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I n t r o d u c t i o n .  

In t h i s  paper a new t ype  o f  bot tom-up t r e e  automaton,  c a l l e d  s y n c h r o -  
n ized bottom-up t r e e  automaton, i s  cons ide red .  Th is  automaton p rocesses  a 
t r e e  in a bottom-up way and one l e v e l  at  a t ime.  Moreover ,  more than one 

t r a n s i t i o n  f u n c t i o n  i s  a l l owed ,  but o n l y  one o~ them at  a t ime can be 
a p p l i e d  t o  nodes a t  the same l e v e l  o f  a t r e e .  

The t r e e  language recogn ized  by these  automata a r e  t h e  images, under 
p r o j e c t i o n ,  o f  t he  se t  o f  d e r i v a t i o n  t r e e s  o f  EPTOL languages.  

The model i n t r o d u c e d  in  t h i s  paper i s  a g e n e r a l i z a t i o n  o f  t he  b o t -  
toni-up tree automaton. Its behaviour, relative to ETOL systems, is the 

same as the bottom-up tree automaton behaviour relating to context free 
grammars ( 7 ) .  

Furthermore~ many properties of the bottom-up tree automata continue 

to hold for the class of automata here introduced. In fact, in the case 

that one transition function is allowed, the class of recognized tree 

languages is a boolean algebra and has a decidable equivalence problem. 

In the general case, the membership, the emptiness and the finiteness 

problems turn out to be decidable. 

As it has been observed in the case of context-free languages, the 

introduction of tree automata recognizing sets of derivation trees of 

L-languages allows to state properties or to give simpler proofs of al- 

ready known p r o p e r t i e s  about t he  co r respond ing  c l a s s e s  o~ L - languages .  
We cons ider  a subc lass  o f  t r e e s  in  which a s p e c i a l  symbol e l a b e l s  a 

node r e p r e s e n t i n g  an a b o r t i n g  computa t ion ,  and we i n t r o d u c e  a p a r t i c u l a r  
synchron ized bot tom-up t r e e  automaton, c a l l e d  e - s y n c h r o n i z e d  bot tom-up 
t r e e  automaton, which r e c o g n i z e s  languages o f  t h i s  k ind  o f  t r e e s .  

The language recogn ized  by these automata a re  t h e  images, under a 
p roper  p r o j e c t i o n ,  o f  t he  se t s  of  d e r i v a t i o n  t r e e s  o f  ETOL systems. 

We a re  a l s o  a b l e  t o  cons t ruc t~  f o r  eve ry  t r e e  language L recogn ized  
by an e - synch ron i zed  bot tom-up t r e e  automaton, a synch ron i zed  bot tom-up 
t r e e  automaton which r e c o g n i z e s  the  se t  of  t r e e s  o b t a i n e d  f rom L by 
p run ing  the  dead branches.  This r e s u l t  s u p p l i e s  a d i f f e r e n t  method t o  
c o n s t r u c t  an EPTOL system e q u i v a l e n t  t o  a g iven  ETOL system. 

In sec t i on  1 p r e l i m i n a r y  concepts and d e f i n i t i o n s  a r e  i n t r o d u c e d .  
Sec t ion  2 c o n t a i n s  t h e  d e f i n i t i o n s  of  t he  c o n s i d e r e d  c l asses  o f  syn -  

ch ron ized  bottom-up t r e e  automata and the  p r o o f s  o f  t h e i r  p r o p e r t i e s .  
In sec t i on  3 t he  r e l a t i o n s h i p s  between t h e  synch ron i zed  bot tom-up 

tree automata and L-systems are pointed out. 

In section 4 some decision problems are dealt with. 
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1. Terminology. 

We suppose the principal notions of tree languages and L-systems 

theories. We just give a dbfinition of the set of derivation trees of 
an ETOL system, which is a slight modification of the one given by 

Engelfriet in (2>. 
Given a ranked alphabetE ,we will consider the tree language over E 

containing only trees whose paths from the root to the leaves have the 
same lenght. 

Definition I.I. Let E be a ranked alphabet, consider the tree lan- 

guageo Hr=~ ~..-v H~ where Hzk is defined recursively as follows: 

H~+~ Z 0 and t i E H~ f o r  l<=i<=r}. H~ i = {a(tl. ..tr) a E Er 

Definition i.~.° Let G=(E,~,S,~) be an ETOL system. Given a symbol 
e ¢2, define~ to be the ranked alphabetEO(e I such that~rL~-)=~U~el, 

~l=~a~E such that there exist b~Eu~E] and PE?such that a~b is in ~u{el 
and for r>=2 ,~r=~aeE such that there exist P~ ~and w E ~+ such that 
a--)w is in e and lwl=r] (Ix I is the lenght of the word x). For a E E and 

E ~,the set of derivation trees with top a and control word ~, de- 

noted D~(G), is defined recursively as follows: 
i. for a~,aeD~(G) (where ~ is the empty word of ~ ); 

2. for ace and Peg, iT a~ E is in P then a(en)e is in D~p(G), for 
every n>=O and Tot every ~ E ~ such that~l=n; 

3. ÷or n>=l , a,al,...,an~ E,P~ ~and t~,...,t nETE,if a~al...a n is in P 

a i and ti~ D~ (G) for l<=i<=n, then a(tl...tn)~ D a #p(G). 

The set of derivation trees of G, denoted D(G)~H%, is defined by 

D (G) =a~L~S D~ (G>. 

Note that if G is propagating then we do not need the symbol e and 

the clause 2. of the above definition. 
For a given ranked alphabet~E, besides the usual frontier ÷unction 

fr:H~EO ~ we will introduce the e-free frontier function Tot a symbol 
e, defined as follows. 

Definition 1.3. Let E be a ranked alphabet. Chosen a symbol eeE 0 we 

define a mapping fr e :HE--)TO* recursively as follows: 
i. for ace 0 , fre(a)=E if a=e, otherwise fre(a)=a 

ii.for k>=l, aE E k and ti~ HE, for l<=i<=k, 

fre(a(t I. . .t k) )=fre(tl)fre(t 2) ...fre(t k) . 

It is easy to see that, for every ETOL system G, fre(D(G))=L(G) and 
that for every EPTOL system G fr(D(G)>=L(G). 

Definition 1.4. Given two ranked alphabets E and ~ such that 
Ej~ ~ /~j~ and given RjQ 2jX~ ,for every j>=O such that Ej~, a rela- 
beling R with domain S l and range T/i is the relation RE ~×T~ defined as 

fol Iows: 
(a,b)E R if (a,b)eR 0 ; 
(a(t l...t k),b(t l'...tk')) E R if (ti,ti')E R for l<=i<=k and (a,b) E R k. 
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G~ven a relabeling R with domain 7 E and range T~ and t ~ TE ;let 

R(t) = It"e T 6 1 (t,t')~ R}. I+ L_~ TX, let R(L)=tUeLR(t). 

Definition 1.5. A projectiod P w~th domain ~2 and range T~ is a re- 

labeling such that for every ae )'j there exists a unique bm ~j such that 
(a,b) e P, for every j such that ~j ~' ~. 

In such a case we will write t'=P(t) instead of (t,t')E P. 

A projection P with domain T Z and range T~ is said to be frontier 
preserving if for every t~ T~ fr(t)=fr(t') for every t'=P(t). 

=. Synchronized bottom-up tree automata. 

In this section we introduce the k-synchronized bottom-up tree auto- 
mata, abbreviated k-SBUTA, where k is an integer greater than zero, and 

we prove that the deterministic and non deterministic versions of such 
automata are equivalent. 

We state that the class of tree languages recognized by any k-SBUTA 
is closed with respect to set tlneoretical union and intersection, whereas 

the closure with respect to complementation holds for the class of tree 
languages recognized by a I-SBUTA. 

We introduce a particular kind of k-synchronized bottom up tree auto- 
maton, called e-k-synchronized bottom-up tree automaton, in order to rec- 

ognize trees in which some paths, labelled by words in ~e) *, represent 
aborted computations. Moreover, we prove that, given an e-~:-synchronized 

bottom up tree automaton recognizing a tree language L, it is possible to 
construct a k-synchronized bottom-up tree automaton which recognizes the 

language obtained from L by cutting the dead subtrees from each tree. 

Definition 2.1. Let ke N +. A k-NoEUTA" ~ ~ is a 5-tuple A=(r_,Q,~o,~,F) 
where 

E is a ranked alphabet, 
O is a finite set of states, 

FE Q is a set of final states, 

~o  c EC))~Q and 
~=~i ..... ~k~ where ~i = ~'ti,j E -- (QJX ~j)% Q I j>=1, 2]~J. 

The binary relation ~o assignes initial states to the leaves; be- 
sides, if (ql''=''qi 'a'q)E ~i,j then the state q can be assigned to a 

node labelled a if ql,...,qi have been assigned to its sons. If k=l then 
we will write ~ instead of _ ~i" 

A k-NSBUTA A=(Z,Q,~o,~,F) is deterministic if ~o: ~Eo-~Q and 
~i,j : QJx ~Zj--~ Q are partial functions. A deterministic k-NSBUTA will be 

cal Ied k-SBUTA. 
Let us define a binary relationIA't'h (N)SB_C (~ (~_XQ)n) 2 to de- n~ N 

~_cribe the computation step of a k-(N)SBUTA A on t~ ]2' by using the h-th 
function (relation): 

• " - " qs. I A,'t'h (N)SB (al,l,ql,l,.-.,al,rl,ql,r I, .,~s~l,qs, l,'--,=~s~r s, r s) 

(al,ql,...,as, qs) if l<=h<=k and for every 1<=i<=s it holds that 

ale )'ri , ri>O , a i, l,...,ai,ri are the ].abels of the sons of the nodes 
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a)=qi ((qi,l, . . . .  qi,ri'a'qi) ~h,ri)" labelled a i and ~h,ri(qi,1,...,qi,ri, . 

We define x 1 I A',t'~ + x n if ~ = jl...Jn_l and there exist 

x2'''''Xn-l£ e ~N (EXQ) n such that x i . . . . . . .  (N)SB xi+ 1 for l<=i<=n-l, 

and xll A't~ * (N)SB Xn if Xl=X n and~r=~ or x I IA, t,T[ + (N)SB x n for some 
~ ~l , . . . , k l  ÷. 

We say that  t ~ Tz is  q-Tr-accepted by A i f  q e Q and 
( a l , q l , . . . , a n ,  qn)I A,~, :~ (N)SB (a,q) where a l , . . . , a  n are the l abe l s  of 
the leaves and a i s . _ t h e  label  of the root  of t ,  ( a i , q  i )  E ~o (~o(ai>=qi)  
f o r  l<=i<=n and ~ • |l,...k~*. 

We say that t E TE is q accepted by A if it is q-IT-accepted by A for 
some ~re {l,...,k~ ~. Moreover, t e TE is accepted by A if it is q-accepted 

by A for some q E F. 
Let L(A) the set of trees accepted by a k-(N)SBUTA A. Note that for 

every k-NSBUTA A=(E,Q,~o,~,F), L(A)~ H~. 
A language L is said to be k-(N)SB-recognizable if there exists a 

k-(N)SBUTA A such that L=L(A). 
Let k-NSB-RECOB (k-SB-RECOB) be the set of the k-NSB-recognizable 

(k-SB-recognizable) languages and NSB-RECOG (SB-RECOG) the set of 1-NSB- 
recognizable (l-SB-recognizable) languages. 

Theorem 2.1. For every k>=l, k-NSB-RECOG = k-SB-RECOG. 

Proof. The proof exploits the usual subset construction. 

In the following we will prove that ~I k-SB-RECO8 and SB-RECOG are 
closed with respect to union and intersection, and that the closure with 

respect to the complementation holds for SB-RECOG. 

Theorem -.~.? ~ ~.= k-SB-RECOG is closed with respect to intersection 
and union. 

Proof. Let A=(E,Q,~o,~,F) be a k-SBUTA and A'=(~',Q',~o' , ~,F') be a 
k'-SBUTA. We can suppose, without loss of generality, that QnQ'= ~ and 
that k>=k ' 

We now construct a k-NSBUTA A" such that L(A")=L(A)UL(A'), according 
to theorem 2.1 there exists a k-SBUTA equivalent to A". 

Let A"=(~",Q",~o",~",F") be the k-NSBUTA defined as follows: 
~"=I U~', Q"=QUQ', F":FU F', 

~o "=~(a,q) I aE~o~o , q~ QuQ' and ~o(a)=q or ~o'(a)=q}, 
=|(q., ,q ,a,q) J a~2 u~ . q . ,  . ,q_,q~QUQ' and 

J ~ r  ~ I ' ' ' '  r " i r r "  i -  " " r ~  

~ ~(q1,...,q~,a)=q or ~'~ r(ql,...,qr,a>=q), for every l<=j<=k. 
-~'Consider now the k"-SBO~A A" such that L(A")=L(A)nL(A'), defined as 

follows: 
k-=kk ~, 2-=~ ~', Q-=QnQ', F"=F~ F', 

~o"(a)=(q,p) if ~o(a)=q and ~o' (a)=p for amEo n ~'0 and 

~"(j_l)k.+l,r((ql,Pl),..., (qr,Pr),a)=(q,p) i~ ~j;r(ql,...,qr,a)=q and 
~'l,r(Pl,...,Pr,a>=p, for every l<=j<=k, l<=l<=k and a ~ Er'n ~ r" 

In both cases the proof is carried out by induction on the input 

tree. 

Let " " L = H  -L be the complement of L in H . 

Theorem 2.3. The class of SB-recognizable subset of H is a boolean 
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algebra. 

Proof. From the constructions given in the proof of theorem 2.2, it 
immediately follows that SB-RECOG is closed with respect to union and 

intersection. Let A=(E,Q,~o,~,F) be a SBUTA recognizing a language L, we 
construct a SBUTA A~=(E,Q'~ o `  , ~,F ~) recognizing ~L. Let Q'=QU~ p~ 

where p @ Q, F~=(Q-F)U ~p), ~o~(a)=Oo(a) if ~o(a) is defined, otherwise 

~o ~ (a)=p, ~r(ql,...,qr ~a)=~r (ql''''~qr'a) if qi ~ Q and ~r(ql,...,qr,a) 
is defined, otherwise ~'r(ql,...,qr,a)=p. 

In the following we will prove that k-SB-RECOG is closed with respect 
to relabeling. As a consequence we obtain the closure with respect to 

projection and inverse projection. 

Theorem 2.4. For every k>=l, k-SB-RECOG is closed with respect to 

relabeling. 

Proof. Given a k-SBUTA A=(%,Q~o,~,F) and a relabeling R with domain 

T~ and range T~ we will construct a k-NSBUTA A'=(A,Q,~o~, ~,F), such that 

I L(A~)=R(L(A)), defined as follows: ~o =~(b~q) (a~b)~ R 0 and ~o(a)=q for 

aEE(-~: ~j,r=~(ql .... ,qr,b,q) if (a,b)E R r and ~j,r(ql .... ~qr,a)=q for 

a C 2r~ • 
By induction on t it is easy to see that 

i. for every te HE, if t is q-~-accepted by A and there exists t~ E HA 

such that (t,t') G R then t ~ is q-IT-accepted by A'; 
ii. for every t ~ Hi, if t is q-?T-accepted by A" then there exists t'~ H E 

such that (t~,t) e R and t ~ is q-~T-accepted by A. 
From i. and ii. the thesis follows. 

Corollary 2.1. For every k>=l, k-SB-RECOG is closed with respect to 

(frontier preserving) projection and inverse projection. 

Proof.  Obvious. 

Since a tree can represent a computation process, it is quite natural 
to consider that some computation paths may abort. In order to represent 

trees with aborting paths in HE, we will introduce a special symbol e to 
label the nodes of a chain which completes an aborting path. For example 

the tree t = (a(b(d(d)b(bb))c) e T Z can be represented by the tree 
t ~ = (a(b(d(d)b(bb))c(e(e)))~ Hzu~e ~. 

Definition 2.2.Given a ranked alphabet)-, we will call e-ranked 

alphabet the alphabet Z'=Y-u~e~ such that e ~--, Z~'O=~O U~e~, ~_il=21U~e ~ 
and E~j=~ for every j>=l. 

Definition 2.3. Let k ~N +. A non deterministic synchronized bottom- 

up tree automaton over an e-ranked alphabet E, abbreviated e-k-NSBUTA, is 
a k-NSBUTA A=(~-,Q,~o,~,F) such that there is a special state qe ~ Q sat- 

isfying the f o l l o w i n g  c o n d i t i o n s :  
i. if (a,q) e ~o then a=e ~> q=qe ' 

ii. if (q,a,q') ~i,l then a=e<=) q=q'=qe and q'=qe=~ a=e ^ q=qe, 
ill.for j>=2, if (ql,...,qj,a, qj+l)~i,j then qh~qe for every l<=h<=j+l, 

iv. for every l<=i<=k (qe,e, qe ) e ~i,l. 

We will call e-k-SBUTA a deterministic bottom-up tree automaton over 
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an e-ranked alphabet. The set c~ languages recognized by any e-k-(N)SBUTA 
will be called e-k-(N)SB-RECOG. 

Lemma 2.1. For every e-k-NSBUTA A there exists an e-k-SBUTA A' such 
that L(A)=L(A'). 

Proof. A slight modification of the usual subset construction 
suffices to take in account the special symbol e. 

Definition 2.4. Given two e-ranked alphabets~and A. a relabeling R 

with domain T~ and range Ta is said to be an e-relabeling if for every 
(a,b)E RoOR 1 we have that a=e if÷ b=e. A projection which is an e-re- 
labeling is called e-projection. 

Lemma 2.2. For every k>=l, e-k-SB-RECOG is closed with respect to 
e-relabeling. 

Proof. The construction given in the theorem 2.4 applies to the case 

of an e-k-SBUTA as well. 

Given an e-ranked alphabet E, let ~-e be the ranked alphabet defined 
by: (Z e)(]=~ and (Z e)~=~Zr ." Let p~ be such a function that p - . p ~ ..... 
pe : H-e H pe and pe(a)=a, for every a ~ ~C~. 
pe(a(t l...t k))=e'if pe(t i)=e for every l<=i<=k, 

pe(a(tl'''tk))=a(pe(tll )'''pe(tlm)) iT pe(tls)=e for l<=s<=m, 

O<ll<...<Im<=k and pe(t i )=e for every it=Is, l<=ir<=k. 
r 

In the following the concept of state diagram will be useful. 

Definition 2.5. Given a k-SBUTA A=(Z,Q,~o,~,F) , let the state diagram 

G=(V,E) be the directed labelled graph such that V=2 Q and (U,U')e E with 
label j iff l<=j<=k and U'=(~j (ql' .,qr,a) I a e E r and qia U for 
l<=i<=r~. 

Let Sj(U) be the node U' such that (U,U~)E E with label j. 
Let P(G)~ 2Qx ~l,...,k}*X2 Q such that (U,~,U') e P(G) iff 

n~ ( II,...,k~ + and there exists a path from U to U' in G labelled W or 
~f=~ and U=U'. Let cU(G) = IU ~ E 2 Q I there exists ~ ~ (l,...,kl~ and 

(U,~,U ~) ~ P(G) I .  

Theorem 2.5. For every  e-k-SBUTA A, t h e r e  e x i s t s  a k-SBUTA A' such 
t h a t  L ( A " ) = p e ( L ( A ) ) - I e J .  

F'roof. Given an e-k-SBUTA A=(E,Q,~o,~,F) , l e t  G=(2Q,E) be i t s  s t a t e  
diagram. In the k-NSBUTA which we w i l l  c o n s t r u c t ,  the s t a t e s  w i l l  be 
coup les  (q,U) where q c Q and d i s  a subset of Q c o n t a i n i n g  the  s t a t e s  p 
such t h a t  there  e x i s t s  a p - l f -accepted  t r e e ,  f o r  a proper  ~, whose f r o n -  
t i e r  belongs t o  (e~ ~. Consider  the  k-NSBUTA A"=(Z ~ Q" ~ " m~ F ~) where 

• . . 1 a ~o-~e)~ and is ~'=)-pe' Q'=Qx2Q~ F'=F×2Q' ~o'=I(a" (~o(a)'{qe})) ' 'Io "IT_ '. ~" 
defined as follows: 

if ~j,r(ql,...,qr,a)=q then ((qil,U),..., (qil,U),a, (q,Sj(U))) e ~'j, I for 

l<=l<=r, l<=il<...<il<=r and U ~ cIqeJ (G) iff there exist hl,...,hr_ I E 



304 

l,...,r~ - il,...,i I such that qhn E U, for every 1<=n<=r-l. 

By induction on I~I it is easy to prove that, for every q ~ Q, 

lqel 
U ~ C (G) and ~ E Ii ..... kl ~ such that (~qel,~,U) £ P(G> it holds that 
q mU iff there exists t e H E such that pe(t)=e and t is q-~-accepted by 

A. By induction on t and by exploiting this result it is easy to prove 
that: 

I. if t ~ H z is q-~-accepted by A and pe(t)=e~ then pe(t) is (q,U)-~-ac- 

cepted by A~for (~qel,~,U)~ P(G). 

2. if t • HEp e is (q,U)-~-accepted by A ~ then (lqe~,E,U) E P(G) and there 
exists t ~ e H~, such that pe(t)=t ~, which is q-E-accepted by A. 

So that pe(L(A))-~e~ = L(A'). According to theorem 2.1 there exists a 
k-SBUTA A" such that L(A")=L(A'). 

3. L-systems and synchronized bottom-up tree automata. 

In this section we relate the considered classes of synchronized 
bottom-up tree automata with classes of L-systems. We will prove that a 

language L is an ETOL language iff it coincides~ up to the empty word, 
with the set of frontiers of trees belonging to a language recognized by 

a synchronized bottom-up tree automaton. 
As an example of a result which can be obtained by exploiting the 

above correspondence between ~ k-SB-RECOG and ETOL languages~ we show 
t h a t  f o r  every ETOL system the re  e x i s t s  a s t r u c t u r a l l y  e q u i v a l e n t  ETOL 
system such t h a t  in every t a b l e  the  r i g h t  hand s ide  of  a r u l e  u n i q u e l l y  
determines i t s  l e f t  hand s ide.  

Theorem 3.1. For every ETOL system G~ there exists an e-k-SBUTA A 

such that L(A)=D(G). 

Proof. Given an ETOL system G=(Z,~,S,~), consider the e-k-SBUTA 
A=(D,Q,~o,~,F) such that k=f@1, X~ is the e-ranked alphabet ZU~e~ 

Q=~qa J a E E) U~qel, F=lqa I a e ~), 

po<a~=q a i f  a~ad~e~, 
~P, l (qe  ' e )=  qe f o r  every  P e ~ 
~p 1(qo, a)=q= f o r  every  a ~J~Z I such t h a t  a-~E ¢ P and f i n a l l y  

~ p ~ r ( q a l ~ . . . , q a r , a ) = q a  f o r  every  a ¢ Er such t h a t  a ~ a l . . . a  r • P, f o r  

r>O. 
It is easy to see that L(A)=D(G). 

Theorem 3.2. For every EPTOL system G, there exists a k-SBUTA A such 

that L(A)=D(G). 

ProoT. By eliminating the construction rules regarding the special 
symbol e, the construction given in the previous proof supplies the 

wanted k-SBUTA. 

Theorem 3.3. Every e-k-SB-recognizable subset of H E is the image, 
under a frontier preserving e-projection~ of the set of derivation trees 

of an ETOL system G=(/I,~,S,A> for some alphabet ~. 
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F roof. Let A=(Z,Q,/ao,/~,F) be an e-k-SBUTA. Let us consider the al- 
phabet JO_=~ (Er-~e})x (QUIR))U(Zo-Ie }) where R ~EUQ. Consider the 
ETOL G=t~I,~,S,~) defined as follows: 

=lae~)-Iell /~o(a) is defined), 

S=I(a,q) I a6~Er, r>=O, q ( F) U{a6Z 0 l~o(a) ~ F}, 
~ contains the tables ~ = {(a,q)-~ (a, ql),..., (a,q r) ~ /~ r(ql'''''qr 'a)=q 
for every a ( ~r, r>O and qfqe and qjfqe for l<=jC=r} U'{(a,q) -~ I 

~,l(qe,a)=q~ U ((a,q)--~ (a,R)... (a,R) ~ q ~ Q, a ( ~c and 

lia-~ R for every a • ~0 LI {R}). Let/-L "~ be the ranked alphabet J')-U~e}, 
hence D(G)~ H~l,. Consider the frontier preserving e-projection P with 
domain T.j~, and range T~ such that P(a)=a for every a ~-C~' 0 and P((a,q))=a 
for every a eZ r and q e QU~R I. 

By induction on t~ H~ it is easy to prove that t~ L(A) iff there 
exists t'$ D(G) s~ch that P(t')=t, hence the thesis holds. 

Theorem 3.4. Every k-SB-recognizable subset of H~ is the image, under 
a frontier preserving projection, of the set of derivation trees of an 
EPTOL system G=(XI,~,S,~) for some alphabet X~. 

Proof. The construction of theorem 3.3 applies to a k-SBUTA by giving 
an EPTDL system. 

Note that the above results supply a new proof of the existence of an 
EPTOL system equivalent to a given ETOL system. In fact given an ETOL 
system G=~,@,S,~) generating a language U, from theorem 3.1 there exists 
an e-k-GBUTA A such that L(A)=D(G). From theorem 2.5 there exists a k- 
SBUTA A ~ such that L(A~)=pe(L(A))-lel and U-L~i=fre(L(A))-~ ~ =fr(L(A')). 
According to theorem 3.2 there exists an EPTOL system G" and a frontier 
preserving projection P such that L(A')=P(D(G')), so that G" generates 

Corollary 3.1. A subset U ~ 6~ is an E(T)OL language iff U-~E}=fr(V) 
for some (k)-SB-recognizable V~H~. 

Proof. Given an ETOL language U, consider the EPTOL system 
G=(E,~,S,~), generating U-{L~ and the k-SBUTA A such that L(A)=D(G). 
Chosen a symbol a o in ~, consider the following ranking of~ :a o ~ ~n for 
every n such that En ~,a ~ ~0 for every a e ~,and the frontier preserving 
projection P with domain T~ and range ~ such that (a,a) m PO for every 

a ~E 0 and (a,ao) ~ Pn, for every a ~ ~n, n>O. 
In accordance to the corollary 2.1, there exists a k-SBUTA A" such 

that L(A')=P(L(A)). Furthermore U-{~}=fr(P(D(G)))=fr(L(A')). 
Viceversa, let us consider a k-SB-recognizable subset VgH~. From 

theorem 3.4, there exists an EPTOL system G=(~,S,@) and a frontier 
preserving projection P with domain T~z and range T a such that P(D(G))=V. 
Hence, fr(P(D(G)))=fr(D(G))=fr(V)=U and so U is an ETOL language. 

From the constructions given in theorems 3.1 and 3.4, it immediately 
follows that U ~  is an EOL language iff U-I~=fr(V) for some SB-reco- 
gnizable V ~ H~. 

Definition 3.1. Given an e-ranked alphabet.Q consider the e-ranked 
alphabetfl ~ defined by (~)0=4~0 and (-/i~) k = I~ for every k such that 
~k4~. Moreover consider the frontier preserving e-projection R ~ with 
domain T~ and range T~ such that (a,a) e (R~)o for every a ~ ~0 and 
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(a,*) • (R*) r for every a ~ J~r, r>O. Two ETOL systems are called struc- 
turally equivalent if R (D(GI))=R*(D(G2)). 

Definition .3.2. An ETOL system G=(E,~,S,~) is invertible if for every 

P m ~ the right hand side of a rule in P uniquelly determines its left 
hand side. 

Theorem 3.5. For every ETOL system G there exists a structurally 

equivalent invertible E]OL system G'. 

Proof. Let 6=(E,~,S,~) be an ETOL system with I~ =k. Let us consider 
the e-k-SBUTA A=(~,Q,~o~,F) such that L(A)=D(G) whese construction is 

given in theorem 3.1. Note that ~o is an injective function. Consider the 
frontier preserving e-projection R ~ above defined, according to lemma 2.2 

R~(D(G))=L(A' ). there exists an e-k-SBUTA A~=(J~L~,Q',~',~,F ~) such that 
Note that ~o'=~o . Let us consider the'~ -ETOL system G'=(~)X(QU{R})U~'~ 

q, F'i,a) constructed in the proof of theorem ...3 3 Since A ~ is 
deterministic then 6 ~ is invertible~ furthermore it is obvious that G' 

and 8 are structurally equivalent. 

4. Decision problems. 

In this section some decision problems about k-SB-RECOG are dealt 

with. In particular the membership, the emptiness and the finiteness 
for ~ k-SB-RECOG and the equivalence problem for SB-RECOG are problems 

shown to be decidable. As a consequence of these results we prove that 
the property of structural ambiguity is decidable for ETOL systems and 

the structural equivalence is decidable for EOL systems. 

Theorem 4.1. The membership, the emptiness and the finiteness prob- 
lems are decidable in the class ~ k-SB-RECOG. 

Proof. Since every k-SB-recognizable tree language L ~ Hz,viewed as a 

language over the alphabet E U I(,)J, is an EPTOL language, the thesis 
follows from the decidability of the considered problems for EPTOL 

languages (see (6) 7. 

Definition 4.1. A set of trees U is structurally ambiguous if U con- 

different trees t I and t 2 such that R~(tl)=R~(t2). rains two 

Corollary 4.1. It is decidable whether a k-SB-recognizable tree 

language is structurally ambiguous. 

Proof. The proof is analogous to the one given by Paull and Unger in 
(5) for the class of tree languages recognized by finite state bottom-up 

tree automata. It suffices to consider in HE× E the tree language W which 
contains all the trees such that the frontiers are labelled with pairs 

(a,a) and at least one internal node is labelled with a pair (a,a') with 
a=a' . 

Clearly W~SB-RECOG. Consider the relabelings R 1 and R 2 with domain TE and 
range ~xZ defined as follows: 

(a, (a,a)) ~ (Ri) 0 for every a m ~0, i=1,2 , 
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(a, (a,a')) ~ (RI) r for every a~a' ~ ~r and r>O and 

(a,(a',a)) ~ (R2) r for every a~a'E E r and r>O. 
If U G k-SB-RECOG then, according to the theorems 2.2 and 2.4 it 

holds that RI(U)N R2(U)~ W £ k~-SB-RECOG. Finally, U is structurally 

ambiguous iff RI(U)~ R2(U) ~W is non empty. 

Theorem 4.2. The equivalence problem for SB-RECOG is decidable. 

Proof. It immediately follows from theorems 2.3 and 4.1. 

Corollary 4.2. It is decidable whether two EOL systems are structur- 
ally equivalent or not. 

Proof. Given two EOL systems G 1 and 82, R~(D(GI)) and R~(D(G2)) are 

8B-recognizable and then,• according to theorem 4. ~, it is decidable if 

R~(D(GI))=R~(D(G2>). 

We would like to thank professor Oost Engelfriet for his valuable and 

helpful comments on this paper. 
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