
SYNTHESIS OF PARALLEL PROGRAMS INVARIANTS

E. Pascal Gribomont
Institut Montefiore
Universit~ de Liege
4000 Liege, Belgium

ABSTRACT.

Most current methods for parallel programs design and verification are based on the

concept of invariant. However, invariant synthesis is the most difficult part of

those methods. This work presents a technique for invariant design usable for both

parallel program synthesis and verification. This technique drastically reduces the-

risks of errors due to a bad statement serialization or to inadequate interprocess

synchronization.

|. INTRODUCTION.

The verification and implementation of parallel programs meeting given requirements

is difficult. Several methods have been proposed to specify and verify concurrent

processes (see e.g. []] and []]]). In most of these methods, the interesting proper-

ties of programs are often expressed as a relation between program variables and

control points. Such a relation, named "safety property" or "invariance property",

must remain true throughout the execution. To prove these properties, the invariant

principle is generally used. Here we name "invariant" a safety property which is

imduetive, i.e. preserved by each statement of the program. Checking an invariant is

straightforward and thus a simple way to prove some safety property is to find an

invariant which implies this property, This approach was introduced by Floyd, Hoare

and Dijkstra for sequential progran~ning (see [3] for instance) and adapted to

parallel progra~m~ing by many authors e.g. Ashcroft, Owicki, Gries and Levin (see [l],

[I]] and [9]). Unfortunately, such methods have a major drawback : the design of

parallel program invariants is not easy.

The technique we present in this paper is based on a very simple observation : simple

programs generally admit simple invariants. Our design method consists in applying

successive refinements to both the program and its invariant. The starting point is

an abstract and simplified version of the program which usually admits a fairly simple

invariant. The goal is of course the real program but also its complete invariant.

Our method can also be used for program verification.

This research has been supported in part by IRSIA under grant number 80018.

326

The expression "refinement ~ has received many meanings, in the field of computer

science (for instance, in the top-down sequential programming methodology). In this

work, the two fundamental and opposite operations on a pair (program, invariant),

called refinement and abstraction, have a precise meaning.

The main kind of refinement consists in transforming a non-elementary statement (like

multiple assignment) into a sequence of simpler ones producing the same global effect.

This transformation, called "splitting", does not change anything from a strict sequen-

tfal point of view but introduces more interleaving between the processes, from the

parallel point of view. The invariant must be adapted to take the new control points

into account. More precisely, if I is the invariant of the program before splitting

and J is the invariant after, we can write J = I ^ A , where A is an unknown

formula. This formula is a solution of a set of boolean inequations obtained from the

text of the program before and after the transformation. These inequations are of two

kinds : sequential constraints are related to the process containing the transformed

statement and interaction constraints correspond to the other processes.

Another kind of refinement is the replacement of a high level conmlunication statement

by a lower level statement or set of statements. For instance, CSP-like communication

statements, which allow only synchronous communication, can be replaced by classical

send-receive statements, which allow asynchronous communication. Such transformations

give rise to new control points, corresponding to states in which some messages have

been sent but not yet received.

This incremental synthesis technique simplifies invariant design. At each step,

the user has to perform a simple task : to state a system of boolean inequations and

to find a solution of it (if possible). This method has been successfully applied to

synthesize an invariant for the "On-the-fly garbage collector" due to Dijkstra (see

[8] and [5]). Communicating processes have also been investigated by this technique.

The algorithm of Ricart and Agrawala, which provides mutual exclusion in a computer

network and was not formally verified (in fact, it contained a bug), has been studied

by this method (see [7], []3] and []4]).

In the rest of this paper, the method is developed and applied to an example (a more

detailed presentation of the method appears in [6]). While the example is rather

short, the corresponding invariant is not trivial (see [4]). It emphasizes the dif-

ficulty of avoiding sequencing or synchronization errors in parallel programming.

2. EXAMPLE.

We wish to implement the mutual exclusion between the critical sections of two con-

current processes. More precisely, there are two cyclic processes attempting from time

to time to execute a critical section. The implementation must be such that they will

327

never be both in their critical section. The solution presented here has been publi-

shed with an informal proof by Peterson (see []2]).

2.1. Synthesis of a condensed version.

A starting point can be obtained from two simple classical algorithms, although they

both suffer from a critical drawback.

A£go~ 7. (Initial conditions are immaterial).

process P| process P2

Repeat forever Repeat forever

Non-critical section Non-critical section

T := 2 T :=]

T=] ? T=2 ?

Critical section Critical section

If B is a condition, "B ?" means '~ait until B". Variable T may be seen as the

"turn". Each process wishing to access its critical section first gives priority to

the other process; when it is given priority back, it enters its critical section.

This policy involves a difficulty : if one process never wishes to access its critical

section, the other will never get the opportunity to enter its own.

A ~ 0 ~ 2. (Initial conditions : NQI and ~Q2).

process | process 2

Repeat forever Repeat forever

Non-critical section Non-critical section

Q] := true Q2 := true

~Q2 ? ~Q] ?

Critical section Critical section

Q! := false Q2 := false

Variable Qi (i = 1,2) means "process i requires access to its critical section".

There is a problem when both processes simultaneously require access : they will be

both deadlocke~Peterson has pointed out that his algorithm can be drawn from these

two primitive versions. We will in fact deduce Peterson's algorithm from them.

The two primitive algorithms can be merged. The access scenario to enter the critical

section will be :

- The process gives way to the other process and signa~ its request.

- The access will be granted if the process has the turn or if the other process

does not require access.

328
When the critical section is completed,

The process releases the request.

Two difficulties occur :

- Each process cyclically executes four actions about shared variables Ql, Q2 and T.

These actions correspond to four different control points. An invariant taking the

sixteen possible pairs into account ~s needed.

- We do not know if a process requesting access must first give priority and then

signal its request or inversely. It is possible that only one of the two seriali-

zation proves acceptable.

Without knowing the answer to the last question, we can start with the following

program :

(Initial conditions : ~Q] and ~Q2) :

process !

Repeat forever

Non-critical section

T,QI := 2,true

(,~Q2 v T=I)?
Critical section

Ql := false

process 2

Repeat forever

Non-critical section

T,Q2 := l, true

(~QI v T=2)?
Critical section

Q2 := false

This version is not fine-grained enough for an implementation : there is a multiple

assignment. Also each process comprises three control points (see fig.]); this

makes it difficult to find an adequate invariant (if it exists). To find the inva-

riant, we will first consider a condensed version of this algorithm. Afterwards, this

version and its invariant will be refined by splitting.

non-critical section

Q I : ~ ,):=(2,true)

critical section

non-critical section

Q2 ~):: :=(l,true)

critical section

Figure 1. A first version of the algorithm.

329

In the condensed version, the double assignment and the test will be abstracted into

a single statement.

Let us first introduce some notation. If S is a (sequential) program and P,Q

are two predicates, the formula

{P} S {Q}

means that if the execution of S is started in a state satisfying

execution terminates, the final state satisfies Q. Two statements

equivalent if for all predicates P and Q, we have

{P} S] {Q} ~ {P} $2 {Q}

P and if this

S1 and $2 are

If B is a predicate and S a statement, (B + S) is a statement; it means : '~ait

until B becomes true and then execute S". If B remains false forever, the execu-

tion of (B ÷ S) will never terminate. Formally we can wr~te

[{P ^ B} (B ÷ S) {Q}] ~ [{P ^ B} S {Q}]

[{P ^ NB} (B ÷ S) {Q}] ~ true

Such statements are written "Await B then do S" in [I]]. Another useful notation

is the following. If S is a program, <S> is an atomic statement producing the

same net-effect as S. From the sequential point of view, there is no distinction

between S and <S>.

For process 1, the abstracted statement

is equivalent to

The last statement is

<(T,QI := 2,true) ; (~Q2 v T=])? >

< ~Q2 ÷ (T,QI := 2,true)>

< Q1 := false>

The condensed version is depicted on fig. 2. Each process has only two control points.

This makes design of the invariant easy :

Mutual exclusion requires :

at(DI,D2) m false

Due to initial conditions and exit statements, we have :

at(A!,A2) m (~Q| ^ ~Q2)

330

non-critical section

Ql:=false
42

÷

(T,QI) :=(2,true)

critical section

non-critica~ section

Q2:=false ~ ~+I

~ (T,Q2):=(I

aritical section

Figure 2.
The condensed version of the algorithm.

,true)

The invariant will be completed by two assertions :

at(AI,D2) = I(AI~D2)

at(DI,A2) = I(D|,A2)

where the formulas I(M,D2) and I(DI,A2) satisfy the following conditions (we

give only those related to I(DI,A2)).

{I(AI,A2)} < ~Q2 ÷ (T,QI := 2,true) > {I(DI,A2)}

{I(DI,A2)} < ~QI ÷ (T,Q2 := l,true) > {I(DI,D2)}

{I(DI,A2)} QI := false {I(AI,A2)}

{I(D|,D2)} Q2 := false {I(DI,A2))

These four constraints correspond to the four transitions starting from or ending to

D1 or A2. These conditions form a set of inequations in the boolean lattice (B, m)

where B is the set of predicates which only admit as free variables the program

variables. These conditions amount respectively to the following :

(Q| A ~Q2 A T=2) ~ I(DI,A2)

I(DI,A2) m Q1

I(D] ,A2) m ~Q2

true

I(DI)A2) belongs to the boolean interval defined by

(QI a ~Q2 A T=2) ~ I(DI,A2) ~ (QI A ~Q2)

where p m q = r is an abbreviation for [p = q] A [q m r]. We will adopt here the

strongest limit to gain as much knowledge as possible about the program but this is

not mandatory. The formula I(AI,D2) is obtained si~mmetrically; the completed

331

invariant is sun~narized below.

at(Al,A2) m (~QI ^ ~Q2)

at(D|,A2) m (Q] A ~Q2 ^ T=2)

at(Al,D2) m (~QI A Q2 ^ T=I)

at(DI,D2) m false

2.2. An intermediate version.

The condensed version and its invariant will be refined in two steps. First, we return

to the starting version by splitting the fiTst statement and augmenting the invariant.

Next, the multiple assignment will be split and the invariant refined once more.

The splitting of the first statement in process l consists in introducing the control

point Cl (see fig. I). Two formulas I(CI,A2) and I(CI,D2) will complete the

invariant. We first express the sequential constraints, related to process I.

- about I(CI,A2) :

{I(AI,A2)} T,QI := 2,true {I(CI,A2)}

{I(CI,A2)} (~Q2 v T=I)? {I(DI,A2)}

which reduces to :

(QI ^ ~Q2 ^ T=2) ~ I(CI,A2) ~ (Q] A T=2)

- about I(CI,D2) :

{I(AI,D2)} T,QI := 2,true {I(CI,D2)}

{I(CI,D2)} (~Q2 v T=I)? {I(hl,h2)}

which reduces to :

(QI ^ Q2 A T=2) ~ I(C],D2) ~ (Q2 ^ T=2)

As before, we prefer the strongest limits of the intervals, with the aim of obtaining

as precise an invariant as possible. By the way, let us notice that the following

invariance properties are obvious :

at A2 m ~Q2 at D2 m Q2

The interaction constraints, related to process 2, are listed below :

{I(CI,A2)} (~QI + T,Q2 := l,true) {I(C],D2)}

{I(C1,D2)} Q2 := false {I(C],A2)}

They express the fact that the second process respects the new part of the invariant.

Checking these constraints is trivial.

The same splitting applies to process 2. Instead of deducing in a similar way the

invariant part related to control point C2, we take symmetry into account. This leads

332

to the following formulas :

!(AI,C2) = (~QI ^ Q2 A T=I)

I(DI,C2) = (QI A Q2 ^ T=l)

The assertion corresponding to the state (CI,C2) is determined by four constraints

listed below,

{I(A:,C2)} T,QI := 2,true {I(C|,C2)}

{:(ci,c2)} (-Q2 v T=:)? {:(DI,C2)}

[I(CI,A2)} T,Q2 := 1,true {I(CI,C2)}

{I(C1,C2)} (~Q] v T=2)? {I(CI,D2)}

which enforce the choice :

:(c~,c2) = (Q: A Q2)

The introduction of control point C2 gives rise to the following interaction

constraints :

{I(DI,C2)} (DI÷AI) {I(AI,C2)}

{I(AI,C2)} (AI+CI) {I(CI,C2)}

{:(ci,c2)) (C:÷DI) (:(D~,C2)}

For instance, we make the first one explicit :

{QI h Q2 ^ T=I} Q] := false {~QI A Q2 a T~I}

It is trivially true~

COMMENTS : Sequential constraints involve only one unknown formula but interaction

constraints involve two of them. That is the reason why the sequential constraints

are examined first. They delimit a boolean interval within which the solution must

be picked, The choice of a solution satisfying also interaction constraints very

often reduces to selecting one of the interval limits (in this example, we always

picked the strongest limit). This is also true for more complex programs (examples

are presented in [5] and [6]). Nevertheless, this simple tactic sometimes fails : a

solution could exist in the interval although the limits do not satisfy the interac-

tion requirements. We met with this situation only once (see [5] for more details).

In fact, the method presented here yields inequations which can sometimes admit a

number of solutions; the contrary would have been wonderful for a method not restric-

ted to finite state programs.

The complete invariant of the intermediate version is summarized below.

333

at(AI,A2) m (~QI ^ ~Q2)

at(Al,C2) ~ (~QI A Q2 ^ T=I) at(CI,A2) m (Q! ^ ~Q2 ^ T=2)

at(A!,D2) = (~QI ^ Q2 ^ T=I) at(DI,A2) m (QI ^ ~Q2 ^ T=2)

at(Cl,C2) m (QI A Q2)

at(CI,D~) m (QI ^ Q2 ^ T=2) at(DI,C2) m (QI A Q2 ^ T=I)

at(DI,D2) m false

2.3. The final version.

By now, each process comprises three statements, the first of which being a multiple

assignment. Our last step will be the splitting of these assignments. The intermediate

version invariant will help us to find how these statements can be split.

Let us observe that four cases can occur (while maintaining the symmetry).

I) The intended splitting would endanger mutual exclusion.

2) The splitting is allowed but variable T ~s to be assigned first.

3) The splitting is allowed but variables QI, Q2 are to be assigned first.

4) The splitting is allowed and the assignment order is i~mmaterial.

It is well known that intuitive reasoning about parallelism and synchronization is

dangerous. The best way is to examine both possible splitting. This is what we will do.

The statement < T,QI := 2,true > is split into : T := 2; Q] := true. The new

control point is named BI. This splitting is not depicted on the figures. The sequen-

tial constraints are :

- about I(BI,A2) :

{I(AI,A2)} T := 2 {I(BI,A2)}

{I(BI,A2)} Q1 := true {I(C],A2)}

which reduces to :

(~QI A ~Q2 A T=2) m I(B|,A2) m (~Q2 A T=2)

- about I(BI,C2) :

{I(AI,C2)} T := 2 {I(BI,C2)}

{I(BI,C2)} Q1 := true {I(C|,C2)}

which reduces to :

(~QI A Q2 A T=2) m I(B],C2) m Q2

- about I(BI,D2) :

{I(A],D2)} T := 2 {I(BI,D2)}

{I(BI,D2)} Q] := true {I(CI,D2)}

which reduces to :

(~Q~ A Q2 A T=2) m I(BI,D2) = (Q2 A T=2)

The formula (at B! = ~QI) trivially holds. This leads to the following results :

at(BI,A2) = (~Ql A ~Q2 A T=2)

at(BI,D2) ~ (~Q! ^ Q2 A T=2)

About the state (BI,C2), we have two possible assertions :

at(BI,C2) m (~QI A Q2 A T=2)

or

at(B|,C2) m (~Ql A Q2)

The interaction constraint

{I(BI,A2)} (A2+C2) {I (BI ,C2)}

reduces to

{"Q1 ^ ~Q2 A T=2} T,Q2 := l,true {~QI ^ Q2 A T=2}

This eliminates the first possibility. The second one must also be rejected, due to

{I(BI,C2)} (C2->D2) {I(BI,D2)}

The intended splitting is thus impossible. This failure ir~mediately provides a

counterexample of bad execution, which is listed below.

control QI Q2 T

(A~ ,A2) F F -

(BI,A2) F F 2

(BI,C2) F T l

(BI,D2) F T I

(CI)D2) T T !

(D1,D2) T T 1

The reverse splitting gives rise to the following statements (see fig. 3) :

(Al, Ql := true ,B]) and (Bl, T := 2 ,CI).

335

non-critical section

Ql:=false

critical section

T:=2

non-critical section

~ ~Q2::true/~ -\

Q2:=false

~ ~(LQ1 T:2).~,]2~
critical section

Figure 3.
The final version of the program.

T:=I

We state now the sequential constraints related to node BI.

- about I(BI,A2) :

{I(AI,A2)} QI := true {I(BI,A2)}

{I(BI,A2)} T := 2 {I(CI,A2)}

which reduces to :

(QI A ~Q2) m I(B!,A2) m (QI A ~Q2)

- about I(BI,C2) :

{I(AI,C2)} Q1 := true {I(BI,C2)}

{I(BI,C2)} T := 2 {I(CI,C2)}

which reduces to :

(QI ^ Q2 A T=I) m I(B],C2) ~ (QI A Q2)

- about I(BI,D2) :

{I(AI,D2)} Q1 := true {I(BI,D2)}

{I(BI,D2)} T := 2 {I(CI,D2)}

which reduces to :

(QI A Q2 A T=I) m I(BI,D2) m (QI A Q2)

Subject to verifying the interaction constraints, we choose the strongest limits of

the three intervals. Here is the list of the interaction constraints, Telated to

process 2.

{I(BI,A2)} T,Q2 := l,true {I(BI,C2)}

{I(BI,C2)} (~QI v T=2)? {I(BI,D2)}

{I(BI,D2)} Q2 := false {I(BI,A2)}

It is easy to check that our choice is valid.

3~

Control point B2 is introduced in the same way. The symmetry leads to the following

choices :

I(AI,B2) = (~Qi A Q2)

I(CI,B2) = (QI A Q2 A T=2)

I(DI,B2) = (Q! A Q2 ^ T=2)

We could compute I(Bi,B2) from the usual set of constraints but it is faster to

observe that the formulas (at BI ~ QI) and (at B2 m Q2) obviously hold. The sym-

metry prevents us from fixing the value of T. This leads naturally to :

I(BI,B2) = (QI A Q2)

Here is the complete invariant of the final version :

at(AI,A2) m (~Ql A ~Q2)

at(Ai,B2) m (~Q! A Q2) at(BI,A2) ~ (QI ^ ~Q2)

at(AI,C2) o (~QI ^ Q2 ^ T=I) at(CI,A2) m (QI A NQ2 ^ T=2)

at(AI,D2) m (~QI ^ Q2 A T=I) at(DI,A2) m (QI A ~Q2 A T=2)

at(BI,B2) m (QI A Q2)

at(BI,C2) m (QI ^ Q2 A T=I) at(CI,B2) m (QI ^ Q2 A T=2)

at(BI,D2) m (QI A Q2 A T=I) at(DI,B2) m (QI a Q2 a T=2)

at(CI,C2) m (QI A Q2)

at(CI,D2) ~ (QI A Q2 A T=2) aL(DI,C2) ~ (QI a Q2 ^ T=I)

at(DI,D2) m false

3. SO~J~ PROGRAM PROPERTIES.

The mutual exclusion is an immediate consequence of :

at(Di,D2) m false

This safety property is implied by the invariant. The primitive algorithms both suffer

from deadlock; this.is not the case for the final version. A deadlock could occur

only if both processes were locked, necessarily at CI and C2 respectively. The

invariant implies :

at(CI,C2) m (QI A Q2)

If T = i, process I will go on, else process 2 will go on; deadlock is therefore

impossible~

Individual starvation is also impossible. Although this fact is not a safety property,

it can be deduced from the invariant. Let us suppose, for instance, that process 1

is locked, necessarily at CI° This implies (Q2 A T = 2). On an other hand, the

337

invariant implies (at Cl ~ Ql). This leads to the "lock formula" of process l :

(Ql ^ Q2 ^ T = 2)

Process 2 is not locked and will eventually set T to | or Q2 to false;

afterwards, process 2 will never gain access until process] has executed its criti-

cal section.

COMMENTS : The invariant size seems to grow as the product of the processes sizes,

which could be unacceptable for large programs. In fact, if suitable notations are

used, the invariant size is a good measure of the program complexity : whenever a

program can be written, its invariant can also be stated. For medium or large pro-

grams, abbreviation techniques are needed. These techniques do not solve by themselves

the problem of "combinatorial explosion" but render it less critical. See [6] and [7]

for some examples. In our case, the invariant can be shortened as follows :

(at A] ~ ~Q]) ^ (at A2 E ~Q2)

(at c] v at DI) ~ (T=2 v at C2)

(at C2 v at D2) m (T=I v at Cl)

COMMENT : Our method, like other invariance methods, is especially devoted to

invariance properties. Such properties assert that something bad never occurs (fal-

sification of an invariant, deadlock, termination with incorrect results,..,).

Nevertheless, liveness properties, which assert that something good will eventually

happen, can be established easier if adequate safety properties have been proved before.

Notice that the invariant was needed to establish freeness of starvation. The same

is also true in sequential programming : for instance, a proof of total correctness

(liveness property) often begins with a proof of partial correctness ~safety proper-

ty). Without knowing safety properties, the proofs of liveness properties usually

require more operational reasoning, which frequently leads to errors.

4, CONCLUSION.

The example shows that our method is useful even for small algorithms : it is some-

times difficult to find their invariants (see [4]). The need of an incremental

methodology is still more pronounced for medium size or large programs. A problem

which occurs frequently during the design of parallel processes is to know if some

statement may be split or not. The methodology presented here provides reliable answers

to such questions. If, in some case, a non-elementary statement may be split into

several statements, these must be serialized in the right order. Our methodology

helps to determine which order is acceptable. Mistakes of this kind occur frequently

in parallel algorithms. It was the case for first versions of the "On-the-fly gar-

bage collector" and the algorithm of Ricart and Agrawala previously mentioned (see

338

[8], [13~ and [14~)~ Moreover, the stud), of nhese algorithms and others has made us

believe that, contrary to a common view, the invariant method can be well adapted to

parallel programming. Specifically, the size of the invariants remains acceptable.

The synthesis of invariants for concurrent programs has already been investigated.

Clarke obtains the best invariant of a program as the least fixpoint of an equation

written from the text of this program (see [2]). Another method has been developed

by Manna and Pnueli (see [10]). Both methods apply only to a restricted class of

parallel programs, which is not the case of ours.

REFERENCES.

[]] ASHCROFT, EoA., MANNA, Z., "Formalization of Properties of Parallel Programs",
Machine Intelligence, vol. 6, pp. 17-41, 1970.

[2] CLARKE, E.M., "Synthesis of resource invariants for concurrent programs", ACM
Toplas, Vol. 2, pp. 338-358, 1980.

[3] DIJKSTRA, E.W., "A discipline of programming", Prentice Hall, New Jersey, !976.

[4] DIJKSTRA, E.W., "An assertional proof of a program by G. L. Peterson", EWD 779,
1981.

[5] GRIBOMONT, E.P., "Programmation parall~le", Internal Report, University of Liege,
1982~

[6] GRIBOMONT, E.P., "Proving parallel programs in an incremental way", submitted
to Science of Computer Programming, 1983.

[7] GRIBOMONT, E.P., "Mutual exclusion in a computer network", submitted to
Computer Networks, 1983.

[8] GRIES, D., "An Exercise in Proving Parallel Programs Correct", CACM, vol. 20,
pp. 921-930, 1977.

[9] LEVlN, G.M., GRIES, D., "A Proof Technique for Communicating Sequential Processes",
Acta Informatica, vol.]5, pp. 281-302, 1981.

[]0] MANNA, Z., PNUELI, A., "Verification of concurrent programs : temporal proofs
principles", Lecture Notes in Comp. Sc., vol.]31, pp. 200-252, Springer, 1981.

[l]] OWICKI, S., GRIES, D., ~n Axiomatic Proof Technique for Parallel Programs",
Acta Informatica, vol. 6, pp. 319-340, 1976.

[12] PETERSON, G.L., "Myths about the mutual exclusion problem", Information Proces-
sing Letters, vol. 12, pp.]15-I]6, 1981.

[]3] RICART, G,, AGRAWALA, A.Ko, "An optimal algorithm for mutual exclusion", CACM,
vol. 24, pp. 9-|7, 1981.

[]4] Corrigendum, CACM, vol. 24, p. 578, 198].

