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ABSTRACT 

This paper deals with the most important kinds of parallelism that can occur in 

logic programs, OR parallelism and AND parallelism. To explore parallelism we 

use a data flow model, where the rules and facts of the logic programs are 

represented as graphs. Beginning with a basic model for OR parallel execution of 

logic programs, where all the subgoals of a rule are persued in sequential 

order, we give an extended model, where we try to detect and exploit 

independencies among subgoais during the execution of a rule (dynamic AND 

parallelism). The prime when extending the basic model was to improve execution 

time. The sizes of the graphs remain in a tolerable range. 

1. Introduction 

Programming in logic has evolved during the last years as an alternative for 

Lisp in the area of knowledge engineering. Yet, the common predicative 

programming systems, such as Prolog [Cio81] use a strict sequential in- 

ferenclng mechanism. This method is based on the resolution principle [Fur82] 

and traverses an AND/OR search tree in preorder while trying to find a solution 

for a given goal ~ow79]. Because this method is very time consuming, the 

development of parallel implementations for predicative programming systems has 

become an increasingly important area of research. Conery has classified the 

following klnds of parallelism in logic programs [Con 81]: 

(1) OR parallelism 

- searching for alternative solutions in parallel 

(2) AND parallelism 

- investigating independent subgoals in parallel 

(3) Stream parallelism 

- eager evaluation of structured data (streams) 

(4) Search parallelism 

- parallel searching in partitioned sets of Horn clauses 

This paper is on the first two kinds of parallelism, OR parallelism and AND 

parallelism. The second section introduces a basic model for parallel execution 

of logic programs where Horn clauses are represented as data flow graphs. This 

model allows the efficient implementation of OR parallelism. Section 3 

describes the extension of the basic model. By introducing special test- and 

compare-operators independencies among subgoals may be detected dynamically. 
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ThlS leads to an optimal derivation ordering for subgoals. The graph 

representation of a sample clause is shown in the fourth section. In thls 

context the improvements in running tlme as well as the sizes of the graphs in 

the extended model are discussed. Section 5 describes a simulation system for 

the extended model and sketches the components which a possible parallel 

architecture should have. The terminology used throughout this paper is that of 

[Clo81 ]. 

2. MODEL FOR OR PARALLEL EXECUTION OF LOGIC PROGRAMS 

In common predicative programming systems the clauses are ordered sequentially 

and are processed in that order to find a solution for a given goal. In parallel 

execution models, all the possible clauses to derive a subgoal are executed 

concurrently (OR parallelism). This leads to an enormous speed up. Alternative 

solutions for the goal can be found in parallel. 

To explore OR parallelism in logic programs we use a method which is very 

similar to that of Umeyama/Tamura [Ume83 ]. In our system the rules and facts of 

logic programs are translated into independent data flow graphs. These graphs 

consist of nodes and edges, where the edges are used to transport tokens between 

the nodes. Tne nodes denote simple operations. In our basic model we use five of 

them. The data flow mechanism allows an operation to be executed as soon as all 

its operands are available. To activate the graphs we use the dynamic 

interpretation model [Arv78 ]. In this model several independent computations in 

a graph may proceed in parallel. 

2.1 COLORED TOKENS 
In the data flow model a token T can be regarded as a message between two 

operations. It consists of the following components: 

T = IN, m] 

where N = token number 

CT = context 

SCT = saved Context 

DST = destination, specified by (C, U, P) 

where C = process number 

U = unit number 

P = port number 

LD = literal data 

~he literal data portion of a token consists of a list of the variable bindings 

so far established. 
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2.2 BASIC OPERATIONS 

In our basic model we use the following five simple operations: 

U = Unification 

C = Copy 

M = Merge 

A = Apply 

R = Return 

Among these the unification (U) is the most important and expensive operation. 

The other operations are used to copy tokens (C), to merge the data flow (M) or 

to process a context change when applying other clauses (A) or returning from 

other clauses (R). The semantics of all basic operations are described next by 

using colored tokens. To simplify matters the DST-field is not listed 

explicitly. 

(I) U(nification)-operation 

ttrig = (~nl,n2~sctlld) 

tleft = (n, (n I ,n''), sct,ld'"g 

tstore = (n',ct',sct',id') 

with ct' = ~NULL initial token 

[ (nl,n 2) otherwise 

trlgnt. _.=(n",(nl,n),set',id',) 

The U-operation has two input and two output ports. The input ports are 

classified into a store port (right) and a trigger port (left): 

a) 

b) 

Store port 

Tokens arriving at the store port are simply stored in the unification 
unit. 

Trigger port 

When a token arrives at the trigger port a search is carried out for a 

stored token with the same context. The latter token is copied and the 

copy is unified with the token from the trigger port. If unification 

succeeds, the two tokens created within this process are sent to the 

output ports. Otherwise, the two tokens are discarded. 

(2) C(opy)-operation 

9 ) \ 
t. = (n,ct,sct,ld) In 

tout = (n,ct,sct,ld) 
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The C-operation has one input port and any number of output ports. A token 

arriving at the input port is copied to each output port. 

(3) M(erge)-operation 

tin = (nfct,sct,ld) 

tout = (n,ct,sct,ld) 

The M-operation has any number of input ports and one output port. Each 

token arriving at an input port is copied to the output port. 

(4) A(pply)-operation 

tin = (n,ct,sct,ld) 

I 
| tout = (n' , (n' ,n' ) , (ct,r) ,id) 
$ 

The A-operatlon has one input port. A token arriving at it is sent to the 

first node of all graphs for rules and facts with the same predicate name as 

the subgoal to be derived. Prior to that a context change is performed. The 

old context (CT) and the return address (physical successor of the ~node in 

the graph) are saved and a new context is generated for every OR parallel 

derivation. 

(5) R(eturn)-operation 

tin = (n,ct,(ct',r),ld) 

t = (n,ct',NULL,id) 
out 

The final node in each graph is an R-node. A token arriving at the input 
port is sent to the return address in the calling graph after the old 

context (C~) has been restored. On the highest level, where no return 

address exists, a solution for the initial goal has been constructed. 
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2.3 DATA FLOW GRAPHS FOR RULES AND FACTS 

After specification of the semantics for the basic operations we now concen- 

trate on the graphs to be constructed for the rules and facts. A rule has the 

form: 

P :- ql, q2, "", qn" 

Therefore the graph in Fig. I is constructed. 

I U p 

n2 

® 

6 

Fig. 1 : 

After the unification with head p (U00) the unifications for the subgoals 

appearing in the rule can be transformed in parallel (UI0,...,Un0). On the other 

side the aerlvation of a subgoal qi must wait until the results of the sugoals 

ql' "", qi-i have been verified so that the results of those solutions can be 

consumed (Uil , ..., Ui(i_l) ). On the left hand side of the graph the derivation 

results of the subgoals are assembled (U01 , ..., U0n ) to form the result of the 
entire rule, which is passed to the final R-node. 
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The graph for a fact p. consists of a U-node for the head and a R-node to 

return the result: p 

D 
Tne OR parallelism in this model is realized by simultaneously passing a token 

to each rule or fact that could be used to derive a subgoal. Verification of 

subgoals in this model is performed sequentially from left to right, no AND 

parallelism has yet been realized. 

3. MODEL FOR AND PAPJUJ~EL EXECUTION OF LOGIC PROGRAMS 

Systems with AND parallelism try to exploit independencies of subgoals, so that 

the execution of the subgoals can start as early as possible. There are two 

different ways to detect independencies of arguments: 

(I) Marking of variables within the clauses declares certain subgoals as 

producers or consumers of values for the variable. This method was chosen in 

the predicative programming languages Parlog [Cia83 ], Concurrent Prolog 

[Sha83 ] and Epilog [Wis82 ]. In these systems the programmer himself must 

detect and organize the AND parallelism. Another problem is that the general 

nature of clauses makes it very difficult to detect all possible 

independencies of subgoals in this way. 

(2) The not-annotated AND parallelism needs no extension of the logic 

programming language. The programmer needs not care about the AND parallel 

execution within the clauses, he can concentrate on the complete and 

consistent formulation of his knowledge. The rules and facts are transformed 

into an intermediate code, where special test-operatlons are used to detect 

the real dependencies among the subgoals, for every given goal. 

In our model we chose a dynamic method to realize AND parallelism. This means 

that the independencies are explored when derivation actually uses a rule and 

not when the rule is defined. 

At this point we will study some cases where dependencies of subgoals arise: 

I. If we have a rule of the form 

p(X,Y,...) :- ql(X), q2(Y), .-. 
then in most cases the subgoals ql(X) and q2(Y) are independent and can be 

executed concurrently. On the other hand, a dependency among these subgoals 

can arise when a goal of the form p(A,A,...) has to be derived. This means 

that it should be possible to decide at execution time where those variable 

bindings occur. 



This leads to an extension of the basic model: 

2. If we have a rule of the form 

p(..., X .... ) :- ql(X), q2(X), qB(X) .... 
then the subgoals ql(X), q2(X) and q3(X) are normally dependent on each other 

and should be derived one after another to produce only one value for 

variable X. In cases where execution of subgoal ql(X) produces a value for X, 

the subgoals q2(X) and q3(X) can be derived concurrently. If the rule is 

activated with a constant value for X, all three subgoals could be executed 

in parallel. Therefore a mechanism is needed to detect the point where a 

constant value has been produced for a variable, so that the verification of 

dependent subgoals can be started earlier. 

(6) B(inding-test)-operation 

t.ln = (n,ct,sct,ld) (.11,12) 
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tou t = (n,ct,sct,ld) 

The B-operation has two input ports and two output ports. For a token 

arriving at the left input port a test is performed to see if a variable of 

list i I is bound to a variable of list 12 . The lists i I and 12 reside 

permanently at the right input port. If a variable binding occurs for the 

input token, the token is sent to the right output port. Otherwise, it is 

sent to the left output port. 

(7) T(est)-operation 

t. = (n,ct,sct,ld) in i 

= (n,ct,sct, ~F~SE ) 

The T-operation has two input ports and a boolean output port. For a token 

arriving at the left input port a test is done if the variables of list i 

are bound to constant values. In this case TRUE is sent to the boolean 

output port, otherwise FALSE. The list i resides permanently at the right 

input port. 
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(8) S(witch)-operation 

t. = (n,ct,sct,ld) in 
TRU 

~OO1 = (n',ct,sct', ~ E  ) 

tou t = t i n  

The S-operation has two input and two output ports. Depending on the value 

of tbool the token tin is passed to the right (true) or to the left (false) 

output port. 

Independencies of subgoals can be revealed by these three operations. While 

constructing the graph, pairs of subgoals are examined, whereby the following 

cases are distinguished: 

(a) Unconditioned Dependency of Subgoalss 

Hereby the two subgoals have a temporary I) in common that has not 

appeared before the first of these subgoals. In this situation the 

second subgoal needs the bindings initiated by the first, no dependency 

test is necessary. 

(b) Unconditioned independency of Subgoals 

This occurs if the subgoals do not share variables nor do both of them 

contain global variables (except temporaries that occur the first time). 

These two subgoals are independent and can be executed concurrently 

without any further tests. 

(c) Binding-Test between Sub~oals 

If the two subgoals have no common variables, but variables appear in 

both term!ists (except new temporaries), then a binding-test is done 

before the verification of the second subgoal. Therebey the following 

subgraph is used: 

derivation results .... 
of the first subgoal 

11 (12) : llst of global variables 
of the first (second) 
subgoal 

(d) Constant-Test between Subgoals 
If case a) does not apply, common variables (global or temporaries) 

exist but not both termlists contain other variables, then a constant- 
test for the common variables has to be performed. Thereby the following 

subgraph is used: 

(11,12 ) 

I) Temporaries are variables that do not appear in the head of a rule 
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> 

i: list of common variables 

(e) Constant/Bindi~-Test between Subgoals 
If there are common variables and both termlists contain further 
variables, a test must be performed to see if the common variables have 

constant values before the first subgoal is derived. If this is true, a 

binding of other global variables can lead to dependency of the 

subgoals. The following subgraph realizes the test: 

B~(II '121 

Q . 

i: list of ~ variables 
11 (i 2) : list of global variables of the first (second) subgoal not appearing 

in the second (first) 

4. EXAMPLE 
An example illustrates the modifications of the graphs to perform dependency- 
tests at execution time. Improvements with respect to the basic model will be 

pointed out. Suppose the following rule is given: 

P(XI,X2,X 3) :-ql(X2,Tl), q2(X3~T2), q3(X1,X2,T1,T2), q4(X2,X3,T2)- 

This rule contains theglobalvariables Xl, ~andX3andthe temporarlesTland 
T2. The first two subgoals seem to be independent. Yet, variable bindings can 
create a dependency between these subgoals. For example, when goal p(A,B,B) has 

to be derived. Because of the common temporaries the third subgoal must be 
verified later than the first and second subgoal. The last subgoal must be 
persued after the second. It is possibly independent of the first and third 

subgoal. This is true if X 2 is initialized with a constant value and constant 
values for X3and T 2 are derived by the second subgoal. In our extended model 
the graph in Figure 2 is produced for this rule. 
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In this relatively complicated example, cases a), c)~ d), e) from above apply. 

/ P~I'X2,X 3) 

( X2 ,TI)~U~ (X3'T2) ~(XI'X2' 
1 T I ,T 2 ) 

(X2,X3,T 2) 

, ~3 ) ) 

P 

Fig. 2: 
Since it is realistic to assume that the T, S and B operations are much less 
time consuming than unification, it is obvious that our implementation achieves 

considerable savings in time. In the above example, we can earn up to 50% 
savings in time. Tne graph of the extended model contains 37 nodes, as compared 
to the 25 nodes in the basic model. Normally, the rate of growth is much less. 
Particularly, if unconditioned independencies exist, the graphs in the extended 

model can become even smaller than those in the basic model. 
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5. FCRTHERINVESTIGATIONS 

A simulation system for our model is just being implemented. This system 

consists of a compiler to generate data flow graphs for rules and facts and an 

interpreter to perform the derivation of goals. The interpreter is similar to 

the U-interpreter of Arvind, Gostelow [Arv82]. 

simulation system: 

logic program < 
derivation 

system ~ 

i ~lution 

In our simulation system the user may select a compiler for the basic model or 

one for the extended model. Thus, the performances of these two models may be 

compared. Furthermore, empirical estimates about the number of required 

processors PX, where X denotes the 8 different basic operations, may be thereby 
obtained. 

1 I _ I I 

co~mr~catio n network 

Presently, in our execution model dependencies among subgoals are resolved 

strictly from left to right. In many applications this can lead to performing a 

lot of calculations that later in the derivation are detected to be useless. 

Therefore, the actual parameters of a rule should determine the sequence in 

which dependent subgoals should be considered. The realization of this idea in 

the extended model will be our next goal. The investigation of the other kinds 

of parallelism, stream parallelism and search parallelism, will be done in the 
near future. 
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