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A B S T R A C T  

A new partial ordering scheme for proving uniform termination of term rewriting systems is 

presented. The basic idea is that two terms are compared by comparing the paths through 

them. It is shown that the ordering is a well-founded simplification ordering and also a strict 

extension of the recursive path ordering scheme of Dershowitz. Terms can be compared under 

this path ordering in polynomial time. 

1. I N T R O D U C T I O N  

Term rewriting systems have been found to be widely applicable in many areas of computer 

science and mathematics, including word problems, unification problems, decision procedures 

for equational theories, theorem proving, program transformation and synthesis, polynomial 

simplification, analysis and design of specifications, proving properties by induction, etc. In 

most of these applications, the Knuth-Bendix completion procedure [11] and its extensions dis- 

cussed in [1,8,9,13,15] play a crucial role. However, the successful use of the completion pro- 

cedure crucially depends upon the ability to prove the termination of term rewriting systems 

that are generated during the course of the completion procedure to obtain a canonical set of 

rewrite rules. In this connection, many termination orderings have been proposed in the litera- 

ture including the original Knuth-Bendix ordering based on weights [11], paths of subterm ord- 
ering [16], polynomial ordering [12], recursive path ordering (RPO) [2] and its extension based 

on lexicogTaphic status (LRPO) [7], and recursive decomposition ordering (RDO) [6] and its ex- 

tension based on lexicographic status (RDOS) [14]. 

In RRL, a rewrite rule laboratory under development at the Computer Science Branch at 

General Electric Corporate Research and Development Center, we have implemented RPO as a 

This work was done when Sivakumar was  a graduate student in the Dept. of Mathematical Sciences, 
Rensselaer Polytechnic Institute, Troy, NY. Kapur and Sivakumar were partially supported for this 
research by the NSF grant MCS-8211621. 



174 

way to establish the termination of term rewriting systems [10]. By and large, our experience 

has been positive with LRPO in terms of its performance and its applicability to a wide range 

of term rewriting systems; however in some examples, we have found LRPO to be weak to 

handle terms which are intuitively simple to handle [10]. In this paper, we develop a new ter- 

mination ordering based on paths in terms which is intuitively simple to understand and which 

is an extension of RPO. 

In the next section, we study examples illustrating what is lacking in RPO. We analyze the 

definition of RPO pointing out weaknesses in different aspects of the definition of RPO. Sec- 

tion 3 introduces the ordering based on paths. In Section 4, it is shown that the pat h ordering 

is a simplification ordering and has the substitution property, which implies that it can be used 

for proving termination of term rewriting systems [2]. We also show that the new ordering is a 

strict extension of recursive path ordering. In Section 5, we prove that comparison of two terms 

under the path ordering can be done in polynomial time; we show an upper-bound of 

O ( ] s  ts ~ I t  [5), where l s  I and I t  [ are the size of terms s and t being compared. 

Section 6 is a brief discussion of how the proposed ordering can be extended to incorporate lex- 

icographic status of function symbols [7]. In Section 7, we outline an extension to the path 

ordering which further generalizes it. In Section 8, we discuss how the path ordering relates to 

RDO and RDOS. 

2. A DISCUSSION OF RECURSIVE PATH ORDERING (RPO) 

Consider the equation a (b (x)) ---~ c (d(x)) with the precedence a > d and b > c.  Under 

RPO the terms a(b(x)) and c(d(x)) are incomparable, since b(x)~c(d(x))  and 

d(x) ~ a  (b (x)). But, in our mind, it is clear to us that this equation should be oriented as 

a(b(x)) --* c(d(x)) ,  since a 'takes care of' d and b 'takes care of' c. In the next section we 

make this notion of 'taking-care-of' more precise and thereby define the new ordering. 

At this point it will be helpful to take a look at 'recursive path ordering' (RPO) and discuss 

i~ weaknesses. 

2.1 D E F I N I T I O N  OF R P O  

Let > denote a quasi-ordering of a set E (i.e, a reflexive and transitive relation on E )  and 

be the equivalence relation ~ N < .  Let > denote the partial ordering > - < ;  in other 

words, a > b if and only if a ~ b and -~ (b ~ a ). A partial ordering > is well-founded if 
there exists no infinite descending sequence e I > e 2 > ..- of elements of E .  A well-founded 

partial order > on a set E can be extended to the set of multiscts on E as follows: 

M 1 >>  M 2 if and only if for each z c M  2 - M 1 ,  there i s a  ~/ ~ M  I - M  2such tha t  ~/ > z .  

A finite multiset M is written by enumerating its elements and enclosing them within braces. 

Let ~ be a quasi-ordering of a set of function symbols F .  Then terms 

s : f ( s l ,  " - - , s , n ) a n d  t ---- 9( t l ,  - - ' , t ~ )  are equivalent (denoted b y s  ~-~ t ) if and only 

if f ~-~ 9, m ---~ n and there is a permutation ~" of the set {1 .. . .  ,n} such that s i ~-~ t~(1) for 

all 1 < i < n.  
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Given a quasi-ordering > of a set of function symbols F ,  the recursive path ordering ( > ) 
rpo 

on terms generated by F can be defined as follows: 

(a) s = . f ( s l , . . . , s m )  2> t = z  if and only i f x  c Var(s ), the set of variables in a. 
rpo 

(b) s = S ( s l , ' ' ' , s m )  > t = g (t i, . . . ,Q ) if and only if 
rpo 

(1) f > g and s > t~ for a l l i , l  < i  < n ,  or, 
rpo 

(2) f ~-~ g and { s i , . . . , s r~  } > >  { t i , ' . . , t ~  }, or, 
rpo 

(3) si > t for s o m e i ,  1 < i < m.  
rpo 

2.2  W H E R E  R P O  D O E S  N O T  W O R K  

We give below a few examples of terms which can definitely be ordered by the intuitive 

concept of paths but which RPO cannot order. 

1) a c 2) * * 

I t / \  / \  
b d k k a a 

I I I 1 I \ I \  
x x x y xyx 

b > c a n d a > d .  * > k >  a .  

Let t = f ( t i ,  " " , t ~ ) ,  s = g ( s l ,  " - - , s , ~ ) ,  

3) * * 

/ \  / \  
h h h h 

/\ /\ /\ /\ 
axay xyxy 

I I 
x y 

any precedence. 

M l = { t l ,  " ' ' , Q }  and 

M 2 = {s [, ' ' "  ,s,a}. Now when RPO tries to order these terms it first compares root- 

symbols. There are 3 cases: 

I) f > g. Then RPO needs t > s;. This is most powerful and needs no change. 
rpo 

2) f , - ~ 9 .  T h e n R P O n e e d s M  z > >  M 2.  
rpo 

This is not really the best case for this demands that  for every s s. in M 2 - M  l there is a 

single term tj  in M l - M 2 such that  t i 2> s; . This may not be suited when for each path in 
rpo 

s; there are paths in different ty 's  which are "bigger". (See examples 2, 3). So we need to treat  

the terms collectively. 

3) .f ~I . Here again RPO is not ideal for it needs a single term tj such that ty ~ s. We 
rpo 
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also do not remember the root (topmost) operator f of t any more even though it may be 

needed to make a path "bigger' .(See example 1). 

3. P A T H  O R D E R I N G  

Let F be a finite set of function symbols of fixed arity and V be a denumerable set of vari- 

ables. By T(F ,  V) we denote the set of all possible terms that  can be constructed using F and 

V. For a term t ,  Vat( t )  denotes the set of all variables that  occur in t .  For  example, 

Var(f  (z ,y ,g(y)))  ~ {x ,y} .  The size of a term s is the total  number of function and vari- 

able symbol occurrences in s and is denoted by I s I- By f (... t ...) we denote a term that  

contains the term t as an immediate (top-level) subterm. 

A term rewriting system P over a set of terms T ( F , V )  is a finite set of rewrite rules of the 

form/,. --, r,. where / i ,  r i E T ( F , V ) . W e w r i t e t  =~ t: to indieate that  t h e t e r m  t t c a n b e  

derived from the term t by a single application of a rule P to one of its subterms. P is said to 

be uniformly terminating if there exist no infinite sequences of terms t i E T ( F , V )  such that  

t~=> t2=> . . . .  

3.1 PATHS 

A path is a sequence of two-tuples ending possibly in a variable, with the following proper- 

ties: Let P ---- < f  l, t l >  ..- < f u ,  t8 > { x }  be a path. Then 

1. f i  is the top level function symbol of t i for 1 < i < n.  

2. t~+ l is an immediate subterm of t; for 1 < i < n - l ,  and 

3. if P ends in x then z is an immediate subterm of t B . 

A p a t h P  ~-- < f l ,  t l :>  ... < f a , t a > { z }  is a full path in a term t if and only i f t  l - t  

and either (i) t n is a constant, or (ii) P ends in a variable z .  (See Figure 1.) 

Full paths can be formally defined as follows: 

(a) If t ----- x ,  a variable, then x is the only full path in t .  

(b) If t ---- b,  a constant, then < b, b > is the only full path in t .  

(e) If t ~- f ( t l ,  • • • ,l m) then a full path in l is < f  , t > . p ,  where p is a full path in 

some t i . 

Examples: 

(l)  t ---- f ( x , y ) .  < f ,  f ( z , y ) > z  and < f ,  f ( z , y ) > y  are the full paths. 

{~) t = f (g(x),h(b ,y)). The full paths are 

i. < f  , f ( g ( x ) , h (b , y ) )><g ,  g ( x ) > x ,  

i i .  < f  , f ( g ( x ) , h (b , y ) )><h ,  h ( b , y ) > < b , b  >,  

iii. < f  , f ( g ( x ) , h ( b , y ) ) > . < h , h ( b , y ) > y .  

3.2 P A T H  C O M P A R I S O N  

i. Paths ending in different variables are incomparable 
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ii. A variable is incomparable with any two-tuple. (This ensures that a path ending in a con- 

stant is never greater than a path ending in a variable.) 

iii. To compare paths ending with the ,'~:mle variable we drop the variable from the end of 

both paths and compare the remaining sequences of two-tuples. 

Let P := < f  l, t l > < f  z, t2> .'. <.fro, t m > { z }  be a path. With every two-tuple 

< / i ,  ti > we can associate a left-context (LC) and a right-context (RC) defined as: 

R C ( < f i ,  t i > ,  P )  : < f / + l ,  t i+ l>  --" < f r a ,  tra :>{x} where i < m,  and 

{ z }  i f i = m .  

L C ( < f i ,  t i > , P )  = < f  l, t l >  .-. < f i - l ,  t i - l > , w h e r e i  > l, and 

X i f i  ~-1.  

(See Figur~ 1 and 2. One can visualise the right-context of a tuple as below and the left- 

context as above the corresponding node in the tree representation of a term. ) 

/!\ X;'\ 
I 
Y 

The path shown here is 

<f, f(o(a,x,x), f(x,h(y))){f, f(x,h(y))) x 

F i g u r e  1. 

P = <f,  t:> 

< - -  - L C  - - - >  < -  - - R C -  - - >  

Figure 2. 

Let PI  -~ < f  l, t l >  ... <I ra ,  tm :> and P2 "-~ <g l ,  sl:> "-" <g~,  s,L > be two sequences of 

two-tuples. P1 ~> P2 if and only if for all < g i ,  sY > in P2 there exists < f l ,  t / >  in P l  such 
P 

that 

a. f~ > gj or 

b. f ~ .'~ gj and 

1. RC(<) '~,  t i > ,  PI )  ~ R C(<g i ,  s i > ,  P2) or 

2. R C ( < f ~ ,  ti > , P I) "~ RC(<gi ,  s i > , P2) and t i ~ s i or 

3. RC(<. f l ,  t i > ,  PI)  "~ RC(<g/ ,  s j > ,  P2), tl "~ sj and 

L C ( < f i ,  t i >,  PI)  > LC(<g/ ,  si > ,  P2) 
P 
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where P l  ~ P2 (the paths are equivalent) if m = n and f,. ~ g; and t i ,-~ s i for all 

1 < i < n, and term comparison (>)  is defined in the next section. (The subscript P in > 
T P 

will be omitted whenever it is obvious from the context.) 

We often express this as '<  f i ,  t i > takes care of <gY, sy > ' .  Clearly, if < f~, t~ > takes 

care of < g j ,  s i > ,  then f l  > g]- Checking whether a two-tuple in one path takes care of a 

two-tuple in another is done in the following sequence: First compare the two function sym- 

bols, then the right contexts, then the terms in the two-tuples and finally the left-contexts. 

Lemma 1: Let P1, P2, Ps  be paths such that P3 = < ] ,  t > P l  for some term t and 

P l  > P2- Then Pa > P2. 

Lemma 2: Let P1, P2, Ps  be paths such that P l  = < f ,  t > PI ' ,  P3 ----- < g ,  s > P2, 

PI  > P2 and / > g. Then P~ > P~. 

Sketch of  the Proof: Assume the contrary. Let Ql = < / ,  t > Q I '  and Q2 constitute a 

shortest counterexample in terms of IQtl + IQ2I. Let Q~ = < g ,  s >Q2 with / > g such 

that Ql ~ Q3. Then there exists a tuple < h ,  u > in Qa which is not taken care of by any 

tuple in Ql. 

Clearly < h ,  u > ~ < g ,  s > since < f  , t > takes care of < g ,  s >.  Thus there exists j 

such that < h ,  u > ---- <gy,  s i > in Q2- But since @1 > Q2 there must exist a tuple 

< / i ,  tl > in Q 1 such that either 

(a) f ;  > gy, or 

(b) f ;  ~ g1 and RC(</ , . ,  t i > ,  @l) > RC(<gy, s i >,  @2), or 

(c) f i  "~ gi, R C ( < f i ,  t; > ,  Qa) ~" RC(<gi ,  s I > ,  Q2) and t i > s], or 

(d) f i  ~ g l ,  R C ( < / ; ,  t i > ,  Q 1 ) ~  RC(<g/ ,  s 1 > ,  Q2), ti ~ s] and 

L C ( < f ; ,  te>,  Q1) > LC(<gj ,  s i > ,  Q2). 

It is easy to see that (d) is the only possibility. But then 

LC(<g],  s i >,  Q3) ---- < g ,  s > LC(<g/ ,  s y >  , Q¢), and [LC(<f l ,  t~ > ,  Ql)[ + ILC(<gj, 

s1 > ,  Q2)[ < tQI[ + IQ21 and the minimality of QI and Q2 leads us to a contradiction. [:] 

Lemms  3: Let PI ,  P2, Pa, P4 be paths such that Ps  = < f ,  t > Pl ,  P4 ---- < f ,  s > P2 

for some s ,t .  Then PI  > P2 and t > s implies Pa > P4- 
T 

Lemma 4: Let P~, P:~, QI and Q2 be paths such that QI -----" < f ,  t > PI,  

Q 2 =  < f f  , s > P 2 a n d  f ~.~ f t  . T h e n  Q! > Q 2 a n d t  ~ s  impliesPl > P2- 

Lemma 5: Let PI,  P2, P3, P4, P5 be paths such that P4 ----- P1 Pa and P5 --= P2 P3- Then 

PI  > P2 implies P4 > Ps- 
(Intuitively, attaching equivalent paths to the right does not alter the ordering relation.) 
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3.3 T E R M  C O M P A R I S O N  

Let M := { s i ,  s2, ... , s m } be a multiset  of terms. By MP(M)  we denote the union of the 

multisets of all full paths in each s~.. 

E x a m p l e :  L e t M  = { f ( a , b ) ,  f ( a , b ) } .  

M R ( M ) =  { < ] ,  f (a,b ) > < a ,  a >, < f  , f (a,b ) > < b ,  b >, 

< f ,  f ( a , b ) > < a ,  a > ,  < f ,  f ( a , b ) > < b ,  b >  }. 

We deliberately abuse the notat ion when M is a singleton set and write M P ( t )  instead of 

M r  ({t }). Note that  MP(s ) -.~ MR (t) if and only i f  s ~ t .  

D e f i n i t i o n :  (i) If s is a non-variable term and t is a variable then s > t if and only if s con- 
T 

tains t .  (ii) s = f (sl, ... ,sin) and t = 9 ( t i ,  "" ,tn )" Let M1 ---- { s l ,  -" ,sin }, 

M 2 - - {  t l , . . . , t ,  } . T h e n s  > t if and only if 
T 

a. f > g and s > t i for a l l i ,  l < i < n ,  or 
T 

b. 1" ~- 9 and MP(MI) >> MR(M2), or 
P 

c. f ~>~ g and MP(s )  > )  MP(t) .  
P 

Note that  the path-comparisons that  are done during term-comparison may necessitate 

further comparisons of terms. Let u i and v I be two terms that  have to be compared while 

comparing ,i and t. It  can be seen that  either u i must  be a proper subterm of s or v i must  be a 

proper subterm of t. The only case where this may not  be obvious is (ii)c, where 

s ~-- f (s 1 ..... ,s , , ) ,  t ---- g ( t l ,  ... , tn) and f ~ g .  But, even though every full pa th  of s 

starts with the tuple < f  , s > and every full path of t starts with the tuple < g ,  t > ,  we 

have no occasion to compare s and t again, since < f ,  s > cannot ever take care of 

g,  t > .  Thus  the algorithm for term-comparison terminates, or, in other words, the ordering 

scheme is well-defined. 

E x a m p l e s :  

(1) s ~ f ~ f ~--- t 

/R Ilk 
/ l \  i l k  

/ I \ x g c with precedenceb > c. 
a g b  / \ \  

/ 1'\ \ x y y 
x x y y 

Since the top-level function symbols are the same, we have to compare the multisets of all 

full paths in the immediate  subterms, MP({ a(x), g ( z ,  y), b(y) }) and 

MP({  x,  g,[x,y), c(y)} .  

i P ( { a ( x ) , b ( y ) } ) =  { < a , a ( x ) > x ,  < b , b ( y ) > y } . M P ( { x , c ( y ) } ) - ~  { z , < c , c ( y ) > y } .  
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Clearly < a , a ( x ) > z  > z .  < b , b ( y ) > y  > <c,c(y)>y since < b , b ( y ) >  takes care of 
P P 

<c, c(y)>. 

(2)  s --~ f 
/ \  
/ \ 

a b 

I I 
x y 

> g ~ t  
/ \  
/ \  

x y with a > g and b > g. 

MP(s)---- {<f ,s><a,a(x)>x,  <f ,s><b,b(y)>y} 
Since f and g are incomparable, we have to compare MP(s  ) and MP(t ), where 

and MP(t) = {<g,t>z, 
<g,t>y}. 

< f  ,s > < a , a ( z ) >  > 
P 

< f , s > < b , b ( y ) >  > 
P 

(3) s ~--- a > 

I 
b 

I 
C 

I 
X 

< 9 , t >  since < a , a ( z ) >  takes care of < 9 , t > .  Similarly 

< g  ,t > .  (Note also that  s and t are incomparable under RPO. ) 

p ----. t 

I 
a with a > p and b ~-~ q. 

I 
q 

I 
X 

Since a > p ,  we have to compare a{b(c(x))) and a ( q ( z ) )  and then again since the top- 

level symbols are both a 's, we end up comparing < b,b (c (z))  > < c ,  c (x) > and < q,q (x)  > .  

It can be seen that  < b , b ( c ( z ) ) >  takes care of < q , q ( x ) >  since the former has a bigger 

right context. 

It should be noted here that  in the ease when all function symbols are monadic, we can 

treat  paths merely as strings formed by the function symbols. Consider the two-tuples 

< f  ,s > in path P and < g  ,t > in path Q .  Now it is not hard to observe that  if f ~-~ g and 

the right-contexts are equivalent, then s ~ t also. Hence it is quite unnecessary to keep the 

(4) s ~ f a --~ t 

l I 
b b 

I I 
c c with f > a. 

I I 
X X 

We compare f b c and a b c .  a is taken care of by f . T h e b  in a b c is taken care of 

by the b in f b c since the latter has a bigger left-context. Similarly, f b > a b and thus 

t h e e  in f b e takes care of t h e c  i n a  b e.  

L e m m s  6: s > t if and only ifMP(s) > >  MP(t). 
T P 

terms around. 

> 
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MP (s ) >> MP (t)  implies that MP (s ) A MP(t ) = 0. 
P 

C o r o l l a r y  6.1: s > t implies f (... s ...) > t .  
T T 

T h e o r e m  1: (a} > is a partial ordering on terms. 
T 

(b}~ > is a partial ordering on paths. 
P 

4. P R O P E R T I E S  OF T H E  O R D E R I N G  

A partial ordering > on terms is a simplification ordering if it satisfies the following proper- 

ties (See [2]): 

(1) s > t implies f (... s ...) > f (... t ...), (replacement) 
(2) f (... t ...) > t ,  (subterm ) 

for any terms f (... s ...) and [ (... t ...). 

T h e o r e m  2: > satisfies the subterm and replacement properties. 
T 

Proof :  Follows from Lemma 6. [ ]  

T h e o r e m  3: > is closed under substitutions. 
T 

Basle Idea:  A major share of the effort is in proving the following two propositions: 

(1) For all substitutions a, s!  :T t l  implies a(st)>T a(tl). 

(2) Let P I  ---- < f  l , s l >  "" <fro,  sr~ > and P2 ----" <gl, t l>. . .<g~ ,ts > be two variable-free 

paths. Then for all substitutions a, 

a(Px) = < ' f  i, ~r(s l )>  ... < f ~ , ,  ¢(sm )>  > < 9 , ,  ¢ ( t l ) >  ... <gin, a ( Q ) >  = a(P2). 
P 

We prove this by simultaneous induction on ]s l] + ]t 1]- [~l 

T h e o r e m  4: > is an extension of the recursive path ordering (RPO). 
T 

Ske tch  o f  the  P roof :  It can be easily observed that s --~ t implies s --- t .  We prove that 
rpo T 

s > t impliess > t by induction on Is  I + I t  I. 
rpo T 

The case when t is a variable and s is a term containing t is trivial. 

L e t s  ~- - f ( s  1 .... , sm} , t  ----~ g( t  1 . . . . .  t n ) , M l ~ - { S l , . . . , s , ~  }and  

M 2 ---~ ( t it, ... , t, }. The following cases have to be considered: 

1. f > 9. Then, by the definition of RPO, s > t; for all i ,  1 <  i < n .  Since 
rpo 

[ s [ + [ tii < I s ] + t t I for every i ,  we get s > t i for 1 < i < n.  Thus 
T 

s > ! by definition. 
T 
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2. f ~-~ g.  RPO requires that  for every t I in M 2 - M 1 there exist s i in M 1 - M 2 such that  

s i > t i . Again, by induction hypothesis, s i ~ t I implying MP(si}  > >  MP(t / )  by Lem- 
rpo P 

ma 6. Thus MP(M 1 - M2) > >  MP(M 2 - M{) and the result follows. 
P 

3. f ~ g .  Therefore there exists i such tha t  s; > t .  I f s~ ~ t t h e n s l  ~ , ~ t , M P ( s i ) ~ - ~  
rp~o rpo T P 

M P  ( t )  and by Lemma 1, M P  (s )  > >  M P  {t ). Hence the result. 
P 

If s i > t ,  then by induction hypothesis s i > t and the rest of the proof can be carried 
rpo T 

out in a similar fashion. ~J 

The path ordering also has the incrementality property desired of a termination ordering 

that  is built on the fly to ensure the termination of rewriting systems generated by the Knuth- 

Bendix completion procedure in the process of computing a canonical system. The following 

theorem states that  as the new precedence relations between function symbols are added, they 

do not upset the old ordering relation among terms; only terms which were not comparable 

earlier can be compared. 

a b 
T h e o r e m  6: Let > and > be two partial  orderings of the set of function symbols F such 

b a a b 
that  > properly contains > . Then for all terms s , t  in T ( F , V )  s > t implies s > t .  

T T 
5. COMPLEXITY OF C O M P A R I N G  TERMS USING P A T H  ORDERING 

Given two terms s and t and a quasi-ordering ~ of the set of function symbols F ,  it can 

he determined whether s > t or s --~ t in time 0 ( I s  I s *  I t  ]5). We show this upper- 
T T 

bound by doing the comparison by a method similar to dynamic programming. 

Assume that  all subterms of s have alre~ly been compared to all proper subterms of t and 

all subterms of t have already been compared to all proper subterms of s .  (In other words, we 

have done everything short of comparing s and t themselves.) Assume also that  the results are 

stored in a 2-dimensional array A that  can be accessed easily. For instance, if s; is a subterm 

of s at position p and ty is a s u b t e r m  of t at position q (p ~ ) ,  or q ~ ) , ) ,  t h e n A ( p , q )  

tells you whether s; ~ ty or s; ,-~ ty.  Our aim is to determine T C O M P ( s  ,t ), the additional 

time required to compare s and t .  

Note that  the worst ease is the one in which every full path in s has to be compared with 

every full path in t .  Hence we have to analyze the time complexity of path comparison. This 

seems at first to he difficult, since path comparison involves further term comparisons. But 

note that  in those comparisons at least one of the terms must be a proper subterm of s or of 

t .  Thus this involves only looking up in the array A .  Let P and Q be full paths in s and t 

respectively. It can be shown, under the above assumption (namely that  every subterm of s 
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has been compared with every subterm of t ,  with the exception of s and t themselves), that 

P and Q can be compared in time O ( ] P  la , I Q  13).We prove this later using, again, a 

dynamic programming-like method. 

An upper bound for TCOMP(s ,t ) can now be derived in terms of [s [ and It I. The number 

of full paths in any term u has an upper bound of ]u I- Hence the number of full-path- 
comparisons required to compare s and t has an upper bound of Is[ * I t I- Similarly, the 

maximum length of a full path in a term u is also bounded above by lu [. Thus TCOMP(s ,t ) 
takes O ( i s ] 4 ,  It  If)  time. 

All that  we now have to do is to sum up all possible TCOMP (si, t i )s, where s i is a sub- 

term of s and t i is a subterm of t .  The number of all possible subterms of a term u is quite 

clearly lu l, since every position in the term corresponds to a subterm and vice versa. Each 

TCOMP(si, ty) is bounded above by TCOMP(s, t )  and therefore takes O ( I  s t 4 * I t i 4) 

time. Thus 

TCOUP(s~,ti) = O ( [ s  I S *  I t  I s) 

and the claim is proved. 

It remains to be shown that two paths P and Q can be compared in time 

O ( [ P  1 3 "  I Q I3) .Let  I P I - ~  m and [QI---- n.  For a l l i ,  j such that  1 < i <: j _~ m,  

let Pq denote the subpath of P from the i - th  tuple through the j - th .  Similarly, let Qkl 

denote the subpath of Q from the k- th  tuple through t he / - t h .  

Assume, as we did for comparing terms, that all proper subpaths of P have been compared 

with ell proper subpaths of Q.  Let B be a 4-dimensional array in which the results are stored: 

B ( i , j , k , l )  gives you the result of comparing Pq  with Qkt. Denote by PCOMP(P,Q)  the 

(additional) time required to compare P and Q under these assumptions. 

For any tuple < g ,  s~. > in P ,  we can find out whether there exists a tuple in Q that takes 

care of it in O (n)  time by a straightforward two-pass algorithm: in the first path, it is checked 

whether there is any tuple < f , tj > in Q such that f > g ; if none, then in the second pass, 

we check whether f --~ g in which case the arrays B and A are used to compare right- 

contexts, subterms and left-contexts. Thus PCOMP(P,Q ) --  O(mn ) ~ O( ] P I* [ Q l). 
Note that there are O(rn 2) subpaths of P and similarly O (n 2) subpaths of Q. Therefore, 

O(m 2 * n 2) path-comparisons are necessary in the worst case and each of these is bounded 

above by PCOMP (P ,Q ). The overall time, therefore, is 
O(m3 , n a ) = O ( l p l a ,  [ Q  [3). 

This completes the proof. [~] 

6. I N C O R P O R A T I N G  S T A T U S  IN P A T H  O R D E R I N G  

While comparing terms we have to sometimes introduce the concept of status of an opera- 

tor to make the terms comparable. The most common example is the associativity law of cer- 
tain operators l i ke+  and*:  (x * y) * z -~ x * (y * z). 
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In order to orient such equations as rules we have to assign left-to-right (1-r I or right-to-left 

(r-l) status to one or more operators. (e.g. the * operator in the above equation.} Equivalent 

operators should have the same status. If the top-level operators of two terms are the same we 

compare the immediate subterms not as multisets but in a lezicographical way, either left-to- 

right or right-to-left. 

Kamin and Levy [7] extend RPO to LRPO (lexicographic RPO) in the following way: 

s ----- f (s 1, ... ,sin ) > t ---- g (t 1, ... ,t~ ) if and only if one of the following three conditions 
lrpo 

hold: 

(1} f  > g and 8 > t i f o r M l i ,  1 < i < n (same as forRPO).  
lrpo 

(2) f ~-¢ g and (a) if f and f have l-r status then there exists j such that  s l ~ t l ,  

sy_ 1 ,-~ ti_l, s i > ti and s :> t i for j + l  < i < n ,  (Similarly for r-I status.} whereas 
Irpo lrpo 

(b) if f and 9 have no status then it must be that { s 1, --- ,sin } > >  { t 1 . . . .  ,tn }- 
t, o 

(3) s i > t f o r s o m e i ,  l _  i _< n (same as forRPO).  

To incorporate status in the path ordering we have to modify path comparison and term 

comparison as follows: 

P a t h  C o m p a r i s o n  (LP):  

L e t P l  ~- < f  l, t l > < f  2, t2> ... < f  ,n, t in> and 

P2 -~- < g l ,  S l :><g2 ,  s2>  ... < f n ,  s~ > be two sequences of two-tuples. P I  > P2 if and 
LP 

only if for all < g i ,  si  ~ in P2 there exists < f i ,  ti > in P I  such that  

~- f l > gi or 

b. f i  "~ f i  and if they have no status then 

1. R C ( < f l ,  •; > ,  P I )  L>pRC(<gy,  si  > ,  P2) or 

2. R C ( < f l ,  t i > ,  P I )  "~ R C ( < g i ,  s i > ,  P2} and t~ ~TSy  or 

3. R C ( < ] I ,  t; > ,  P l )  ~ R C ( < g i ,  si > ,  P2), t; ~ s i and 

LC(<I~, t; >, P,) L>p LC(<gl, s i >, P2). 

If they have l-r status, say, then 

1. t i L>T s i or 

2. t i ,~ s i and L C ( < ] ~ ,  t i > ,  PI)  ~ p  L C ( < g / ,  s i >,  P2) 
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T e r m  C o m p a r i s o n  (LT):  

Let s ---- f (Sl, ... ,sin) , t = g ( t l ,  ... ,t~), M 1 -~ { s t ,  ... ,sra } and 

M 2 = { tl ,  ... ,t~ }. 

Then s > t if and only if one of the following three conditions hold: 
L.T 

a. f > 9 a n d s  > t i for a l l i , 1  < i  < n .  
L T  

b. f --~ 9 and if f and 9 have l-r status, say, then there exists j such that s I "~ t 1, --- 

sj~ l -~ ti_l, s i _~_ty and s > t i for j + l  < i < n .  (Similarly for r-I status.) 
L T  LT 

If jr and 9 have no status, then MP(M 1 - M2) > >  MP(M 2 - Ml). 
LP 

c. jr 2 9  a n d M P ( s )  >> MP(t) .  
LP 

7. A F U R T H E R  E X T E N S I O N  O F  P A T H  O R D E R I N G  

A possiLble way of extending the path ordering even further is by allowing tuples from 

different paths to take care of tuples along a path. Thus we could remove the restriction that a 

path must be taken care of by another path and instead let tuples from a collection of paths 

take care of the tuples from another path. An example where such an idea would work is the 

following: 

E x a m p l e : s  ---- j r (a (x) ,  b ( z ) ) , t  = 9 (h (x )) with a > g andb  > h.  

The tuple < a ,  a ( x ) >  takes care of < 9 ,  g(h(z ) )>  and <b,  b ( z ) >  takes care of 

< h ,  h ( x ) > .  Note that neither the path ordering nor RDO can compare 8 and t .  

It must be noted of course that this new scheme is not clearly defined yet. But this looks 

like an interesting problem for future research and we are working on the details. 

8. R E L A T I O N S H I P  T O  R E C U R S I V E  D E C O M P O S I T I O N  O R D E R I N G  

Jean-Pierre •ouannaud [personal communication] has pointed out to us the similarity 

between our ordering scheme and the Recursive Decomposition Ordering Scheme (RDO) [0,14]. 

The way our ordering is formulated is similar to the "entire choice" scheme of RDO, since 

essentially all the paths in a term and all the tuples in a path are taken into account. (The 

reader is referred to [6,14] for the formal definition of RDO and further details.) However, the 

path ordering is not quite the same as RDO, since there are terms that the path ordering can 

compare but RDO cannot. An example is given below. 

F~xample: s -----b (a (z),9 (a (a (x)) ,s  ),9 (b (b (y)),y )) and 

t = h  (a (z },9 (a (z),b (y)),9 (a (x),b (y))) with no precedence among the function symbols. 

While comparing s with t ,  we eventually end up comparing the paths through the mul- 
tisets M 1 := { g ( a ( a ( x ) ) , z ) ,  9 ( b ( b ( y ) ) , y }  } and M 2 -~ { g ( a ( s ) , b ( y ) ) ,  g ( a ( z ) , b ( y ) )  }. It 

can be easily seen that MP(MI) ~ MP(M2). 
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When RDO compares terms s and t ,  it has to compare decompositions along the paths 

that end in z. (They are the 'leftmost' paths, expressed as '1.1' in positional notation.) Clearly 

the decomposition corresponding to h in s must take care of the decomposition corresponding 

to h in t .  In other words, the decomposition 

< h ,  a(z),{ g(a(a(x)) ,  x), g(b(b(y)) ,  y) },I~3 > = .<h, a(z), MI, [~ > 

must be greater than 

<h,  a(z),  { g(a(x) ,  b(y)), g(a(x) ,  b(y)) }, []  > = < h ,  a(z),  U2, [ ~ > .  

But this is impossible since M l and M 2 are not comparable as multisets of terms. 

Jouannand has suggested a way to overcome this in RDO by introducing a varyadic func- 

tion symbol, the details of which still need to be worked out. It will be interesting to examine 

whether the proposed extension of RDO is equivalent to the path ordering. 

Jouannaud has also remarked that that the path ordering may not compare well with RDO 

in efficiency. There is no way to do this comparison at present; we are not aware of any com- 

plexity analysis of RDO; there do not exist implementations of path ordering and RDO on the 

same machine and in the same langllage either to compare their experimental performance. 

9. C O N C L U S I O N  

We have found that reeursive path ordering (RPO), though simple and elegant, cannot ord- 

er certain equations which we intuitively 'feel' we can order. The example (given in Section 2.2) 

a(b(z))  = e(d(x))  with b > c and a > d is one such. We have devised a new ordering 

which compares terms using the paths in them. This ordering properly contains RPO and elim- 

inates many of RPO's drawbacks. We also feel it is easy to understand. 
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