ON OBSERVATIONAL EQUIVALENCE AND ALGEBRAIC SPECIFICATION

— Extended abstract® —

Donald Sannella and Andrzej Tarlecki®

Department of Computer Science
University of Edinburgh

Abstract

The properties of a simple and natural notion of observational equivalence of al-
gebras and the corresponding specification-building operation {observational
abstraction) are studied. We begin with a definition of observational equivalence
which is adequate to handle reachable algebras only, and show how to extend it
to cope with unreachable algebras and also how it may be generalised to make
sense under an arbitrary institution. Behavioural equivalence is treated as an
important special case of observational equivalence, and its central role in pro-
gram development is shown by means of an example.

1 Introduction

Probably the most exciting potential application of formal specifications is to the for-
mal development of programs by gradual refinement from a high-level specification to a
low-level “program” or "executable specification” as in HOPE [BMS B0]. Each refinement
step embodies some design decisions {such as choice of data representation) under the re-
quirement that behaviour must be pre’served‘ If each refinement step can be proved cor-
rect, then the program which results is guaranteed to satisfy the original specification.

This paper studies what is meant by "behaviour” in the context of algebraic specifica-
tions. Intuitively, the behaviour of a program is determined just by the answers which are
obtained from computations the program may perform. We may say (informally) that two
Z-algebras are behaviourally equivalent with respect to a set OBS of observable sorts if it
is not possible to distinguish between them by evaluating Z-terms which produce a result
of observable sort. For example, suppose I contains the sorts nat, bool and bunch and the
operations empty: - bunch, add: natbunch » bunch and €: nat,bunch ~ bool {(as well as
the usual operations on nat and bool), and suppose A and B are Z-algebras with

1Al = the set of finite sets of natural numbers
bunch

|B| = the set of finite lists of natural numbers
bunch

with the operations and the remaining carriers defined in the obvious way (but B does not
contain operations like cons, car and cdr). Then A and B are behaviourally equivalent with
respect to {bool] since every term of sort bool has the same value in both algebras (the
interesting terms are of the form meadd(a,l,...,n.dd(an,empty)...)). Note that A and B are
not isemorphie.

In the above we assume that the only observations {or experiments) we are allowed to
perform are to tesi whether the results of computations are equal. In this paper we deal

1’l‘he full version of this paper is available as report CSR-172-84, Department of Computer Science, University of Edinburgh.

2On leave from Institute of Computer Science, Polish Academy of Sciences, Warsew.

309

with the more general situation in which observations may be arbitrary logical formulae.
We discuss a notion of observational equivalence in which tiwo algebras are observationally
equivalent if they both give the same answers to any observalion from a prespecified set.

Observational equivalence (or more specifically, behavioural equivalence) seems to be a
concept which is fundamental to programming methodology. For example:

Data abstraction

A practical advantage of using abstract data types in the consiruction of programs is
that the implementation of abstractions by program modules need not be fixed. A differ-
ent module using different algorithms and/or different data structures may be substituted
without changing the rest of the program provided that the new module is behaviourally
equivalent to the module it replaces (with respect to the non-encapsulated types). ADJ
[ADJ 78] have suggested that "abstract” in "abstract data type” means "up to
isomorphism”; we suggest that it really means "up te behavioural equivalence”.

Program specification

One way of specifying a program is to describe the desired input/output behaviour in
some concrete way, e.g. by constructing a very simple program which exhibits the desired
behaviour. Any program which is behaviourally equivalent to the sample program with
respect to the primitive types of the programming language satisfies the specification.
This is called an abstract model specification [LB 77]. In general, specifications under the
usual algebraic approaches are not abstract enough; it is either difficult, as in Clear
[BG B0} or impossible, as in the initial algebra approach of {ADJ 76] and the final algebra
approach of [Wand 79] to specify sets of natural numbers in such a way that both A and B
above are models. The kernel specification language ASL [SW 83] provides a specification~
building operation abstract which when applied to a specification SP relaxes interpretation
to all those algebras which are observationally equivalent to a model of SP with respect to
the given set of "equational” observations. With a properly chosen set of observations, this
gives behavioural abstraction.

Stepwise _refinement

A formalisation of stepwise refinement requires a precise definition of the notion of
refinement, i.e. of the implementation of one specification by a lower-level specification.
In the context of a specification language which includes an operation like behavioural
abstraction, it is possible to adopt a very simple definition of implementation (see section
5 for details). This notion of implementation has two very desirable properiies (vertical
and horizontal composability, see [GB B0]) which permit the development of programs from
specifications in a gradual and modular fashion. An alternative approach which illustrates
the same point is to use a definition of implementation which implicitly involves be-
havioural equivalence, as in [GM 82] and [Sch 83].

This paper establishes a number of basic definitions and results concerning obser-
vational equivalence in an attempti to provide a sound foundation for its application to
problems such as those indicated above. We begin by treating in section 2 the case in
which observations are logical formulae containing no free variables. We define obser-
vational equivalence of algebras and a specification-building operation (abstract) which
performs observational abstraction and explore their basic properties. We generalise this
material in two different dimensions; section 3 discusses observations which contain free
variables (toc handle "junk” in unreachable algebras without resorting to infinitary logic)
and we alsc mention how the definitions can be generalised to make sense under an ar-

310

bitrary logical system (or institution [GB 83]). Section 4 deals with the problem of prov-
ing theorems about structured specifications in the context of observational abstraction.
Section & discusses behavioural equivalence as an important special case of observational
equivalence. A simple notion of implementation is defined, and we demonstrate the role of
behavioural equivalence in program development by carrying out one refinement step in
the development of a fragment of an optimising compiler from its specification.

We assume that the reader is familiar with the basic algebraic notions presented in e.g.
[ADJ 76] (cf. [BG 82]) as well as basic notions of logic as in e.g. [End 72] including some
infinitary logic, see {Karp 64].

2 Observational equivalence: the ground case

What is an observation on an algebra? In the axiomatic framework, the most natural
choice is to take logical formulae as observations; the result of an observation on an alge-
bra is just the truth or falsity of the formula in the algebra. The kind of formulae we use
dictates the kinds of observations we are allowed to make on algebras. On the other hand,
the kinds of observations we want to make on algebras dictates the kind of formulae we
need, that is the logic we should use.

For example, if we want only to examine results of computations, the natural choice is
equations which allow us to compare the values of terms. Another natural choice is first-
order predicate calculus which allows us to distinguish between e.g. closed and open inter-
vals of rationals (the observation/formula ¥x.3y.x<y yields true in the laiter and false in
the former). Another choice is an infinitary logic such as Lw ° which allows us to check
e.g. reachability of algebras (that is, whether all elements of ‘the algebra are values of
ground terms). Note that the latter two kinds of observations are not computationally-
based; they are at a more abstract level, i.e. they describe algebras rather than computa-
tions in -algebras. Still another kind of formulae are necessary if we want to deal with e.g.
problems of concurrency, but we disregard such issues in this paper.

For the moment, we do not want to commit ourselves to any particular logic, and so we
leave the notion of “formula” undefined. {In fact, all our definitions work in an even more
general setting.) The reader may feel more comfortiable to imagine that we are talking
about first-order logic.

We use the term "formula” rather than “sentence” to indicate the possible presence of
free variables to name elements which are not values of ground terms ("junk"). Free vari-
ables introduce some complications which we postpone to the next section. We will assume
for the remainder of this section that formulae contain no free variables; we call these
ground observations or sentences. The following definition corresponds directly to the defi-
nition of elementary eguivalence in [Pep 83].

Definition: Let T be a signature, ¢ a set of T-sentences, and let AB be IL-algebras. A and B
are observationally equivalent with respect o @, written AE@B, if for any ¢€¢, A=y iff BEe.

Easy facts

Fact 1: For any signature L and set & of I-sentences, = is an equivalence relation on the

class of Z-algebras.]

Fact 2: For any signature I, sets ¢, of T-sentences, and Z-algebras AB,
29’ and AEQB implies AEQ,B. =}

Fact 3: For any signature I, family wi;m of sets of I-sentences, and I-algebras A,B, A=B
1

for all i€l implies A=B where $ = iLEJ[:I:i. [u]

311

Two algebras are observationally equivalent wrt ¢ if they satisfy exactly the same sen-
tences of &. Note that this remains true if we consider not only the sentences of ¢ but
also their negations and conjunctions, possibly infinite or empty (/\¢ is true}. We can also
add to & sentences equivalent to the ones already in ¢, and so everything which is defin-
able in terms of negation and conjunction as well (disjunctions, implications ete.). For any
set ¢ of I-sentences, let CI{#) denote the closure of ¢ under negation, conjunction and
equivalence, insofar as the logic in use allows.

Fact 4: = = = u]
Note that this implies that the premise $2¢' in fact 2 may be replaced by the weaker con-
dition Cl{($)2®'.

A signature morphism o:Z-L' is a renaming of the sorls and operatlions in ¥ to those
of ' which preserves the argument and result sorts of operations. This induces in a natu-
ral way a translation of E-terms o X'-terms and of Y-sentences to Z'-sentences; if ¢ is a
Z-sentence, then o{(¢) denotes its translation to a Z'-sentence. A signature morphism
g:Z-2' also induces a o-reduct functor translating any Z'-algebra A' to a Z-algebra A’L:' For
the exact definitions of these notions see e.g. [ST B4, section 2]. These translations satisfy
the following condition (see [GB 83]):

For any Z-sentence ¢ and Z'-algebra &', A“q)=<p iff A'=o{p) {Satisfaction condition)

This gives immediately the following fact:

Fact 5: For any signature morphism o:Z-%', set ¢ of I-sentences and I'-algebras A' B,

A’EO(Q)B' iff A‘iaEqutio where o(®) = {o(¢) | pedi. o

This says that observational equivalence ig coherent with translation along signature mor-

phisms. We can also show that observational equivalence is preserved under combination
of "independent” algebras.

Let ©1 and I2 be disjoint signatures and let £1+Z2 be their (disjoint) union. For any
L1-algebra Al and I2-algebra A2, let (A1,A2) be the unique I£1+Z2-algebra such that
(Al,AZ)id:Al and (Al,A2)L2=A2, where t1 and (2 are the inclusions of £1 and E2
(respectively) into £1+£2. Note that all £1+XZ2-algebras are of this form.

Fact 6: For any disjoint signatures £1,Z2, sets of Li-sentences $1 and I2-sentences $2,
Z1l-algebras A1,B1 and L2-algebras A2,B2, {A1,A2)= (B1,B2) iff Al= Bl and Ag= B2
o

e1(@1)ue2(82)

A specification describes a collection of models of the same signature. To formalise
this, for any specification SP let Sig[SP] denote its signature and Mod[SP] denote the class
of its models, which are Sig[SP]-algebras. The notion of observational equivalence gives
rise to a very powerful specification-building operation:

Definition: For any specification SP and set ¢ of Sig[SP]-sentences

Sig[abstract SP wrt &] = Sig[sP]
Mod[abstract SP wrt 8] = { A | A=_B for some BeMod[SP] }

Informally, abstract SP wrt ¢ is a specification which admits any model which is obser-
vationally equivalent to some model of SP. This provides a way of abstracting away from
certain details of a specification {see [SW 83], [ST 84]).

Easy facts

Fact 7: For any specification SP and set ¢ of Sig[SP]-sentences,
Mod[SP] ¢ Mod[abstract SP wrt &]. u]

312

Fact B: For any specification SP and set & of Sig[SP}-sentences,
Mod[abstract (abstract SP wrt &) wrt ¢] = Mod[abstract SP wrt &]. a

Fact 9: For any specification SP and sets $,%' of Sig[SP)-sentences,
CH{#)p%' implies Mod[abstract SP wrt ¢] ¢ Mod[abstract SP wrt ¢']. 0

Fact 10: For any specifications SP.SP' such that Sig[SP]=Sig[SP‘] and set ¢ of Sig[SP}-
sentences, Mod[SP}CMod[SP'] implies Mod[abstract SP wrt &] C Mod[abstract SP' wrt ¢]. O

Using the above facts we may derive simple identities which allow us to transform spec-
ifications involving absiract. For example:

Fact 11: For any specification SP and sets $,¢' of Sig{SP]-sentences,

a. Mod[abstract SP wrt U'] g Mod[abstract (abstract SP wrt &) wrt &']
C Mod[abstract SP wrt Ci($)nCl1($')]

b. Cl(#)2%' implies
Mod[abstract SP wrt &'] = Mod[abstract (abstract SP wrt &) wrt &']
= Mod[ebstract (abstract SP wrt $') wrt &] o

Note that the second equality in (b) need not hold if CI{$)29', and that the inclusiens in
(a) may be proper.

Every algebraic specification language provides an operation for specifying the class of
models of a given signature which satisfy a given set of axioms, that is:

Definition: For any signature £ and set A of I-sentences, (Z,4) is a basic specification and

Sig[{z.A)] = &
Mod[(Z,A)] = { A | A is a Z-algebra and AF4 }

For any signature I and class K of Z-algebras, let Th(K) denote the set of all I-sentences
which hold in K. Note that KcMod[(Z,Th(K))] but the converse inclusion is true only for
classes K definable by basic specifications.

Fact 12: For any specification SP with Sig[SP]=% and set $ of T-sentences,
Mod{abstract SP wrt ¢] ¢ Mod[{Z,Th(Med{SP])nCI{(#)}]. o

In the following, we try to further characterise how abstract works for classes of
models definable by basic specifications. For any signature I and set A of I-sentences, let
£ = Th(Mod[(Z,A}]) be the closure of A under consequence.

Fact 13: In first-order logic, for any signature £ and sets A,® of I-sentences,
Mod[abstract {Z,A) wrt &] = Mod[(Z,AnCL(2)}].

Proof sketch (for 2): For unsatisfiable A the containment holds;, assume 4 has a model.
Let AeMod[(Z,AnCL(®))], and ¥ = {peCl($) | A=¢p]. Assume that AU¥ iz not satisfiable. Then
by the compactness theorem of first-order logic and since ¥ is closed under conjunction
there is a ¥€¥ such that Au{y] has no model. Hence Ak—¥, which, since & is closed under
logical consequence implies thal —y€&. Thus -¢€AnCl(?) and so AE—¥, which contradicts
ye¥. This proves that AU¥ has a model, say B. It is easy to check that AE,B. a

An examination of the above proof shows that the fact holds for L“, as well as for first-
order logic, and in fact for any infinitary logic (any logic which adrhits negation and con-
junction of sets of formulae of any cardinality less than the cardinalily in which the logic
is compact).

Ground observations are powerful enough if we are only interested in reachable
(subalgebras of) algebras and we do not want to distinguish between isomorphic algebras,

313

provided that our logic is at least capable of expressing ground equations (i.e. equations
between terms without variables).

Fact 14: For any signature I and I-algebras AB, AEGEQ{E}B iff A and B have isomorphic
reachable subalgebras, where GEQ(Z) is the set of all ground Z-equations. 8]

3 Observational equivalence: the general case

In the last section we deall with observational equivalence based on ground obser-
vations only {formally, on formulae without free variables). As fact 14 indicates, this is
quite satisfactory when we restrict our considerations to reachable algebras. If we want to
deal with algebras containing "junk” things become more complicated.

Why do we bother about non-reachable algebras? First, when dealing with parameter-
ised specifications it is usual to consider examples in which some sorts have no generators
at all, but where we are interested in algebras having the associated carriers non-empty.
This is shown by standard examples such as Stack-of-X, where X is an arbitrary set.
Second, when we view algebras from different levels of absiraction we view them with
respect Lo different sets of operations. Il is then natural that an algebra which is reach-
able at a certain level of abstraction becomes non-reachable when viewed from a higher
level. A more technical but related point is that there is no natural definition of the
specification-building operation derive [BG 80}, [ST 84] {(which can be used to "forget”
operations) if models of the result are required to be reachable. Finally, there are exam-
ples [SW 83] in which unreachable elements can be useful in constructing specifications; an
element which is unreachable at one stage of the construction can become reachable and
useful at a later stage.

It should be noted that if the logic we are working in is sufficiently powerful then we
can identify algebras up to isomorphism using only ground observations. According to
Scott's Theorem {Scott 65] this may be achieved using L‘“, for countable algebras. Using
an even more powerful logic the same rnay be done for a'rbitrary algebras,

Fact 15: For any signature £ and I-algebra A, there is a Z-sentence ¢(A) of L_, such that
for any I-algebra B, BE¢(A) iff A=B.

Proof sketch: Assume for notational convenience that ¥ has only one sort. Consider the
formula ¢(4) = FALIAD(A) & vx.Vix=a | a<€|A]]) where |A| is the carrier of A, and 9{4) is
the first-order diagram of the expansion of A to a I(JA])-algebra with the natural inter-
pretation of the new constants. If BaA then obviously BeE{(A).

Conversely, assume that B satisfies ¢(A). Thus, there is a valuation v:[A]-|B| such that
BeAD(A) & Vx.Vix=a | a€|al] (B¢ means B satisfies ¢ under the valuation v; we are going
to use this notation throughout the paper.) It is easy to see that v is an isomorphism be-
tween A and B. n]

Note from the construction that in order to handle algebras of cardinality a it is enough
to consider formulae with quantifiers binding o variables. It seems to be possible to
sharpen this result (requiring only quantifiers binding less than a variables) using some
kind of "back-and-forth” construction as in the proof of Scott's theorem in [Bar 73]

In practice it is desirable to avoid use of infinitary logic (although [MSV 83] argue for
an approach to specification in which infinitary logic is central). What we are trying to do
in the following is to obtain a balance between the power of the logic in use (the simpler
the logic, the better) and the simplicity of the definition of observational eqguivalence.

It is obvious that using ground equations as observations we are not able Lo talk about
junk at all. If we use equations with universally quantified variables, although we are able

314

to say something about junk we cannot always distinguish between algebras which are in-
tuitively not equivalent. For example, the two algebras

f f f i
A: D e AR S B: ¥ e ¥ e |
""—f“’"—T’ “re *, f

cannot be distinguished by any equation with universally quantified variables (neither of
them satisfy vx.f(x)=x) although if we go to first-order logic then the formula 3Ix.f(x)=x
distinguishes between them. But even in the framework of first-order logic using only
closed sentences, we are not able to deal with junk in a satisfactory way. We cannot even
express such a basic property as its existence. For example, it is well-known that the
standard model of arithmetic (the natural numbers) and non-standard models (the natural
nurmnbers with junk) satisfy exactly the same set of first-order sentences. Thus, there is no
set of ground first-order observations which can distinguish between standard and non-
standard models of arithmetic. To distinguish between these models using ground obser-
vations we need Lmlw‘

We are going to extend the definitions of the previous section by allowing free variables
in observations. The idea is that these provide a way of referring to otherwise unnameable
values. For example, it should be intuitively clear (and will be formalised below) that the
observation f(x)=x with free variable x distinguishes between the two algebras A and B
above, and the set of observations {x=succ®(0) | n>0} with free variable x distinguishes be-
tween standard and non-standard models of arithmetic. As in logic, we need a valuation of
the free variables into the algebra under consideration to provide these names with inter-
pretations.

Given a signature I, a set X of variables (of sorts in), a set ¢(X) of I-formulae with
free variables in X, and two Z-algebras A,B there are a number of possible ways to define

A=, B For example, in [SW B3] and [ST 84] Aéﬁ(x)B was defined as follows:

A= B if there exist surjective valuations v, X-|A| and v :X~|B| such that for all pc®(X),

AEf iff B!:Bgo.
The justification for this definition is that v, and Vs identify “matching parts” of A and B;
each part of A must match some part of B and vice versa. But there are some problems
with this definition. Technically, this relation is restricted to comparing algebras of car-
dinality less than or equal to that of X because of the surjectivily requirement on v, and
Vg Also, we have to exclude algebras with empty carriers, (at least) on sorts in which X is
non-empty; otherwise the valuations v, and/or Vo cannot exist. Finally, in the "general”
case in which models and the logic are arbitrary (see [ST 84]) this definition is rather
messy and inelegant because of the difficully of formulating in abstract terms the require-
ment of surjectivity.

We are going to concentrate on a different definition of observational equivalence. We
define the observational equivalence relation in terms of a preorder.

Definition: For any signature I, set X of variables of sorts in I, set ®(X) of I-formulae with
free variables in X, and Z-algebras A,B, A is observationally reducible to B wri &(X), written
A_<_’(XB, if for any valuation vA:X->|A| there exists a valuation vB:X—»|B| such that for all
ped(X), Ak ¢ iff Br g

A B
Fact 16: For any signature I, set X of variables of sorts in Z, and set #(X) of I-formulae

with free variables in X, < is a preorder on the class of IZ-algebras.]

= 9(X)
Definition: For any signature E, set X of variables of sorts in I, set $(X) of E-formulae with
free variables in X, and I-algebras A,B, A and B are observationally equivalent wri &(X),

written AE@(X)B’ if AS@(X)B and Bgé(x)A.

Although we are not going to restate all of them formally here again, facts 2-6 of section

315

2 hold for the preorder < and facts 1-8 hold for the equivalence =

fact 3 may be reformulated for

sy For example,

S-b(x) here as follows:
Fact 3': For any signature I, family of mutually disjoint sets {Xi}m of variables of sorts in
z, family i@i}iﬂ of sets of Z-formulae such that for i€l, & has free variables in X, and

T-algebras A.B. A<, B for all icl implies A<, B where & = Ue and x = Ux. o

However, because of the problems which emply carriers may cause, we have tc be careful

with the opposite direction of this implication, that is when discharging variables. Fact
2 should be reformulated as follows:

Fact 2': For any signature I, set X of variables of sorts in I, sets #(X) and ¢'(X) of
I~formulae with free variables in X, and Z-algebras A,B,

#(X)2#'(X) and Ag_@(x)B implies AS@,{X)B. n}

Note that & and ¢ must formally have the same set X of free variables, even if the for-
mulae in the smaller set ¢' do not use all of them. We can discharge such unnecessary
variables only if X contains other variables of the same sorts, or if the algebras we are
dealing with are guaranteed to have non-empty carriers of these sorts.

As in the previous section, we can define a specification-building operation abstract in
terms of observational equivalence with exactly the same semantics:

Definition: For any specification SP, set X of variables of soris in Sig[SP] and set #(X) of
Sig[SP]-formulae with free variables in X

Sig[abstract SP wrt #(X)] = Sig[SP]

Mod[abstract SP wrt &(X)] = { A | A=, _.B for some BeMod[SP] }

$(X)

Facts 7-12 still hold under this more general definition.

Note that we can give a sharper formulation of the facts which involve forming the
closure Cl{(®) of a set of formulae . In the presence of free variables, besides conjunc-
tions and negations it is tempting to allow the introduction of quantifiers here. We can
redefine Cl(#(X)) to be the closure of $(X) under negation, conjunction (possibly infinite),
equivalence and uniform quantification, that is, peCl{#{X)) implies VX.peCl{$#(X}) and
IX.peCl{#{X}). To prove that all facts are still true with this new definition of C1($#(X)), we
have to show the following:

Fact 17: o

o) 2 T
Note that only uniform quantification is allowed above. The above fact does not hold if we
allow quantification over a proper subset of the set of free variables. For example, sup-
pose £ = sorts rat,bool opns <wrai,rat-bool. Let A and B be Z-algebras corresponding to,
respectively, open and closed intervals of rational numbers. Now consider

#(X) = {x<y | x,yeX}. Obviously AE#(XB but ARVx.Jy.x<y) while B¥Vx.Jy.x<y). Note also
that even under this definition of closure, fact 13 does not hold for non-ground obser-
vations.

4 Proofs in structured specifications

An important issue connected with specifications is theorem proving. We would like to
be able to prove theorems about a specification, that is, that certain sentences of the un-
derlying logic hold in every model of a specification. As suggested by Guttag and Horning
[GH 80} by proving that selected theorems hold we can understand specifications and gain
confidence that they express what we want. Moreover, in order to do any kind of formal
program development or verification (or even specification building, if parameterised speci-

316

tications with requirements can be used) a theorem-proving capability is necessary.

In the context of structured specifications, we have to cope with two separate prob-
lems. First is how to prove theorems in theories of the underlying logic. Note that this
task may be eased by the fact that our theories have structure, as this allows us to natu-
rally disregard information which is probably irrelevant to what we are trying to prove.
The other problem is dealing with the structure itself. What we need are inference rules
for every specification-building operation which allow us to derive theorems about a com-
bined specification from theorems aboul the components from which it was buill. Note
that the latter problem is not automatically reducible to the former because not all speci-
fications are equivalent to (have the same class of models as) theories of the underlying
logic [ST 84], let alone theories with finite presentations as required for use by a theorem
prover.

For simple specification~building operations appropriate inference rules are given in
[SB 83], for example

thm in SP =» thm in 8P + SP'

where "thm in SP" means thme&Th{Mod[SP]}, that is that the sentence thm holds in all
models of the specification SP. The abstrael specification-building operation defined in
sections 2 and 3 is more difficult to handle. One problem is that in contrast to other
specification-building operations it is not monotonic, in the sense that

thm in SP s> thm in abstract SP wrt . . .

However, fact 12 and its analogue for observations with free variables (see section 3) says
that the following inference rule is sound.

Inference rule: For any set #(X) of open formulae with variables in X,
thm in SP and thmeCl($#(X)) => thm in abstract SP wri &(X)

Moreover, for the case of ground observations (i.e. when X is the empty set), fact 13 shows
that in some standard logics (first-order logic, infinitary logics) the above rule is in a
sense complete when used together with inference rules for the underlying logic and the
other specification-building operations. Note also that facts 7-12 provide us with some
subsidiary inference rules; for example, fact 9 implies

thm in abstract SP wrt ¢ and ¢cCl{¢') => thm in abstract SP wri &'

5 Behavioural equivalence — an example

In sections 2 and 3 we defined a very general and powerful notion of observational
equivalence. In this section we look at a very important special case and we consider an
example of its use. Namely, we restrict observations to equations between terms from
some specified set; this givels an equivalence corresponding to the one used in the ASL
specification language [SW 838]. A proper choice of the set of terms gives behavioural
equivalence as informally discussed in the introduction.

Suppose that T is a signature and IN and OUT are subseis of the sorts of Z. Now, con-
sider all computations which take input from sorts IN and give output in sorts OUT; this
set of computations corresponds to the set of Z-terms of sorts OUT with variables of sorts
IN. Consider the set EQOUT(XIN) of equations between terms of the same sort in OUT having
variables XI of sorts in IN. Two algebras are observationally egquivalent with respect to
EQOUT(Xm) if they are behaviourally equivalent, that is they have matching input/ocutput
relations. Note that this covers the notions of behavioural equivalence with respect to a

317

single set OBS of observable sorts which appear in the literature. For example, in [Rei 81}
and [GM 82] we have IN=sorts(Z), OUT=0BS; in [Sch 83], [SW 83] and [GM 83] IN=0UT=0BS;
and in [GGM 78] and [Kam 83] IN=¢) and OUT=0BS. To denote the corresponding special
case of abstract we use the following notation:

behaviour SP with in IN out OUT =__ abstract SP wrt EQOUT(X!N)
This corresponds to behavioural abstraction as defined in ASL [SW B3]

As an example we are going to consider a simple language of expressions for arithmeti-
cal computation over the integers. This may be imagined as a small piece of a real pro-
gramming language. We believe that the approach used below may be applied to other
programming language consirucis as well, leading towards the possible formal development
of a compiler.

We assume that we are given some standard specifications of identifiers (Ident) with a
sort ident and of the integers (Int) with the usual arithmetic operations. The (abstract)
syntax of expressions is given by the following specification (we use the notation of the
Clear specification language [BG B01%):

Expr = enrich Int + Ident by data sorts expr
opns const : int - expr

ver : ident - expr

plus, times : expr, expr - expr

cond @ expr, expr, expr - expr
The use of data above means that any model of Expr is a free extension of a model of
Int + Ident. That is, the sort expr contains expressions built up using the newly-intro-
duced operations. We could achieve the same effect using a hierarchy constraint [Bau 81]
(cf. [SW B2] and [EWT 83]) together with the appropriate inequations,

To describe the semantics of expressions we need the additional concept of an environ-
ment from which the values of variables may be retrieved. This is described by the follow-
ing (loose) specification:

Env = enrich Int + Ident by sorts env
opns lookup : env, ident - int

For the purpose of our example, no more than the existence of an operation lookup is re-
quired.

Eval = enrich Expr + Env by
opns eval : expr, env - int
axioms Vn:int, p:env. eval(const(n),p) = n
vx:ident, p:env. eval(var(x),p) = lookup(e.x)
Ve,e':expr, p:env. eval{plus(e.e'),p) = eval(e,p) + eval(e'p)
Ve,e':expr, pienv. eval(times(e,e'),p) = eval{e,p) x eval{e',p)
Ve,e',e":expr, p:env. eval{cond(e,e'.e"),p) = eval{e”,p} if eval{e,p) = O
= eval{e’',p} otherwise

{We use an obvious notation to simplify the syntax of conditional axioms.)

The models of Eval are just the models of Expr with the expected semantics provided
by the operation eval. The cond construct has the semantics of if _ then _ else _, where
0 (as the value of the first argument) is interpreted as false and any other value is inter-
preted as true. Note that the models of Eval are pretty well determined; in fact they are
determined up to isomorphism given models of Ident and Env. Now imagine that we want
to build a compiler which performs some source-level oplimisation; for example, recognis-
ing that times{const(0),e) is just const(D). Such optimisations are not permitted by the

3Bm. for the semantics of derive, see [SW 83].

318

specification above.

Two solutions to this dilemma are offered in the literature. First, [Wand 79] and
[Kam 83] advocate the use of final models; if we adopt this approach (modifying the above
specification appropriately) then every (final) model of Eval would satisfy e = ¢' iff it satis-
fies Vp:env. eval(e,p) = eval(e',p), for all expressions e and e’. But this disallows non-op-
timal implementations since it requires that all possible optimisations are performed.
Much worse, the specified models are actually not attainable since the optimisation re-
quired is not computable (this follows from a result in [Chu 36}).

Second, as advocated in e.g. [Ehr 79] and [EKMP 82] the notion of implementation of
one specification by another should take care of this problem. Algebras with some op-
timisations are not models of the specification above but models of a specification which
implements it. Unfortunately, the formal notions of implementation which have been sug-
gested are rather complicated, and especially so in the contexi of loose and parameterised
specifications. {Note that the specification above may be viewed as parameterised by
Ident.)

We adopt neither of these solutions. Instead, we argue that the specification Eval as
given above is not really what we intend. When we specify a program what we are really
interested in is its behaviour, that is the answers which we obtain when the program is ap-
plied to the various possible inputs. The specificalion Eval says more than that; it dic-
tates the structure of internal data. We can obtain the class of models having the be-
haviour which Eval specifies (rather concretely) by applying the behaviour operation for
the appropriate choice of input and output sorts:

Eval-we-really-want = behaviour Eval with in {int,ident,env} out {int}

The inference rule for abstract given in section 4 may be applied here to show e.g. that
Ye,e':expr, p:env. eval(plus(e,e’).p) = eval(plus(e',e),p)
is a theorem in Eval-we-really-want, since it is a theorem of Eval and is in the closure of
the set of observations we are using here.*

The ability to specify classes of algebras up to behavioural equivalence (as in Eval-we-
really-want) allows us to greatly simplify our formal view of what an implementation is.
Proceeding from a specification to a program means making a series of design decisions,
each of which amounts to a restriction on the class of models. Such design decisions ars
choice of data structures, choice of algorithms, and choice between alternatives which the
specification leaves open.

Thus, a simple but natural notion of implementation is as follows.

Definition: A specification SP is implemented by a specification SP', written SP~»SP',
if Mod[SP’] ¢ Mod[SP].

It is easy to see that the above implementation relation is transitive (SP~»3P' and
SP'~~>SP" implies SP~58P"), i.e. that it can be composed vertically (see [GB 80]). This
means that a specification can be refined gradually. Furthermore, this implementation re-
lation can be composed horizontally [GB 80] as well® [SW B3] (SP1~~»>SP1’ and SP2~>SP2’
implies SP1+SP2~~»SP1'+8P2’ and similarly for the other specification-building operations).
This means that specifications can be refined in a modular fashion. This is in conirast o
the more complicated notions of implementation mentioned earlier for which these

4For technical reasons (see [GM B1])} we assume that there are constants of sort ident.

5provided that all specification-building operations are monotonic (with respect to model classes), which is the case fc:r the speciti-
cation-building cperations defined in e.g. Clear [BG 80], LOOK [ETLZ 82}, ASL [SW 83}, and for t and behavi as defined above.

319

properties do not hold in general.
The following specification is an implementation of Eval-we-really-want:

Eval' =
let Ev0 = enrich Eval by
opns optplus, opttimes : expr, expr - expr
optcond : expr, expr, expr - expr
axioms Ve,e':expr. optplus(e,.e’)

=e if e = const(0)

=e if e’ = const(0)

= opttimes(const(2),e) if e = &'

= plus(e,e') otherwise

Ve,e':expr. opttimes(e,e')

= const(0) if e = const(0) or e = const(0)
= ¢ if e = const(1)

=e if ¢’ = const(1)

= times(e,e') otherwise

Ve,e',e”:expr. optcond(e,e’,e”)

= g if e = const(n) and n # 0
= e if e = const(0)

= g if ' = e"

= cond(e,e',e") otherwise

in derive signature Eval

from Ev0

by const is const
var is var
plus is optplus
times is opttimes
cond is optcond
eval is eval

Eval’ specifies the syntax and semantics of our expression language, requiring that certain
source-level optimisations {constant folding) be carried out.

In order to prove that Eval’ implements Eval-we-really-want we have to show:
Claim: Mod[Eval-we-really-want] 2 Mod[Eval’]

To prove this we have to show that any model of Eval' is behaviourally equivalent to a
model of Eval (with respect to input sorts {int,ident,env} and output sort {int}). This boils
down to showing that the value of an expression (as given by ewval) is the same as the

value of its optimisation in any environment (see the long version of this paper for
details).

A different way of proving that two algebras are behavicurally equivalent is suggested
in [Sch 83]; in this approach, a relation (called a correspondence) between the correspond-
ing carriers is set up explicitly and proved to salisfy a kind of homomorphism property.

6 Concluding remarks

In the previous sections we have been rather vague about what we mean by a
"formula". We have mentioned formulae of equational logic, first-order logic and infinitary
logic. Moreover, although we have been using the standard notion of many-sorted algebra
as in [ADJ 78], this was mostly in order to take advantage of the reader’s intuition; in
fact, we made use of very few forrmal properties of algebras. This means that in place of
the standard notion we could have used for example partial or continuocus algebras. We
could even change both the notions of signature and of algebra to deal with errors or
coercions.

The notion of an institution [GB B3] provides a tool for dealing with any of these dif-
ferent notions of a logical system for writing specifications. An institution comprises defi-
nitions of signature, model (algebra), sentence and a satisfaction relation satisfying a few

320

minimal consistency conditions. (For a similar but more logic-oriented approach see

[Bar 74].) By basing our definitions (of observational equivalence etc.) on an arbitrary in-
stitution we can avoid choosing particular definitions of these underlying notions and do
everything at an adequately general level. It is possible to define the semantics of a spec-
ification langnage in an arbitrary institution; see [BG 80] and [ST 84].

We encounter no problems at all in generalising the contents of section 2 (on ground
observations) to an arbitrary institution. Moreover, facts 1-12 still hold. (Fact 13 holds
for institutions with some simple closure properties. Fact 14 may be generalised if we
equip institutions with some notion of reachability along the lines of [Tar 84].)

Iin order to deal with the general case of observations containing free variables we have
first of all to provide a notion of an open formula and a valuation of free variables in the
framework of an arbitrary institution. Although sentences as they are used in the defini-
tion of an institution above are always closed, this may be done (see [ST 84]). Then the
contents of section 3 may be generalised as well; see the longer version of this paper for
details.

By exploring the properties of a primitive but powerful and general notion such as ob-
servational equivalence and then deriving the more directly useful concepi of behavioural
equivalence as a special case, we are following in the footsteps of earlier work on kernel
specification-building operations [Wir 82,83}, [SW 83], [ST 84]. Our ultimate interest is not
in the primitive notions themselves but rather in the useful higher-level constructs which
can be expressed in their terms. By carefully investigating the primitives we hope to gain
insights which can be applied to the derived construects.

The material in this paper could provide the basis for high-level specification languages
such as one in which every specification is surrounded by an implicit {and invisible} ap-
plication of behaviour with respect to input and oulput sorts appropriate to the context.
Such a language is presented in [ST B5]. An issue we have not discussed is the connection
between behavioural equivalence/abstraction and parameterisation of specifications. A dif-
ferent approach to the problem of specifying software modules which integrates parameter-
isation and implementation is given in [Ehrig 84]. We have not yet investigated thoroughly
the interaction between behaviour and other specification-building operations, although a
start in this direction is given by facts 5 and 6.

Acknowledgements

Our thanks to Rod Burstall for many instructive discussions and encouragement and to
Martin Wirsing for the collaboration which started us on this line of work and for helpful
comments on an earlier version. Support was provided by the Science and Engineering
Research Council.

7 References

[ADJ 78] Goguen, l.A., Thatcher, I.W. and Wagner, E.G. An initial algebra approach to the
specification, correctness, and implementation of abstract data types. IBM
research report RC 6487. Also in: Current Trends in Programming Methodology,
Vol. 4: Data Structuring (R.T. Yeh, ed.), Prentice-Hall, pp. 80-149 (1978).

[Bar 73] Barwise, J. Back and forth through infinitary logic. In: Studies in Mathematics,
Vol. B: Studies in Model Theory (M.D. Morley, ed.), Mathematical Assoc. of
America, pp. 5-34.

[Bar 74] Barwise, J. Axioms for ebstract model theory. Annals of Math. Logic 7,
pp. 221-265.

[Bau 81] Bauer, F.L. et al (the CIP Language Group) Report on a wide spectrum language
for program specification and development (tentative version). Report TUM-

[BG 80]

[BG 82]
[BMS 80]
{Chu 36]

[Ehr 79]

[Ehrig 84]

[EKMP 82]

[BTLZ 82]

[EWT 83]

[End 72]
[GGM 78]

[GB 80]

[GB 83]

[GM 81]

[aM 82]

[GM 83]
(GH 80]
[Kam 83]
[Karp 64]
(LB 77]
[MSV B3]
[Pep 83]

[Rei 81]

[SB 83]

[ST 84]

[ST 85]

321

18104, Technische Univ. Miinchen.

Burstall, R.M. and Goguen, J.A. The semantics of Clear, a specification language.
Proc. of Advanced Course on Abstract Software Specifications, Copenhagen.
Springer LNCS 86, pp. 292-332.

Burstall, R.M. and Goguen, J.A. Algebras, theories and freeness: an introduction
for computer scientists. Proc. 1981 Marktoberdorf NATO Summer School, Reidel.
Burstall, R.M., MacQueen, D.B. and Sannella, D.T. HOPE: an experimental applica-
tive language. Proc. 1980 LISP Conference, Stanford, California, pp. 136-143.

Church, A. An unsolvable problem of elementary number theory. American
Journal of Mathematics 58, pp. 345-363.

Ehrich, H-D. On the theory of specification, implementation, and parametriza-
tion of abstract data types. Report 82, Abteilung Informatik, Univ. of Dortmund.
Also in: JACM 29, 1, pp. 206-227 (1982).

Ehrig, H. An slgebraic specification concept for modules {draft version). Report
84-04, Institut fir Software und Theoretische Informatik, Technische Univ. Ber-
lin.

Ehrig, H., Kreowski, H.-J., Mahr, B. and Padawitz, P. Algebraic implementation of
abstract data types. Theoretical Computer Science 20, pp. 209-263.

Ehrig, H., Thatcher, J.W., Lucas, P. and Zilles, S.N. Denotational and initial alge-
bra semantics of the algebraic specification language LOOK. Draft report, IBM
research.

Ehrig, H., Wagner, E.G. and Thatcher, J.W. Algebraic specifications with generat-
ing constraints. Proc. 10th ICALP, Barcelona. Springer LNCS 154, pp. 188-202.
Enderton, H.B. A Mathematical Introduction to Logic. Academic Press.
Giarratana, V., Gimona, ¥. and Montanari, U. Observability concepts in abstract
data type specification. Proc. 5th MFCS, Gdansk. Springer LNCS 45.

Goguen, J.A. and Burstall, RM. CAT, a system for the structured elaboration of
correct programs from structured specifications. Technica] report CSL-118,
Computer Science Laboratory, SRI International.

Goguen, J.A. and Burstall, R.M. Introducing institutions. Proc. Logics of Pro-
gramming Workshop, Carnegie-Mellon. Springer LNCS 164, pp. 221-2586.

Goguen, J.A. and Meseguer, J. Completeness of many-sorted equational logic.
SIGPLAN Notices 16(7), pp. 24-32; extended version to appear in Houston Journal
of Mathemalics.

Goguen, J.A. and Meseguer, J. Universal realization, persistent interconnection
and implementation of abstract modules. Proc. 9th ICALP, Aarhus, Denmark.
Springer LNCS 140, pp. 265-281.

Goguen, J.A. and Meseguer, J. An initiality primer. Draft reporti, SRI Inter~
national.

Guttag, 1.Y. and Horning, J.J. Formal specification as a design toocl. Proc. ACM
Symposium on Principles of Programming Languages, Las Vegas, pp. 261-261.
Kamin, S. Final data types and their specification. TOPLAS 5, 1, pp. 97~121.
Karp, C.R. Languages with Expressions of Infinite Length. North-Holland.
Liskov, B.H. and Berzins, V. An appraisal of program specifications. Computa-
tion Structures Group memo 141-1, Laboratory for Computer Science, MIT.
Maibaum, T.8.E., Sadler, M.R. and Veloso, P.A.S. Logical implementation. Tech-
nical report, Department of Computing, Imperial College.

Pepper, P. On the correctness of type transformations. Talk at 2nd Workshop
on Theory and Applications of Abstract Data Types, Passau.

Reichel, H. Behavioural equivalence — a unifying concept for initial and final
specification methods. Proc. 3rd Hungarian Computer Science Conf., Budapest,
pp. 27-38.

Sannella, D.T. and Burstall, R.M. Struciured theories in LCF. Proc. 8th Collog.
on Trees in Algebra and Programming, L'Aquila, Italy. Springer LNCS 158,

pp. 377-391.

Sannella, D.T. and Tarlecki, A. Building specifications in an arbitrary institution.
Proc. Intl. Sympoesium on Semantics of Data Types, Sophia-Antipolis. Springer
LNCS 173, pp. 337-3586.

Sannella, D.T. and Tarlecki, A. Program specification and development in Stan-
dard ML. Proc. 12th ACM Symp. on Principles of Programming Languages, New

[SW 82]

[SW 83]

[Seh 83]

[Scott 65]
[Tar 84]

[Wand 79]
[Wir 82]

[Wir 83]

322

Orleans.

Sannella, D.T. and Wirsing, M. Implementation of parameterised specifications.
Report CSR-103-82, Dept. of Computer Science, Univ. of Edinburgh; extended ab-
stract in: Proc. 9th ICALP, Aarhus, Denmark. Springer LNCS 140, pp. 473-488.
Sannella, D.T. and Wirsing, M. A kernel language for algebraic specification and
implementation. Report CSR-131-83, Dept. of Computer Science, Univ. of Edin-~
burgh; extended abstract in: Proc. Intl. Conf. on Foundations of Computation
Theory, Borgholm, Sweden. Springer LNCS 158, pp. 413-427.

Schoett, 0. A theory of program modules, their specification and implemen-
tation (extended abstract). Report CSR-155-83, Dept. of Computer Science, Univ.
of Edinburgh.

Scott, D. Logic with denumerably long formulas and finite strings of quantifiers.
In: Theory of Models. North-Holland, pp. 329-341.

Tarlecki, A. Free constructions in abstract algebraic institutions. Draft report,
Dept. of Computer Science, Univ. of Edinburgh.

Wand, M. Final algebra semantics and data type extensions. JCSS 19, pp. 27-44.
Wirsing, M. Structured algebraic specifications. Proc. AFCET Symp. on Math-
ematics for Computer Science, Paris, pp. 93-107.

Wirsing, M. Structured algebraic specifications: a kernel language. Habilitation
thesis, Technische Univ. Miinchen.

