Abstract
Suppose we have a completely-connected network of random-access machines which communicate by reading and writing data from their neighbours, with simultaneous reads and writes allowed. In the case of write conflicts, we allow any protocol which results in one of the competing values being written into the target register. We consider the semigroup summation problem, that is, the problem of summing n semigroup elements. If the semigroup is finite, we find that it can be solved in time O(log n/log log n) using only n processors, regardless of the details of the write-conflict resolution scheme used. In contrast, we show that any parallel machine for solving the summation problem for infinite cancellative semigroups must take time [log3n], again, regardless of the details of the conflict resolution scheme. We give an example where it is possible to sum n “polynomial-sized” elements in less than [log3n] time using only polynomially many processors. We are also able to show that such a machine must obey the [log3n] lower-bound for elements which are only polynomially larger. Our upper-bounds are for a machine with a reasonable local instruction-set, whilst the lower-bounds are based on a communication argument, and thus hold no matter how much computational power is available to each processor. Similar results hold for a parallel machine whose processors communicate via a shared memory.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
A. K. Chandra, L. J. Stockmeyer, and U. Vishkin, “A complexity theory for unbounded fan-in parallelism,” Proc. 23rd Ann. IEEE Symp. on Foundations of Computer Science, pp. 1–13, 1982.
S. A. Cook and C. Dwork, “Bounds on the time for parallel RAMs to compute simple functions,” Proc. 14th Ann. ACM Symp. on Theory of Computing, pp. 231–233, May 1982.
S. Fortune and J. Wyllie, “Parallelism in random access machines,” Proc. 10th Ann. ACM Symp. on Theory of Computing, pp. 114–118, 1978.
M. R. Garey and D. S. Johnson, Computers and intractability: a guide to the theory of NP-completeness, W. H. Freeman, 1979.
L. M. Goldschlager, “A universal interconnection pattern for parallel computers,” J. ACM, vol. 29, no. 4, pp. 1073–1086, Oct. 1982.
F. Meyer auf der Heide and R. Reischuk, “On the limits to speed up parallel machines by large hardware and unbounded communication,” Proc. 25th Ann. IEEE Symp. on Foundations of Computer Science, pp. 56–64, Singer Island, Florida, Oct. 1984.
F. Meyer auf der Heide and A. Wigderson, “The complexity of parallel sorting,” Proc. 26th Ann. IEEE Symp. on Foundations of Computer Science, Portland, Oregon, Oct. 1985.
C. P. Kruskal, Personal Communication, May 1985.
I. Parberry, “Parallel speedup of sequential machines: a defense of the parallel computation thesis,” Technical Report CS-84-17, Dept. of Computer Science, Penn. State Univ., Oct. 1984.
I. Parberry, “A complexity theory of parallel computation,” Ph. D. Thesis, Dept. of Computer Science, Univ. of Warwick, May 1984.
I. Parberry, “Some practical simulations of impractical parallel computers,” in VLSI: Algorithms and Architectures, ed. P. Bertollazzi and F. Lucio, Proc. International Workshop on Parallel Computing and VLSI, pp. 27–37, North-Holland, 1985.
I. Parberry and G. Schnitger, “Parallel computation with threshold functions (Preliminary Version),” Technical Report CS-85-32, Dept. of Computer Science, Penn. State Univ., Dec. 1985.
R. Reischuk, “A lower time-bound for parallel random-access machines without simultaneous writes,” Research Report RJ3431, IBM Research, San Jose, Mar. 1982.
Y. Shiloach and U. Vishkin, “Finding the maximum, sorting and merging in a parallel computation model,” J. Algorithms, vol. 2, pp. 88–102, 1981.
U. Vishkin and A. Wigderson, “Trade-offs between depth and width in parallel computation,” Proc. 24th Ann. IEEE Symp. on Foundations of Computer Science, Tucson, Arizona, Nov. 1983.
A. C. Yao, “Separating the polynomial-time hierarchy by oracles,” Proc. 26th Ann. IEEE Symp. on Foundations of Computer Science, Portland, Oregon, Oct. 1985.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1986 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Parberry, I. (1986). On the time required to sum n semigroup elements on a parallel machine with simultaneous writes. In: Makedon, F., Mehlhorn, K., Papatheodorou, T., Spirakis, P. (eds) VLSI Algorithms and Architectures. AWOC 1986. Lecture Notes in Computer Science, vol 227. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-16766-8_27
Download citation
DOI: https://doi.org/10.1007/3-540-16766-8_27
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-16766-2
Online ISBN: 978-3-540-38746-6
eBook Packages: Springer Book Archive