > t or s --~ t in time 0 (I s I s * I t]5). We show this upper-
T T

bound by doing the comparison by a method similar to dynamic programming.

Assume that all subterms of s have alre~ly been compared to all proper subterms of t and

all subterms of t have already been compared to all proper subterms of s . (In other words, we

have done everything short of comparing s and t themselves.) Assume also that the results are

stored in a 2-dimensional array A that can be accessed easily. For instance, if s; is a subterm

of s at position p and ty is a s u b t e r m of t at position q (p ~) , or q ~) ,) , t h e n A (p , q)

tells you whether s; ~ ty or s; ,-~ ty. Our aim is to determine T C O M P (s ,t), the additional

time required to compare s and t .

Note that the worst ease is the one in which every full path in s has to be compared with

every full path in t . Hence we have to analyze the time complexity of path comparison. This

seems at first to he difficult, since path comparison involves further term comparisons. But

note that in those comparisons at least one of the terms must be a proper subterm of s or of

t . Thus this involves only looking up in the array A . Let P and Q be full paths in s and t

respectively. It can be shown, under the above assumption (namely that every subterm of s

t83

has been compared with every subterm of t , with the exception of s and t themselves), that

P and Q can be compared in time O (] P la , I Q 13).We prove this later using, again, a

dynamic programming-like method.

An upper bound for TCOMP(s ,t) can now be derived in terms of [s [and It I. The number

of full paths in any term u has an upper bound of]u I- Hence the number of full-path-
comparisons required to compare s and t has an upper bound of Is[* I t I- Similarly, the

maximum length of a full path in a term u is also bounded above by lu [. Thus TCOMP(s ,t)
takes O (i s] 4 , It If) time.

All that we now have to do is to sum up all possible TCOMP (si, t i)s, where s i is a sub-

term of s and t i is a subterm of t . The number of all possible subterms of a term u is quite

clearly lu l, since every position in the term corresponds to a subterm and vice versa. Each

TCOMP(si, ty) is bounded above by TCOMP(s, t) and therefore takes O (I s t 4 * I t i 4)

time. Thus

TCOUP(s~,ti) = O ([s I S * I t I s)

and the claim is proved.

It remains to be shown that two paths P and Q can be compared in time

O ([P 1 3 " I Q I3) .Let I P I - ~ m and [QI---- n. For a l l i , j such that 1 < i <: j _~ m,

let Pq denote the subpath of P from the i - th tuple through the j - th . Similarly, let Qkl

denote the subpath of Q from the k- th tuple through t he / - t h .

Assume, as we did for comparing terms, that all proper subpaths of P have been compared

with ell proper subpaths of Q. Let B be a 4-dimensional array in which the results are stored:

B (i , j , k , l) gives you the result of comparing Pq with Qkt. Denote by PCOMP(P,Q) the

(additional) time required to compare P and Q under these assumptions.

For any tuple < g , s~. > in P , we can find out whether there exists a tuple in Q that takes

care of it in O (n) time by a straightforward two-pass algorithm: in the first path, it is checked

whether there is any tuple < f , tj > in Q such that f > g ; if none, then in the second pass,

we check whether f --~ g in which case the arrays B and A are used to compare right-

contexts, subterms and left-contexts. Thus PCOMP(P,Q) -- O(mn) ~ O(] P I* [Q l).
Note that there are O(rn 2) subpaths of P and similarly O (n 2) subpaths of Q. Therefore,

O(m 2 * n 2) path-comparisons are necessary in the worst case and each of these is bounded

above by PCOMP (P ,Q). The overall time, therefore, is
O(m3 , n a) = O (l p l a , [Q [3).

This completes the proof. [~]

6. I N C O R P O R A T I N G S T A T U S IN P A T H O R D E R I N G

While comparing terms we have to sometimes introduce the concept of status of an opera-

tor to make the terms comparable. The most common example is the associativity law of cer-
tain operators l i ke+ and*: (x * y) * z -~ x * (y * z).

184

In order to orient such equations as rules we have to assign left-to-right (1-r I or right-to-left

(r-l) status to one or more operators. (e.g. the * operator in the above equation.} Equivalent

operators should have the same status. If the top-level operators of two terms are the same we

compare the immediate subterms not as multisets but in a lezicographical way, either left-to-

right or right-to-left.

Kamin and Levy [7] extend RPO to LRPO (lexicographic RPO) in the following way:

s ----- f (s 1, ... ,sin) > t ---- g (t 1, ... ,t~) if and only if one of the following three conditions
lrpo

hold:

(1} f > g and 8 > t i f o r M l i , 1 < i < n (same as forRPO).
lrpo

(2) f ~-¢ g and (a) if f and f have l-r status then there exists j such that s l ~ t l ,

sy_ 1 ,-~ ti_l, s i > ti and s :> t i for j + l < i < n , (Similarly for r-I status.} whereas
Irpo lrpo

(b) if f and 9 have no status then it must be that { s 1, --- ,sin } > > { t 1 ,tn }-
t, o

(3) s i > t f o r s o m e i , l _ i _< n (same as forRPO).

To incorporate status in the path ordering we have to modify path comparison and term

comparison as follows:

P a t h C o m p a r i s o n (LP):

L e t P l ~- < f l, t l > < f 2, t2> ... < f ,n, t in> and

P2 -~- < g l , S l :><g2 , s2> ... < f n , s~ > be two sequences of two-tuples. P I > P2 if and
LP

only if for all < g i , si ~ in P2 there exists < f i , ti > in P I such that

~- f l > gi or

b. f i "~ f i and if they have no status then

1. R C (< f l , •; > , P I) L>pRC(<gy, si > , P2) or

2. R C (< f l , t i > , P I) "~ R C (< g i , s i > , P2} and t~ ~TSy or

3. R C (<] I , t; > , P l) ~ R C (< g i , si > , P2), t; ~ s i and

LC(<I~, t; >, P,) L>p LC(<gl, s i >, P2).

If they have l-r status, say, then

1. t i L>T s i or

2. t i ,~ s i and L C (<] ~ , t i > , PI) ~ p L C (< g / , s i >, P2)

185

T e r m C o m p a r i s o n (LT):

Let s ---- f (Sl, ... ,sin) , t = g (t l , ... ,t~), M 1 -~ { s t , ... ,sra } and

M 2 = { tl , ... ,t~ }.

Then s > t if and only if one of the following three conditions hold:
L.T

a. f > 9 a n d s > t i for a l l i , 1 < i < n .
L T

b. f --~ 9 and if f and 9 have l-r status, say, then there exists j such that s I "~ t 1, ---

sj~ l -~ ti_l, s i _~_ty and s > t i for j + l < i < n . (Similarly for r-I status.)
L T LT

If jr and 9 have no status, then MP(M 1 - M2) > > MP(M 2 - Ml).
LP

c. jr 2 9 a n d M P (s) >> MP(t) .
LP

7. A F U R T H E R E X T E N S I O N O F P A T H O R D E R I N G

A possiLble way of extending the path ordering even further is by allowing tuples from

different paths to take care of tuples along a path. Thus we could remove the restriction that a

path must be taken care of by another path and instead let tuples from a collection of paths

take care of the tuples from another path. An example where such an idea would work is the

following:

E x a m p l e : s ---- j r (a (x) , b (z)) , t = 9 (h (x)) with a > g andb > h.

The tuple < a , a (x) > takes care of < 9 , g(h(z))> and <b, b (z) > takes care of

< h , h (x) > . Note that neither the path ordering nor RDO can compare 8 and t .

It must be noted of course that this new scheme is not clearly defined yet. But this looks

like an interesting problem for future research and we are working on the details.

8. R E L A T I O N S H I P T O R E C U R S I V E D E C O M P O S I T I O N O R D E R I N G

Jean-Pierre •ouannaud [personal communication] has pointed out to us the similarity

between our ordering scheme and the Recursive Decomposition Ordering Scheme (RDO) [0,14].

The way our ordering is formulated is similar to the "entire choice" scheme of RDO, since

essentially all the paths in a term and all the tuples in a path are taken into account. (The

reader is referred to [6,14] for the formal definition of RDO and further details.) However, the

path ordering is not quite the same as RDO, since there are terms that the path ordering can

compare but RDO cannot. An example is given below.

F~xample: s -----b (a (z),9 (a (a (x)) ,s),9 (b (b (y)),y)) and

t = h (a (z },9 (a (z),b (y)),9 (a (x),b (y))) with no precedence among the function symbols.

While comparing s with t , we eventually end up comparing the paths through the mul-
tisets M 1 := { g (a (a (x)) , z) , 9 (b (b (y)) , y } } and M 2 -~ { g (a (s) , b (y)) , g (a (z) , b (y)) }. It

can be easily seen that MP(MI) ~ MP(M2).

186

When RDO compares terms s and t , it has to compare decompositions along the paths

that end in z. (They are the 'leftmost' paths, expressed as '1.1' in positional notation.) Clearly

the decomposition corresponding to h in s must take care of the decomposition corresponding

to h in t . In other words, the decomposition

< h , a(z),{ g(a(a(x)) , x), g(b(b(y)) , y) },I~3 > = .<h, a(z), MI, [~ >

must be greater than

<h, a(z), { g(a(x) , b(y)), g(a(x) , b(y)) }, [] > = < h , a(z), U2, [~ > .

But this is impossible since M l and M 2 are not comparable as multisets of terms.

Jouannand has suggested a way to overcome this in RDO by introducing a varyadic func-

tion symbol, the details of which still need to be worked out. It will be interesting to examine

whether the proposed extension of RDO is equivalent to the path ordering.

Jouannaud has also remarked that that the path ordering may not compare well with RDO

in efficiency. There is no way to do this comparison at present; we are not aware of any com-

plexity analysis of RDO; there do not exist implementations of path ordering and RDO on the

same machine and in the same langllage either to compare their experimental performance.

9. C O N C L U S I O N

We have found that reeursive path ordering (RPO), though simple and elegant, cannot ord-

er certain equations which we intuitively 'feel' we can order. The example (given in Section 2.2)

a(b(z)) = e(d(x)) with b > c and a > d is one such. We have devised a new ordering

which compares terms using the paths in them. This ordering properly contains RPO and elim-

inates many of RPO's drawbacks. We also feel it is easy to understand.

A C K N O W L E D G E M E N T S : We thank Nachum Dershowitz and Jean-Pierre Jouannaud for

their comments on earlier drafts of this paper.

10. R E F E R E N C E S

[1] Buchberger, B., "A Theoretical Basis for the Reduction of Polynomials to Canonical

Forms," ACM-SIGSAM Bulletin, 39, August 1976, pp. 19-29.

[2] Dershowitz, N., "Orderings for Term Rewriting Systems," Theoretical Computer Sci-

ence 17 (1982) 279-301.

[3] Guttag, J.V., Kapur, D., and Mussel D.R., "On Proving Uniform Termination and Res-

tricted Termination of Rewriting Systems," SIAM Journal on Computing, Vol. 12, No. 1,

February, 1983, pp. 189-214.

[4] Huet, G., "Confluent Reductions: Abstract Properties and Applications to Term Rewrit-

ing Systems," JACM, Vol. 27, No. 4, Oct., 1980, pp. 797-821.

[5] Huct, G., and Lankford, D.S., "On the Uniform Halting Problem for Term Rewriting

Systems," Rapport Laboria 283, INRIA, Paris, March 1978.

187

[6] Jouannaud, J.-P., Lescanne, P., Reinig, F., "Recursive Decomposition Ordering," Conf.

on Formal Description of Programming Concepts, Garmisch, 1982.

[7] Kamin, S., and Levy, J-J., "Attempts for Generalizing the Recursive Path Ordering,"
Unpublished Manuscript, Feb. 198(I.

[8] Kandri-Rody, A. and Kapur, D., "Algorithms for Computing the Grobner Bases of Poly-
nomial Ideals over Various Euclidean Rings," Proceedings of EUROSAM '84, Cam-
bridge, England, July, 1984, Springer Verlag Lecture Notes in Computer Science LNCS
174, (ed. J. Fitch), pp. 195-206.

[9] Kaput, D., and Narendran, P., "The Knuth-Bendix Completion Procedure and Thue
Systems," Third Conference on Foundation of Computer Science and Software Engg.,
Bangalore, India, December 1983, pp. 363-385.

[10] Kapur, D., and Sivakumar, G., "Architecture of and Experiments with RRL, a Rewrite
Rule Laboratory," Proceedings of the NSF Workshop on Rewrite Rule Laboratory,
Rensselaerville, NY, September 4-6, 1983.

[11] Knuth, D.E. and Bendix, P.B., "Simple Word Problems in Universal Algebras," in Com-

putational Problems in Abstract Algebras (ed. J. Leech), Pergamon Press, 1970, pp.
263-297.

[12] Lankford, D.S., "On Proving Term Rewriting Systems are Noetherian," Memo MTP-3,
Mathematics Department, Louisiana Technical University, Ruston, LA (1979).

[13] Lankford, D.S., and Ballantyne A.M., "Decision Procedures for Simple Equational
Theories with Commutative~Associative Axioms: Complete Sets of Commutative-
Associative Reductions," Memo ATP-39, Dept. of Mathematics and Computer Sciences,
Univ. of Texas, Austin, TX (1979).

[14] Leseanne, P., "How to Prove Termination? An Approach to the Implementation of a
New Recursive Decomposition Ordering," Proceedings of an NSF Workshop on the

Rewrite Rule Laboratory Sept. 6-9 Sept. 1983, (eds. Guttag, Kaput, Musser), General
Electric Research and Development Center Report 84GEN008, April, 1984, pp. 109-121.

[15] Peterson, G.E., and Stickel, M.E., "Complete Sets of Reductions for Some Equational
Theories," JACM, Vol. 28, No. 2, pp. 233-264.

[16] Plaisted, D.A., "A Recursively Defined Ordering for Proving Termination of Term
Rewriting Systems," Report R78-943, Dept. of Computer Science, Univ. of Illinois, Ur-
bana, IL.

