INDUCTIVELY DEFINED FUNCTIONS

(Extended Abstract)

R.M. Burstall

Dept. of Computer Science
University of Edinburgh

King's Buildings, Mayfield Road
Edinburgh EH9 3JZ

Scotland, UK.

1. Introduction

A number of people have advocated the use of initial algebras to define data types
in specification languages, see for example Burstall and Goguen (1981). Two aspects of
this have worried me somewhat

- we do not have a really convenient way to define functions using the unique
homomorphism property of the initial algebra

- we do not have any obvious way to prove inequations about the data
elements.

I sketch here a proposal for defining functions by the unique homomorphism
property, and I show how we can prove inequations using such functions. The function
definition mechanism can also be seen as a programming language proposal for
“inductive” case expressions and I formulate it in ML syntax (Milner 1984).

2. Definitions in ML

A new data type is introduced in ML by giving the alternative ways of constructing
elements of that type. Thus for example to introduce (linear) lists of integers

type rec intlist = nil | cons of (int * intlist)
This defines the new iype intlis{ together with the constructors
nil: intlist
cons: int * intlist > intlist
The natural numbers could be defined by

type Tec nat = zero | succ of nat

To define functions over such data types we resort to recursion. We use val to
define values, just as type defines types. Thus

val rec length | = case i of
nil . zero
cons{i, 11) . 1 + length l1

In each case a constructor on the left introduces a number of variables which are
bound by matching, for example i and [1. Similarly

val rec plus(m, n) = case m of
zero .
suce ml . succ(plus(ml, n))

We can easily make definitions by recursion which do not terminate. But "obvious”
termination is rather common in practical programming, since many functions are
defined by primitive recursion.

93

3. Defining functions inductively by cases

I would like to propose a variant of the ML case construction which makes the
termination immediate from the syntax. We will write "ind case" for "inductive case".
The synteax of an "ind case” expression is the same as that of a case expression.

Let us call the expression after the word case the argument of the case expression.
Now the new feature for ind case is that if a variable v appearing on the left in the
matching position inside a constructor has the same type as the argument then not
only is v declared for use on the right but so is another special variable named $v.
This $2 is bound to the value of the whole case expression in which the argument has
been replaced by v. The original ind case then becomes simply case. Some examples will
help.

wval plus(m, n) = ind case m of
zero .n
suce m1 . succ($ml)

Here the new variable $m! represents the value of the whole ind case expression
replacing m by m1l. Thus we could expand to

val plus(m, n} = case m of
zero .n
succ ml . succ(ind case ml of z
zero .n
succ ml . succ $m1)

Further such expansions will push the ind case expression arbitrarily deep in a nested
case expression and enable us to calculate plus(m, n) for any finite m. By this informal
argument we see that since all elements of ML data types are finitely deep ind case
expressions always terminate. This is the advantage they have over explicit recursion.

We may also note that the $m!l replaces a recursive call of plus in the previous
definition. We could think of the ind case expression in general as standing for some
anonymous recursive function applied to the argument expression; the $ sign then
corresponds to a recursive call of this function. This recursive call must, by our

syntax, be applied to a component of the original argument. Hence the guarantee of
termination.

The length example is similarly accomplished without recursion
val length | = ind case | of
nil . zero
cons{i, 11) . succ $i1
Another familiar example
val fact n = ind case n of
zero . succ zero
suce nl . n * $nl
A tree example, summing the integers on the nodes
type Tec tree = miltree | node of tree * int * iree
val sum t = ind case t of

niliree .0
node(t1, 1, $2) . $i1 + i + $2

Consider however an alternative definition of plus
val rec plus(m, n) = case m of
suce ml . plus{ml, succ n))
Here we apply plus recursively to mil, but with the parameter m increased to succ n.
There seems to be no way to express such definitions using ind case. We can however

“curry” the detinition of plus, and then translate it (noting that in ML fun means
lambda)

94

plus : nat —> (nat->nat)

val rec plus m n = case m of
zero . {fun n. n)
suce ml . {(fun n. plus ml (succ n))

This becomes

val plus m n = ind case m of
zero . (fun n. n)
suce ml . (fun n. $ml (succ n))

This is not particularly nice but the best I can do. Any better ideas?

The Fibonacei function which recurses on both n-! and n-2 also presenis =a
problem, but one can overcome this using the ML as construction which binds =

variable to a subpattern.

Of course one can use second order functionals, like maplist, to capture primitive
recursion, but they still need termination proofs and programs using them are not very
readable.

4. Equational data types

The notation used in ML to introduce a recursive data type is just a cute way of
defining a signature. The data type is the initial algebra on this signature. In
specification languages we may be interested in defining the initial algebra on a
signature subject to some equations. Finite strings, bags (alias multisets) and sets are
all easily definable by adding equations for identily, associativily, commutativity and
absorption. So for specification purposes lel us exitend the ML syntax slightly to allow
equations, intkoducing a keyword under. Using ___ as an infixed operator for appending,
we define strings thus

type rec intstring = emptly | unit int | intstring ___ intstring
under emply __ 5 = s
and s __ emply = s
and s ___{t .. u)=(__1% __u

We can define functions recursively on these equational data types, using cases.

For example

val slength s = ind case s of
emply . O
unit i . 1
sl ___s2 . $s1 + $s2

But in order for this definition to be deterministic we have to check some
equations derived from the ones for strings

n

[}

0+n
n + 0 ¢]
l+(m+mn)=(U+m)+n

All these are elementary properiies of +.

To derive the equations to be checked one may note that the right hand sides
define operaiions corresponding to empfy, unit and __ and we have to show that these
operations obey the same equatlions as the constructors. (I am still a little fuzzy about
a good way to say this precisely.} These new operations are the operations of the
target algebra of the unique homomorphism which is being defined by the ind case

expression.

5. Proving inequations

From the defining equations it is easy to prove other equations by using the usual
properties of equality, substitution, transitivity, ete. But how can we prove inequations?

95

This is less obvious. Do we have to show somehow that a certein equation is pot
provable from the defining ones?

I want to show how inequations can be proved using another approach. First we
note that if there are no equations terms are unequal just if they have different
constructors, or (recursively) if they have the same constructor but some pair of
components are unequal. This gives us some inequations to start off with e.g. true #
false, zero # sucec n.

But what if there are defining equations? We must use the basic property of the
initial algebra, the existence of a unigque homomorphism to any other algebra which
satisfies the equations. Suppose this homomorphism is f. Then we can prove x # y by
observing that f(x) # f(y). Now f(x) and I{y) may take their values in a data type where
we already know some inequations. If not we must apply a similar trick until we get
back to a type with no defining equations for which, as we have seen, the inequations
are immediate.

The function f, acts as a discriminator, relating the type to another one which is
already known. This is of course reminiscent of Guttag's idea of sufficient
completeness.

Let us consider bags as an example. Suppose "++" has been declared syntactically
to be an infixed operator. We define bags to be unordered sequences, with possible
repetitions

type Tec bag = empty | int++bay
under r++y++b = y++x++b

It is convenient to write 6zy for if x = y then 1 else O

val count(z,b) = ind case b of
empty . O
y++c . $o + 5;5,

To ensure determinacy of this definition we check that A(y, $c).$c + 6 salisfies the
equation for ++, that is

($c + 6zy) +0. = ($c + 622) + 6»14
We will write b for count{x,b), as an abbreviation.

Suppose we want to show that emply # z++empty. Since type nat has no
equations we know that zero # succ zero. Bui empty = zero and (x++empt'y) = succ
zers. So empty # z++emply. Notle how this depends® on the deterministic prdperty of
count. Similarly we might show that z++b # b. (My thanks are due to Horst Reichel
for help with this example.)

But how do we know that count is sufficient to discriminate between all unequal
bags? We need to show that different bags have a different count for some x. We wish
to prove

Theorem (V"C-b,c = cx) =>b=c

For the proof of this theorem we need an auxiliary definition. Assume that "—"
has been declared as an infix.

val b—y = ind case b of
empty . empty
z++c . dif x = y then c else z++$c

Thus b—y deletes one occurrence of y from b if possible, We need three lemmas for
the proof.

Lemma 1. Vx,bx =0 => b = empty
Lermma 2. If by>0 then {b—@,«r)z = bz - éxy

Lemma 3 If b >0 then z++{b—zx) =

96

Lemma 1 is immediate, the other two are proved by induction.
The proof of the theorem is then by induction on b.
For the data type set the function analogous to count would be membership.

Notice that the initial algebra gives rise fo an induction principle and to use this
we have to invent a suitable predicate to prove by induction. This comes from the ’'no
junk’' property of the initial algebra. The ‘mo confusion’ property gives rise to
inequations, and here to do proofs we have to invent a suitable diseriminant function.
There is some pleasant feeling of duality here.

We have made our data definitions in equational logic, but drawn conclusions from
them using inequalities and quantifiers. This is an example of the use of two different
‘institutions’ in one specification language, & trick called ‘duplicity’ in Burstall and
Goguen (1981) and Goguen and Burstall (1984).

The deadline for this invited paper arrived before I had fully understood even these
rather elementary matters. Please forgive the sketchy and tentative nature of this
contribution.

Acknowledgements

I would like to thank Joe Goguen, Horst Reichel, Robin Milner and Andrzej Tarlecki
(among others) for illuminating discussions. 1 am grateful to SERC and BP for support
and to Eleanor Kerse for rapid scribing.

References
Burstall, R. and Goguen, J. An informal introduction to specification

using Clear. In Boyer, R. and Moore, § (editor), The Correctness

Problem in Computer Science, pages 185-213. Academic Press, 1981.

Goguen, J. and Burstall, R. Introducing institutions. In Logics

of Programs. Springer LNCS No. 184, (eds. Clarke and Kozen), 1984.

Milner, R. The Standard ML core language. Computer Science Dept.
Report, Univ. of Edinburgh, 1984.

