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Note. The following introductory sections have been adapted from the text of the 
proposal originally subraitted by the organizers to the NSF and the SERC. We include 
them here to provide some idea of the aims of the seminar, and to set the papers of this 
volume in context. The :references cited in the papers contained in this volume provide a 
fuller survey of current research. 

1. I n t r o d u c t i o n .  

Programming languages such as Ado, CSP and CCS, involving some form of parallel 
composition of commands, are becoming prominent as computer science moves to take 
advantage of the opportunities of distributed processing. It is well known that  allowing 
concurrent execution may lead to undesirable behaviour, for example deadlock or starva- 
tion. It is of crucial importance to be able to reason effectively about programs written in 
such languages; to prove, for instance, absence of deadlock. Of course, a formal method 
of proof will require a formal model as a basis for justifying the proofs. 

At present there is no widely accepted method for modelling concurrent processes. 
There is instead a prolil~eration of semantics for such languages. Some use widely ap- 
plicable methods and are based on, for example, Petri nets, labelled transition systems or 
powerdomains, while some are more specialised and axe designed with an idea of detecting 
and proving rather specific properties of programs. 

This seminar was intended to provide a forum in which to discuss and examine 
the different approaches~ their relationships to each other and how they support proofs 
of properties of programs. A major aim of this project has been to at tempt to link 



IV 

up and unify Lhe different met, hods of providing semantic descriptions and analysis of 
concurrent programming languages, and to clarify some of the issues in proving properties 
of concurrent programs. We hope that  the papers published in this volume conLribute to 
this goal. 

2. B a c k g r o u n d .  

Programming languages involving some form of parallel execution are emerging as 
the languages of the 80's, in line with the decreasing costs of computer systems and 
the increased opportunities for speed and efficiency offered by distributed computing. 
Most recently, the Ado programming language has been put  forward in this guise. This 
language, by virtue of its concurrent features, falls into the general category of "CSP-like" 
languages, in which concurrently active processes interact by some form of synchronized 
communication: the so-called handshake in CSP or the Ado rendezvous. 

As is well known~ programs writ ten in parallel languages may exhibit pathological 
behaviour, such as deadlock. Deadlock occurs typically when each of a group of concurrent 
processes is waiting for another process in the group to initiate a communication; since no 
process is able to make the first move, no communication can occur and the system is stuck. 
The classical example of this phenomenon is provided by the Dining Philosophers, where 
the possibility of deadlock means that  the philosophers may starve to death. The essence 
of this example is that  several more or less independent machines are competing for use 
of a small number of shared resources; this type of situation arises frequently in practical 
computer science, and ways of solving and understanding problems such as deadlock are 

of paramount importance. 

Much work has been done in specifying and reasoning about properties of concurrent 
systems, and there is much interest, both theoretical and practical, in so-called safety and 
llveness properties. Of course, it is of vital importance to be able to reason effectively about 
the behaviourat properties of programs. Moreover, if any proof system is to be useful, i t  
must be shown to be consistent. This requires a mathematical  model of the processes with 
which the proof system purports to deal, and an understanding of how the model reflects 

the semantic properties of processes. 

In the case of sequential programming languages, where one wants to reason about 
sequential programs, the situation is much simpler: in general, programs can be taken to 
denote input-output functions or state-trans]orrnations, and logical systems based on Hoare- 
style proof rules can be built  which are transparently related to the standard denotational 
semantics of the language in question. Unfortunately, there is no widely accepted method 
of assigning meanings to concurrent programs; there is not even agreement on what class of 
mathematical entities are suitable for modelling processes. On the contrary, the situation 



is somewhat confusing. Many different semantic models have been proposed, and in the 
main each model seems to have arisen in an a t tempt  to capture precisely a particular type 
of behavioural property. Typically, in one model it is relatively easy to treat  one type of 
semantic property, but  difficult to reason about others. This is not to say, of course, that  
no successful proof systems have been constructed for parallel languages; the point we are 
making is tha t  there is a lack of agreement at  the basic level of what  kind of mathematical 
object a process is, and this makes it difficult to justify a preference for one semantics or 
proof system over another. 

In view of the proliferation of semantic models for concurrency, and the central 
importance of the issues introduced by parallelism, we feel that  serious effort should be 
expended in relating the various approaches. This was the basic motivation of the seminar, 
because it is hoped that  clarifying the inter-relationships between alternative approaches 
to the semantics of parallelism wilt improve our understanding of the problems associated 
with concurrency. 

Much of the research reported in this seminar considers the particular types of con- 
currency inherent in systems where individual processes interact by synchronized com- 
munication, such as CSP, CCS and Ada, or in other models of parallel computation where 
the communication discipline follows different lines. 

Much work on the semantics of concurrency has been carried out on Milner's language 
CCS (Calculus of Communicating Systems) or Hoare's language CSP (Communicating 
Sequential Processes). Both are used widely in theoretical research and have been provided 
with a variety of semantics, both operational and denotational. Some proofs of equivalence 
between different semanl~ics have been given, and there are several proof systems for the 
various semantics. Lately Milner has introduced another class of languages closely related 
to CCS. They are called the synchronous calculi, abbreviated to SCCS, and have been 
equipped with a semantics which makes them suitable for modelling synchronous processes. 
The work on the languages CSP, CCS, and SCCS incorporates many techniques of the 
following sections, which outline some of the main approaches which have been taken in 
modelling concurrency. 

Labelled transition systems and synchronization trees. These form a basic model 
of processes, and have been extensively used (as by Plotkin) to give structural opera- 
tional semantics to a variety of programming languages. A process can move from one 
configuration to another by making a transition. The transitions (or events) are labelled 
to show how they synchronize with events in the environment. Labelled transition systems 
unfold quite naturally to labelled trees--called synchronization trees. Generally the tran- 
sitions are indivisible, so the processes modelled are thought of as performing only one 
event a t  a t ime- - the  actions are interleaved-- in which case it can be argued tha t  ~hey do 
not handle concurrency in a natural  way. Transition systems are widely applicable and 
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widely used and can serve as basic faodels on which to build more abstract semantics. 
They are fundamental to much of the work on CCS and SCCS. 

Term models. These arise by placing some natural equivalence relation on terms (parts 
of programs), generally by specifying the operational behaviour of terms with a labelled 
transition system and then putting some operationally meaningful equivalence relation on 
these. A notable example is Milner's observational equivalence on CCS programs. Often 
the equivalence on terms can be generated by a set of proof rules. One is then able to prove 
a property of a program by establishing its equivalence to some suitably chosen term. 

Labelled Petri nets. Petri nets model processes in terms of causal relations between 
local states and events. They model a process's behaviour by simulating it dynamically 
through a pattern of basic moves called the "token game". Several people, notably Lauer 
and Campbell, have given semantics to synchronizing processes as labelled Petri nets. 
Again, the labels specify how events synchronize with events in the environment. Nets 
handle concurrency in a natural way--concurrency exhibits itself as causal independence-- 
and are not committed to an interleaving approach. Although intuitive structures, they 
are difficult to manage mathematically because of the dynamic nature of the token game; 
in a sense they need their own semantics if we are to reason about them successfully. 

Labelled event structures. Roughly, an event structure specifies the possible sets of 
event occurrences of a process. Forms of event structures have appeared in a variety of 
work, in foundational work on denotatlonal semantics, in work on distributed computing, 
and in the theory of Petri nets. Labelled event structures can be used to give a denota- 
tional semantics to a wide range of languages like CCS and CSP based on synchronized 
communication. A Petri net determines an event structure; thus, event structures can be 
used to give a semantics to nets. Although event structures, like nets, are not committed 
to interleaving, a semantics in terms of labelled event structures does translate neatly to 
a semantics ~n terms of synchronization trees, as demonstrated for instance in the work of 

Winskel. 

Powerdomaine. Powerdomains occur in denotational semantics as the domain analogue 
of powersets; they were introduced by Plotkin, and important foundational work has been 
carried out by Smyth and Plotkim Powerdomains are the domains arising naturally when 
trying to give a semantics to languages in which execution can proceed nondeterministi- 
cally. Powerdornains were used quite early by Milne and Milner to give a semantics to tile 
language CCS, by reducing concurrency to nondeterministic interleaving. Hennessy and 
Plotkin gave a powerdomain semantics to a simple parallel programming language with 
shared variables. Until recently many have tended to avoid their use in giving semantics to 
languages where the emphasis has been on getting the operational ideas straight. Now they 
are understood better and reappear as denotational counterparts of natural operational 

ideas, notably in the work of Hennessy and de Nicola. 
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Failure-set semantics. Failure-set  semantics (Hoare, Brookes, Roscoe) arose as a 
generalization of the so-called trace semantics of CSP, which identified a process with 
its set of possible sequences of communications (the traces). In addition, a failure set 
specifies what  synchronizations a process can refuse after following a particular trace, tile 
idea being to capture precisely the situations in which a deadlock may occur. Links have 
been made between failure sets and various other approaches, notably synchronization 
trees and transition systems. The failures model can also be constructed as the term 
algebra generated by an axiom system, and a complete proof system exists for this algebra. 
At tempts  to clarify the relationship of failure-sets with other forms of semantics have 
yielded some interesting results: the failures model turns up in another guise as the model 
determined by a natural  set of axioms on the CSP term algebra, and is closely related to 
the models developed by Hennessy and de Nicola. 

Logics of programs. This area is concerned with the formal expression and proof 
of properties of programs and has often been brought to bear on CSP-like languages. 
Generally formal reasoning is conducted m some modal logic such as temporal logic, as 
in the work of Owicki and Lamport,  although some Hoare-style proof systems have been 
suggested, notably by Owicki and Gries for shared variable concurrency, and by Apt,  
Francez and de Roever for CSP. Sometimes it is possible to decide automatically whether 
or not a program satisfies a modal assertion in a particular formal language, as in work 
of Clarke, Emerson and Sistla. The validity of modal assertions begs the question of what  
basic models should be used. (Most models do not handle the phenomenon of divergence, 
or non-termination,  adequately.) This is a rich area for investigation, especially as recent 
results show that  many equivalences on CCS and CSP programs are induced by the modal 
assertions they satisfy. This suggest a possible connection with the Dynamic Logics of 
P ra t t  and others. The orderings on powerdomains have a similar modal characterisation 
too. "Fairness" is an important  property of programs which is often best expressed in terms 
of modalities though at  present it is not clear how to deal with it in the most satisfying 
way; there is a variety of approaches in the current literature. 

So far we have mentioned mainly models in which synchronous communication was 
the method of interaction between concurrently active processes. We now sketch the 
connections with two other models of parallel computation which exemplify alternative 
communication disciplines. 

The Actor model of computation. The actor model of computation has been developed 
by Hewitt and associates at MIT. It is based on communication by message-passlng 
between objects or processes of computation called Actors. Although communication is 
asynchronous the Actor model incorporates many features in ' common with models of 
synchronized communication. Receipt of a message by an actor is called an event and 
together a network of actors determines a causal structure on events- -a  form of event 
structure; their axioms have been studied by Hewitt and Baker. Recently Clinger has 
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provided an actor language with a powerdomain semantics which has also addressed to 
some extent the fairness problem for actors; implementations of actor languages have 
assumed that a message sent is always received eventually and this fairness property 
has been difficult tq capture in denotational semantics. This work is quite new and 
its relationship wi~h-~ther work, for example Plotkin's powerdomain for countable non- 
determinism, do not seem to be well understood. 

Kahn-MacQueen networks. This model is based on the idea that  processes communi- 
cate by channels; processes read in from input channels and write to output channels, i t  
is one of the earliest models with potential parallelism to have been given a denotational 
semantics, relatively simple because as originally proposed, Kahn-MacQueen networks 
.computed in a determinate manner - -any  nondeterminism in the network did not affect 
tlle final result. The model is well understood and is o~en used in theoretical work, when 
it is extended by theoretically awkward constructs such as a "fair merge" operator; here 

the work of Park is notable. 

This completes our summary of the state of the art as we saw it at the time of the 
conference. It is admittedly a rather narrowly focussed account, and we apologize to any 
researchers whose work has not been explicitly mentioned in this brief section. The models 
described here and many other current research areas are represented to some extent in 

this volume. 
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