
Lecture Notes in
Computer Science
Edited by G. Goos and J. Hartmanis

197

Seminar on Concurrency
Carnegie-Mellon University
Pittsburgh, PA, July 9-11, 1984

Edited by S. D. Brookes, A.W. Roscoe and G. Winskel

IIII

Springer-Verlag
Berlin Heidelberg New York Tokyo

Editorial Board

D. Barstow VV. Brauer R Brinch Hansen D. Gries D. Luckham
C. Moler A. Pnueli G. Seegmeller J. Stoer N. Wirth

Editors

Stephen D. Brookes
Computer Science Department, Carnegie-Mellon University
Pittsburgh, PA 15213, USA

Andrew William Roscoe
Programming Research Group
Oxford University, Oxford, OXl 3QD England

Glynn Winsket
Computer Science Department, Cambridge University
Cambridge, CB2 3QG England

CR Subject Classification (1985): C.2.4, D.1.3, F.3, D.3.t, D.3.3, D.2.4, F.4.1

ISBN 3-540-15670-4 Springer-Verlag Berlin Heidelberg New York Tokyo
ISBN 0-387-15670-4 Springer-Verlag New York Heidelberg Berlin Tokyo

This work is subject to copyright. All rights are reserved, whether the whole or part of the materia~
is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting,
reproduction by photocopying machine or similar means, and storage in data banks. Under
§ 54 of the German Copyright Law where copies are made for other than private use, a fee is
payable to "Verwertungsgesellschaft Wort", Munich.
© by Springer-Vedag Berlin Heidelberg 1985
Printed in Germany
Printing and binding: Beltz Offsetdruck, Hemsbach/Bergstr.
2145/3140-543210

S e m i n a r on S e m a n t i c s of C o n c u r r e n c y

Caxnegie-Mellon University
Pit tsburgh

Pennsylvania
July 9-11, 1984

Acknowledgements.

Sponsorship and partial financial support of this joinL US-UK seminar was provided
by the National Science Foundation of the United States (NSF) and the Science and
Engineering Research Council of Great Britain (SERC). The seminar was held at Carnegie-
Mellon University on July 9-11, 1984, and was organized by S. D. Brookes (Carnegie-
Mellon University), A. W. Roscoe (Oxford University) and G. Winskel (Cambridge University).
We would like to thank Elizabeth Grgurich and Lydia Defilippo for their assistance with
the organization.

Note. The following introductory sections have been adapted from the text of the
proposal originally subraitted by the organizers to the NSF and the SERC. We include
them here to provide some idea of the aims of the seminar, and to set the papers of this
volume in context. The :references cited in the papers contained in this volume provide a
fuller survey of current research.

1. I n t r o d u c t i o n .

Programming languages such as Ado, CSP and CCS, involving some form of parallel
composition of commands, are becoming prominent as computer science moves to take
advantage of the opportunities of distributed processing. It is well known that allowing
concurrent execution may lead to undesirable behaviour, for example deadlock or starva-
tion. It is of crucial importance to be able to reason effectively about programs written in
such languages; to prove, for instance, absence of deadlock. Of course, a formal method
of proof will require a formal model as a basis for justifying the proofs.

At present there is no widely accepted method for modelling concurrent processes.
There is instead a prolil~eration of semantics for such languages. Some use widely ap-
plicable methods and are based on, for example, Petri nets, labelled transition systems or
powerdomains, while some are more specialised and axe designed with an idea of detecting
and proving rather specific properties of programs.

This seminar was intended to provide a forum in which to discuss and examine
the different approaches~ their relationships to each other and how they support proofs
of properties of programs. A major aim of this project has been to at tempt to link

IV

up and unify Lhe different met, hods of providing semantic descriptions and analysis of
concurrent programming languages, and to clarify some of the issues in proving properties
of concurrent programs. We hope that the papers published in this volume conLribute to
this goal.

2. B a c k g r o u n d .

Programming languages involving some form of parallel execution are emerging as
the languages of the 80's, in line with the decreasing costs of computer systems and
the increased opportunities for speed and efficiency offered by distributed computing.
Most recently, the Ado programming language has been put forward in this guise. This
language, by virtue of its concurrent features, falls into the general category of "CSP-like"
languages, in which concurrently active processes interact by some form of synchronized
communication: the so-called handshake in CSP or the Ado rendezvous.

As is well known~ programs writ ten in parallel languages may exhibit pathological
behaviour, such as deadlock. Deadlock occurs typically when each of a group of concurrent
processes is waiting for another process in the group to initiate a communication; since no
process is able to make the first move, no communication can occur and the system is stuck.
The classical example of this phenomenon is provided by the Dining Philosophers, where
the possibility of deadlock means that the philosophers may starve to death. The essence
of this example is that several more or less independent machines are competing for use
of a small number of shared resources; this type of situation arises frequently in practical
computer science, and ways of solving and understanding problems such as deadlock are

of paramount importance.

Much work has been done in specifying and reasoning about properties of concurrent
systems, and there is much interest, both theoretical and practical, in so-called safety and
llveness properties. Of course, it is of vital importance to be able to reason effectively about
the behaviourat properties of programs. Moreover, if any proof system is to be useful, i t
must be shown to be consistent. This requires a mathematical model of the processes with
which the proof system purports to deal, and an understanding of how the model reflects

the semantic properties of processes.

In the case of sequential programming languages, where one wants to reason about
sequential programs, the situation is much simpler: in general, programs can be taken to
denote input-output functions or state-trans]orrnations, and logical systems based on Hoare-
style proof rules can be built which are transparently related to the standard denotational
semantics of the language in question. Unfortunately, there is no widely accepted method
of assigning meanings to concurrent programs; there is not even agreement on what class of
mathematical entities are suitable for modelling processes. On the contrary, the situation

is somewhat confusing. Many different semantic models have been proposed, and in the
main each model seems to have arisen in an a t tempt to capture precisely a particular type
of behavioural property. Typically, in one model it is relatively easy to treat one type of
semantic property, but difficult to reason about others. This is not to say, of course, that
no successful proof systems have been constructed for parallel languages; the point we are
making is tha t there is a lack of agreement at the basic level of what kind of mathematical
object a process is, and this makes it difficult to justify a preference for one semantics or
proof system over another.

In view of the proliferation of semantic models for concurrency, and the central
importance of the issues introduced by parallelism, we feel that serious effort should be
expended in relating the various approaches. This was the basic motivation of the seminar,
because it is hoped that clarifying the inter-relationships between alternative approaches
to the semantics of parallelism wilt improve our understanding of the problems associated
with concurrency.

Much of the research reported in this seminar considers the particular types of con-
currency inherent in systems where individual processes interact by synchronized com-
munication, such as CSP, CCS and Ada, or in other models of parallel computation where
the communication discipline follows different lines.

Much work on the semantics of concurrency has been carried out on Milner's language
CCS (Calculus of Communicating Systems) or Hoare's language CSP (Communicating
Sequential Processes). Both are used widely in theoretical research and have been provided
with a variety of semantics, both operational and denotational. Some proofs of equivalence
between different semanl~ics have been given, and there are several proof systems for the
various semantics. Lately Milner has introduced another class of languages closely related
to CCS. They are called the synchronous calculi, abbreviated to SCCS, and have been
equipped with a semantics which makes them suitable for modelling synchronous processes.
The work on the languages CSP, CCS, and SCCS incorporates many techniques of the
following sections, which outline some of the main approaches which have been taken in
modelling concurrency.

Labelled transition systems and synchronization trees. These form a basic model
of processes, and have been extensively used (as by Plotkin) to give structural opera-
tional semantics to a variety of programming languages. A process can move from one
configuration to another by making a transition. The transitions (or events) are labelled
to show how they synchronize with events in the environment. Labelled transition systems
unfold quite naturally to labelled trees--called synchronization trees. Generally the tran-
sitions are indivisible, so the processes modelled are thought of as performing only one
event a t a t ime- - the actions are interleaved-- in which case it can be argued tha t ~hey do
not handle concurrency in a natural way. Transition systems are widely applicable and

YJ

widely used and can serve as basic faodels on which to build more abstract semantics.
They are fundamental to much of the work on CCS and SCCS.

Term models. These arise by placing some natural equivalence relation on terms (parts
of programs), generally by specifying the operational behaviour of terms with a labelled
transition system and then putting some operationally meaningful equivalence relation on
these. A notable example is Milner's observational equivalence on CCS programs. Often
the equivalence on terms can be generated by a set of proof rules. One is then able to prove
a property of a program by establishing its equivalence to some suitably chosen term.

Labelled Petri nets. Petri nets model processes in terms of causal relations between
local states and events. They model a process's behaviour by simulating it dynamically
through a pattern of basic moves called the "token game". Several people, notably Lauer
and Campbell, have given semantics to synchronizing processes as labelled Petri nets.
Again, the labels specify how events synchronize with events in the environment. Nets
handle concurrency in a natural way--concurrency exhibits itself as causal independence--
and are not committed to an interleaving approach. Although intuitive structures, they
are difficult to manage mathematically because of the dynamic nature of the token game;
in a sense they need their own semantics if we are to reason about them successfully.

Labelled event structures. Roughly, an event structure specifies the possible sets of
event occurrences of a process. Forms of event structures have appeared in a variety of
work, in foundational work on denotatlonal semantics, in work on distributed computing,
and in the theory of Petri nets. Labelled event structures can be used to give a denota-
tional semantics to a wide range of languages like CCS and CSP based on synchronized
communication. A Petri net determines an event structure; thus, event structures can be
used to give a semantics to nets. Although event structures, like nets, are not committed
to interleaving, a semantics in terms of labelled event structures does translate neatly to
a semantics ~n terms of synchronization trees, as demonstrated for instance in the work of

Winskel.

Powerdomaine. Powerdomains occur in denotational semantics as the domain analogue
of powersets; they were introduced by Plotkin, and important foundational work has been
carried out by Smyth and Plotkim Powerdomains are the domains arising naturally when
trying to give a semantics to languages in which execution can proceed nondeterministi-
cally. Powerdornains were used quite early by Milne and Milner to give a semantics to tile
language CCS, by reducing concurrency to nondeterministic interleaving. Hennessy and
Plotkin gave a powerdomain semantics to a simple parallel programming language with
shared variables. Until recently many have tended to avoid their use in giving semantics to
languages where the emphasis has been on getting the operational ideas straight. Now they
are understood better and reappear as denotational counterparts of natural operational

ideas, notably in the work of Hennessy and de Nicola.

VII

Failure-set semantics. Failure-set semantics (Hoare, Brookes, Roscoe) arose as a
generalization of the so-called trace semantics of CSP, which identified a process with
its set of possible sequences of communications (the traces). In addition, a failure set
specifies what synchronizations a process can refuse after following a particular trace, tile
idea being to capture precisely the situations in which a deadlock may occur. Links have
been made between failure sets and various other approaches, notably synchronization
trees and transition systems. The failures model can also be constructed as the term
algebra generated by an axiom system, and a complete proof system exists for this algebra.
At tempts to clarify the relationship of failure-sets with other forms of semantics have
yielded some interesting results: the failures model turns up in another guise as the model
determined by a natural set of axioms on the CSP term algebra, and is closely related to
the models developed by Hennessy and de Nicola.

Logics of programs. This area is concerned with the formal expression and proof
of properties of programs and has often been brought to bear on CSP-like languages.
Generally formal reasoning is conducted m some modal logic such as temporal logic, as
in the work of Owicki and Lamport, although some Hoare-style proof systems have been
suggested, notably by Owicki and Gries for shared variable concurrency, and by Apt,
Francez and de Roever for CSP. Sometimes it is possible to decide automatically whether
or not a program satisfies a modal assertion in a particular formal language, as in work
of Clarke, Emerson and Sistla. The validity of modal assertions begs the question of what
basic models should be used. (Most models do not handle the phenomenon of divergence,
or non-termination, adequately.) This is a rich area for investigation, especially as recent
results show that many equivalences on CCS and CSP programs are induced by the modal
assertions they satisfy. This suggest a possible connection with the Dynamic Logics of
P ra t t and others. The orderings on powerdomains have a similar modal characterisation
too. "Fairness" is an important property of programs which is often best expressed in terms
of modalities though at present it is not clear how to deal with it in the most satisfying
way; there is a variety of approaches in the current literature.

So far we have mentioned mainly models in which synchronous communication was
the method of interaction between concurrently active processes. We now sketch the
connections with two other models of parallel computation which exemplify alternative
communication disciplines.

The Actor model of computation. The actor model of computation has been developed
by Hewitt and associates at MIT. It is based on communication by message-passlng
between objects or processes of computation called Actors. Although communication is
asynchronous the Actor model incorporates many features in ' common with models of
synchronized communication. Receipt of a message by an actor is called an event and
together a network of actors determines a causal structure on events- -a form of event
structure; their axioms have been studied by Hewitt and Baker. Recently Clinger has

VIII

provided an actor language with a powerdomain semantics which has also addressed to
some extent the fairness problem for actors; implementations of actor languages have
assumed that a message sent is always received eventually and this fairness property
has been difficult tq capture in denotational semantics. This work is quite new and
its relationship wi~h-~ther work, for example Plotkin's powerdomain for countable non-
determinism, do not seem to be well understood.

Kahn-MacQueen networks. This model is based on the idea that processes communi-
cate by channels; processes read in from input channels and write to output channels, i t
is one of the earliest models with potential parallelism to have been given a denotational
semantics, relatively simple because as originally proposed, Kahn-MacQueen networks
.computed in a determinate manner - -any nondeterminism in the network did not affect
tlle final result. The model is well understood and is o~en used in theoretical work, when
it is extended by theoretically awkward constructs such as a "fair merge" operator; here

the work of Park is notable.

This completes our summary of the state of the art as we saw it at the time of the
conference. It is admittedly a rather narrowly focussed account, and we apologize to any
researchers whose work has not been explicitly mentioned in this brief section. The models
described here and many other current research areas are represented to some extent in

this volume.

Table o f Conten ts

On the Axiomatic Treatment of Concurrency 1
S. D. Brookes

Hierarchical Development of Concurrent Systems in a Temporal Logic Framework . . 35
H. Barringer and R. Kuiper

On the Composition and Decomposition of Assertions 62
G. Winskel

Process Algebra with Asynchronous Communication Mechanisms 76
J. A. Bergstra,]. W. Klop and J. V. Tucker

Axioms for Memory Access in Asynchronous Hardware Systems 96
J. Misra

Executing Temporal Logic Programs . 111
B. Moszkowski

The Static Derivation of Concurrency and its Mechanized Certification 131
C. Lengauer and C-H. Huang

Semantic Considerations in the Actor Paradigm of Concurrent Computation 151
G. Agha

The Pomset Model of Parallel Processes: Unifying the Temporal and the Spatial 180
V. Pratt

Lectures on a Calculus for Communicating Systems 197
R. Milner

Concurrent Behaviour: Sequences, Processes and Axioms 221
E. Best

Categories of Models for Concurrency . 246
G. Winsket

Maximally Concurrent Evolution of Non-sequential Systems 268
R. Janicki, P. E. Lauer and R. Devillers

An Improved Failures Model for Communicating Processes 281
S. D. Brookes and A. W. Roscoe

Denotational Semantics for occam . 306
A. W. Roscoe

Linguistic Support of Receptionists for Shared Resources 330
G. Hewitt, T. Reinhardt, G. Agha and G. Attardi

Applications of Topology to Semantics of Communicating Processes 360
W. C. Rounds

Denotational Models Based on Synchronously Communicating Processes: 373

Refusal, Acceptance, Safety, W.G. Golson

The ESTEREL Synchronous Programming Language 389

and its Mathematical Semantics~ G. Berry and L. Cosserat

An Implementat ion Model of Rendezvous Communication 449

L. Cardelli

k Fully Abstract Model of Fair Asynchrony 458

Ph. Darondeau

Alternative Semantics for McCarthy 's arab 467

W. Clinger and C. Halpern

Semantics of Networks Containing Indeterminate Operators 479

R. M. Keller and P. Panangaden

Abstract Interpretat ion and Indeterminacy 497

P. Panangaden

The NIL Distributed Systems Programming Language: A Status Report 512

R. E. Strom and S. Yemini

