Skip to main content

On the number of divisors of a polynomial over GF(2)

  • Conference paper
  • First Online:
Applied Algebra, Algorithmics and Error-Correcting Codes (AAECC 1984)

Part of the book series: Lecture Notes in Computer Science ((LNCS,volume 228))

  • 168 Accesses

Abstract

An upper bound is obtained on the number of polynomials over GF(2) that divide a polynomial of degree n over GF(2). This bound is the solution of a maximisation problem under constraints. It is used to show that most binary shortened cyclic codes (irreducible or not) satisfy the Gilbert bound.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Similar content being viewed by others

References

  1. S.W. GOLOMB, Shift Register Sequences, Holden-Day, San Francisco 1967.

    Google Scholar 

  2. T. KASAMI, "An upper bound on k/n for affine-invariant codes with fixed d/n", IEEE Trans. Inform. Theory, vol. IT-15, pp. 174–176, January 1969.

    Google Scholar 

  3. F.J. MACWILLIAMS and N.J.A. SLOANE, The Theory of Error Correcting Codes, North-Holland, 1977.

    Google Scholar 

  4. J. JUSTESEN, "A class of constructive asymptotically good algebraic codes", IEEE Trans. Inform. Theory, vol. IT-18, pp. 652–656, September 1972.

    Google Scholar 

  5. E.J. WELDON, "Justesen's construction-The low-rate case", IEEE Trans. Inform. Theory, vol. IT-10, pp. 711–713, September 1973.

    Google Scholar 

  6. R.G. GALLAGER, Information Theory and Reliable Communication, Wiley, New York, 1968.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Alain Poli

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Piret, P. (1986). On the number of divisors of a polynomial over GF(2). In: Poli, A. (eds) Applied Algebra, Algorithmics and Error-Correcting Codes. AAECC 1984. Lecture Notes in Computer Science, vol 228. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-16767-6_61

Download citation

  • DOI: https://doi.org/10.1007/3-540-16767-6_61

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-540-16767-9

  • Online ISBN: 978-3-540-38813-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics