
AN kN])-PARALLk~! EXECUTION MODEL OF LOGIC PROGRAMS

Bernd Sc~hwLnn, Gerhard Barth l)

ABSTRACT

This paper deals with the most important kinds of parallelism that can occur in

logic programs, OR parallelism and AND parallelism. To explore parallelism we

use a data flow model, where the rules and facts of the logic programs are

represented as graphs. Beginning with a basic model for OR parallel execution of

logic programs, where all the subgoals of a rule are persued in sequential

order, we give an extended model, where we try to detect and exploit

independencies among subgoais during the execution of a rule (dynamic AND

parallelism). The prime when extending the basic model was to improve execution

time. The sizes of the graphs remain in a tolerable range.

1. Introduction

Programming in logic has evolved during the last years as an alternative for

Lisp in the area of knowledge engineering. Yet, the common predicative

programming systems, such as Prolog [Cio81] use a strict sequential in-

ferenclng mechanism. This method is based on the resolution principle [Fur82]

and traverses an AND/OR search tree in preorder while trying to find a solution

for a given goal ~ow79]. Because this method is very time consuming, the

development of parallel implementations for predicative programming systems has

become an increasingly important area of research. Conery has classified the

following klnds of parallelism in logic programs [Con 81]:

(1) OR parallelism

- searching for alternative solutions in parallel

(2) AND parallelism

- investigating independent subgoals in parallel

(3) Stream parallelism

- eager evaluation of structured data (streams)

(4) Search parallelism

- parallel searching in partitioned sets of Horn clauses

This paper is on the first two kinds of parallelism, OR parallelism and AND

parallelism. The second section introduces a basic model for parallel execution

of logic programs where Horn clauses are represented as data flow graphs. This

model allows the efficient implementation of OR parallelism. Section 3

describes the extension of the basic model. By introducing special test- and

compare-operators independencies among subgoals may be detected dynamically.

i) University of Kaiserslautern, Department of Computer Science, P.O. Box

3049, 6750 Kaiserslautern, West Germany

290

ThlS leads to an optimal derivation ordering for subgoals. The graph

representation of a sample clause is shown in the fourth section. In thls

context the improvements in running tlme as well as the sizes of the graphs in

the extended model are discussed. Section 5 describes a simulation system for

the extended model and sketches the components which a possible parallel

architecture should have. The terminology used throughout this paper is that of

[Clo81].

2. MODEL FOR OR PARALLEL EXECUTION OF LOGIC PROGRAMS

In common predicative programming systems the clauses are ordered sequentially

and are processed in that order to find a solution for a given goal. In parallel

execution models, all the possible clauses to derive a subgoal are executed

concurrently (OR parallelism). This leads to an enormous speed up. Alternative

solutions for the goal can be found in parallel.

To explore OR parallelism in logic programs we use a method which is very

similar to that of Umeyama/Tamura [Ume83]. In our system the rules and facts of

logic programs are translated into independent data flow graphs. These graphs

consist of nodes and edges, where the edges are used to transport tokens between

the nodes. Tne nodes denote simple operations. In our basic model we use five of

them. The data flow mechanism allows an operation to be executed as soon as all

its operands are available. To activate the graphs we use the dynamic

interpretation model [Arv78]. In this model several independent computations in

a graph may proceed in parallel.

2.1 COLORED TOKENS
In the data flow model a token T can be regarded as a message between two

operations. It consists of the following components:

T = IN, m]

where N = token number

CT = context

SCT = saved Context

DST = destination, specified by (C, U, P)

where C = process number

U = unit number

P = port number

LD = literal data

~he literal data portion of a token consists of a list of the variable bindings

so far established.

291

2.2 BASIC OPERATIONS

In our basic model we use the following five simple operations:

U = Unification

C = Copy

M = Merge

A = Apply

R = Return

Among these the unification (U) is the most important and expensive operation.

The other operations are used to copy tokens (C), to merge the data flow (M) or

to process a context change when applying other clauses (A) or returning from

other clauses (R). The semantics of all basic operations are described next by

using colored tokens. To simplify matters the DST-field is not listed

explicitly.

(I) U(nification)-operation

ttrig = (~nl,n2~sctlld)

tleft = (n, (n I ,n''), sct,ld'"g

tstore = (n',ct',sct',id')

with ct' = ~NULL initial token

[(nl,n 2) otherwise

trlgnt. _.=(n",(nl,n),set',id',)

The U-operation has two input and two output ports. The input ports are

classified into a store port (right) and a trigger port (left):

a)

b)

Store port

Tokens arriving at the store port are simply stored in the unification
unit.

Trigger port

When a token arrives at the trigger port a search is carried out for a

stored token with the same context. The latter token is copied and the

copy is unified with the token from the trigger port. If unification

succeeds, the two tokens created within this process are sent to the

output ports. Otherwise, the two tokens are discarded.

(2) C(opy)-operation

9) \
t. = (n,ct,sct,ld) In

tout = (n,ct,sct,ld)

292

The C-operation has one input port and any number of output ports. A token

arriving at the input port is copied to each output port.

(3) M(erge)-operation

tin = (nfct,sct,ld)

tout = (n,ct,sct,ld)

The M-operation has any number of input ports and one output port. Each

token arriving at an input port is copied to the output port.

(4) A(pply)-operation

tin = (n,ct,sct,ld)

I
| tout = (n' , (n' ,n') , (ct,r) ,id)
$

The A-operatlon has one input port. A token arriving at it is sent to the

first node of all graphs for rules and facts with the same predicate name as

the subgoal to be derived. Prior to that a context change is performed. The

old context (CT) and the return address (physical successor of the ~node in

the graph) are saved and a new context is generated for every OR parallel

derivation.

(5) R(eturn)-operation

tin = (n,ct,(ct',r),ld)

t = (n,ct',NULL,id)
out

The final node in each graph is an R-node. A token arriving at the input
port is sent to the return address in the calling graph after the old

context (C~) has been restored. On the highest level, where no return

address exists, a solution for the initial goal has been constructed.

293

2.3 DATA FLOW GRAPHS FOR RULES AND FACTS

After specification of the semantics for the basic operations we now concen-

trate on the graphs to be constructed for the rules and facts. A rule has the

form:

P :- ql, q2, "", qn"

Therefore the graph in Fig. I is constructed.

I U p

n2

®

6

Fig. 1 :

After the unification with head p (U00) the unifications for the subgoals

appearing in the rule can be transformed in parallel (UI0,...,Un0). On the other

side the aerlvation of a subgoal qi must wait until the results of the sugoals

ql' "", qi-i have been verified so that the results of those solutions can be

consumed (Uil , ..., Ui(i_l)). On the left hand side of the graph the derivation

results of the subgoals are assembled (U01 , ..., U0n) to form the result of the
entire rule, which is passed to the final R-node.

294

The graph for a fact p. consists of a U-node for the head and a R-node to

return the result: p

D
Tne OR parallelism in this model is realized by simultaneously passing a token

to each rule or fact that could be used to derive a subgoal. Verification of

subgoals in this model is performed sequentially from left to right, no AND

parallelism has yet been realized.

3. MODEL FOR AND PAPJUJ~EL EXECUTION OF LOGIC PROGRAMS

Systems with AND parallelism try to exploit independencies of subgoals, so that

the execution of the subgoals can start as early as possible. There are two

different ways to detect independencies of arguments:

(I) Marking of variables within the clauses declares certain subgoals as

producers or consumers of values for the variable. This method was chosen in

the predicative programming languages Parlog [Cia83], Concurrent Prolog

[Sha83] and Epilog [Wis82]. In these systems the programmer himself must

detect and organize the AND parallelism. Another problem is that the general

nature of clauses makes it very difficult to detect all possible

independencies of subgoals in this way.

(2) The not-annotated AND parallelism needs no extension of the logic

programming language. The programmer needs not care about the AND parallel

execution within the clauses, he can concentrate on the complete and

consistent formulation of his knowledge. The rules and facts are transformed

into an intermediate code, where special test-operatlons are used to detect

the real dependencies among the subgoals, for every given goal.

In our model we chose a dynamic method to realize AND parallelism. This means

that the independencies are explored when derivation actually uses a rule and

not when the rule is defined.

At this point we will study some cases where dependencies of subgoals arise:

I. If we have a rule of the form

p(X,Y,...) :- ql(X), q2(Y), .-.
then in most cases the subgoals ql(X) and q2(Y) are independent and can be

executed concurrently. On the other hand, a dependency among these subgoals

can arise when a goal of the form p(A,A,...) has to be derived. This means

that it should be possible to decide at execution time where those variable

bindings occur.

This leads to an extension of the basic model:

2. If we have a rule of the form

p(..., X) :- ql(X), q2(X), qB(X)
then the subgoals ql(X), q2(X) and q3(X) are normally dependent on each other

and should be derived one after another to produce only one value for

variable X. In cases where execution of subgoal ql(X) produces a value for X,

the subgoals q2(X) and q3(X) can be derived concurrently. If the rule is

activated with a constant value for X, all three subgoals could be executed

in parallel. Therefore a mechanism is needed to detect the point where a

constant value has been produced for a variable, so that the verification of

dependent subgoals can be started earlier.

(6) B(inding-test)-operation

t.ln = (n,ct,sct,ld) (.11,12)

295

tou t = (n,ct,sct,ld)

The B-operation has two input ports and two output ports. For a token

arriving at the left input port a test is performed to see if a variable of

list i I is bound to a variable of list 12 . The lists i I and 12 reside

permanently at the right input port. If a variable binding occurs for the

input token, the token is sent to the right output port. Otherwise, it is

sent to the left output port.

(7) T(est)-operation

t. = (n,ct,sct,ld) in i

= (n,ct,sct, ~F~SE)

The T-operation has two input ports and a boolean output port. For a token

arriving at the left input port a test is done if the variables of list i

are bound to constant values. In this case TRUE is sent to the boolean

output port, otherwise FALSE. The list i resides permanently at the right

input port.

296

(8) S(witch)-operation

t. = (n,ct,sct,ld) in
TRU

~OO1 = (n',ct,sct', ~ E)

tou t = t i n

The S-operation has two input and two output ports. Depending on the value

of tbool the token tin is passed to the right (true) or to the left (false)

output port.

Independencies of subgoals can be revealed by these three operations. While

constructing the graph, pairs of subgoals are examined, whereby the following

cases are distinguished:

(a) Unconditioned Dependency of Subgoalss

Hereby the two subgoals have a temporary I) in common that has not

appeared before the first of these subgoals. In this situation the

second subgoal needs the bindings initiated by the first, no dependency

test is necessary.

(b) Unconditioned independency of Subgoals

This occurs if the subgoals do not share variables nor do both of them

contain global variables (except temporaries that occur the first time).

These two subgoals are independent and can be executed concurrently

without any further tests.

(c) Binding-Test between Sub~oals

If the two subgoals have no common variables, but variables appear in

both term!ists (except new temporaries), then a binding-test is done

before the verification of the second subgoal. Therebey the following

subgraph is used:

derivation results
of the first subgoal

11 (12) : llst of global variables
of the first (second)
subgoal

(d) Constant-Test between Subgoals
If case a) does not apply, common variables (global or temporaries)

exist but not both termlists contain other variables, then a constant-
test for the common variables has to be performed. Thereby the following

subgraph is used:

(11,12)

I) Temporaries are variables that do not appear in the head of a rule

297

>

i: list of common variables

(e) Constant/Bindi~-Test between Subgoals
If there are common variables and both termlists contain further
variables, a test must be performed to see if the common variables have

constant values before the first subgoal is derived. If this is true, a

binding of other global variables can lead to dependency of the

subgoals. The following subgraph realizes the test:

B~(II '121

Q .

i: list of ~ variables
11 (i 2) : list of global variables of the first (second) subgoal not appearing

in the second (first)

4. EXAMPLE
An example illustrates the modifications of the graphs to perform dependency-
tests at execution time. Improvements with respect to the basic model will be

pointed out. Suppose the following rule is given:

P(XI,X2,X 3) :-ql(X2,Tl), q2(X3~T2), q3(X1,X2,T1,T2), q4(X2,X3,T2)-

This rule contains theglobalvariables Xl, ~andX3andthe temporarlesTland
T2. The first two subgoals seem to be independent. Yet, variable bindings can
create a dependency between these subgoals. For example, when goal p(A,B,B) has

to be derived. Because of the common temporaries the third subgoal must be
verified later than the first and second subgoal. The last subgoal must be
persued after the second. It is possibly independent of the first and third

subgoal. This is true if X 2 is initialized with a constant value and constant
values for X3and T 2 are derived by the second subgoal. In our extended model
the graph in Figure 2 is produced for this rule.

298

In this relatively complicated example, cases a), c)~ d), e) from above apply.

/ P~I'X2,X 3)

(X2 ,TI)~U~ (X3'T2) ~(XI'X2'
1 T I ,T 2)

(X2,X3,T 2)

, ~3))

P

Fig. 2:
Since it is realistic to assume that the T, S and B operations are much less
time consuming than unification, it is obvious that our implementation achieves

considerable savings in time. In the above example, we can earn up to 50%
savings in time. Tne graph of the extended model contains 37 nodes, as compared
to the 25 nodes in the basic model. Normally, the rate of growth is much less.
Particularly, if unconditioned independencies exist, the graphs in the extended

model can become even smaller than those in the basic model.

299

5. FCRTHERINVESTIGATIONS

A simulation system for our model is just being implemented. This system

consists of a compiler to generate data flow graphs for rules and facts and an

interpreter to perform the derivation of goals. The interpreter is similar to

the U-interpreter of Arvind, Gostelow [Arv82].

simulation system:

logic program <
derivation

system ~

i ~lution

In our simulation system the user may select a compiler for the basic model or

one for the extended model. Thus, the performances of these two models may be

compared. Furthermore, empirical estimates about the number of required

processors PX, where X denotes the 8 different basic operations, may be thereby
obtained.

1 I _ I I

co~mr~catio n network

Presently, in our execution model dependencies among subgoals are resolved

strictly from left to right. In many applications this can lead to performing a

lot of calculations that later in the derivation are detected to be useless.

Therefore, the actual parameters of a rule should determine the sequence in

which dependent subgoals should be considered. The realization of this idea in

the extended model will be our next goal. The investigation of the other kinds

of parallelism, stream parallelism and search parallelism, will be done in the
near future.

300

RK~CES
[Arv78] Arvind, Gostelow K.P., Plouffe W.: An Asynchronous Programming Language

and Computing Machine, DCS Report ll4A, University of California,
Irvine, Dec. 1978.

[Arv82] Arvind, Gostelow K.P.: The U-Interpreter, IEEE Computer, pp. 42-49,
Feb. 1982.

[Cla81] Clark K.L., Gregory S.: A Relational Language for Parallel Pro-
gramming, Research Report of Imperial College of Science and
Technology, Dec 81/i6, July 1981.

[Cla83] Clark K.L., Gregory S.: PAR~: A Parallel Logic Programming ~ge,
Research Report DOC 83/5, Imperial College, March 1983.

[Cio81] Clocksin W.F., Mellish C.S.: Programming in Prolog, Springer Verlag,
Berlin 1981.

IConS1] Conery J.S., Kibler D.F.: Parallel Interpretation of Logic Programs,
Proceedings of the 1981 Conference on Functional Programming La~ages
and Computer Architecture, pp. 163-167, October 1981.

[DeG84 1 De Groot D.: Restricted AND Parallelism, Proceedings of the Inter-
national Conference on Fifth Gerenation Computer Systems, ICOT, 1984.

[Den74] Dennis J.B.: First Version of a Data-Flow Procedure Language, Lecture

Notes in Computer Science, Vol. 19, Pp. 362-376, Springer-Verlag, 1974.
[Fur82] Furukawa K., Nitta K., Matsumoto Y.: Prolog Interpreter Based on

Concurrent Progamming, Proceedings of the First International Logic
Programming Conference, Marseille, France, pp. 38-41, September 1982.

[Ito85] Ito N., Schimizu H.: Data Flow Based Execution Mechanisms of Parallel

and Concurrent Prolog, New Generation Computing 3, PP. 15-41, 1985.
[Kow79] Kowalski R.: Logic for Problem Solving, North Holland, 1979.
[Sha83] Shapiro E.Y.: A Subset of Concurrent Prolog and its Interpreter, ICOT

Techn. Report, TR 003, Feb. 1983.
[Ume83] Umeyama S., Tamura K.: A Parallel Execution Model of Logic Programs,

~he 10th Annual International Symposium on Computer Architecture, ACM,

PP. 349-355, June 1983.
[Wis82] Wise M.: A Parallel Prolog: The Construction of a Data Driven Model,

University of New South Wales, Australia, 1982.

