Abstract
An upper bound is obtained on the number of polynomials over GF(2) that divide a polynomial of degree n over GF(2). This bound is the solution of a maximisation problem under constraints. It is used to show that most binary shortened cyclic codes (irreducible or not) satisfy the Gilbert bound.
Preview
Unable to display preview. Download preview PDF.
Similar content being viewed by others
References
S.W. GOLOMB, Shift Register Sequences, Holden-Day, San Francisco 1967.
T. KASAMI, "An upper bound on k/n for affine-invariant codes with fixed d/n", IEEE Trans. Inform. Theory, vol. IT-15, pp. 174–176, January 1969.
F.J. MACWILLIAMS and N.J.A. SLOANE, The Theory of Error Correcting Codes, North-Holland, 1977.
J. JUSTESEN, "A class of constructive asymptotically good algebraic codes", IEEE Trans. Inform. Theory, vol. IT-18, pp. 652–656, September 1972.
E.J. WELDON, "Justesen's construction-The low-rate case", IEEE Trans. Inform. Theory, vol. IT-10, pp. 711–713, September 1973.
R.G. GALLAGER, Information Theory and Reliable Communication, Wiley, New York, 1968.
Author information
Authors and Affiliations
Editor information
Rights and permissions
Copyright information
© 1986 Springer-Verlag Berlin Heidelberg
About this paper
Cite this paper
Piret, P. (1986). On the number of divisors of a polynomial over GF(2). In: Poli, A. (eds) Applied Algebra, Algorithmics and Error-Correcting Codes. AAECC 1984. Lecture Notes in Computer Science, vol 228. Springer, Berlin, Heidelberg. https://doi.org/10.1007/3-540-16767-6_61
Download citation
DOI: https://doi.org/10.1007/3-540-16767-6_61
Published:
Publisher Name: Springer, Berlin, Heidelberg
Print ISBN: 978-3-540-16767-9
Online ISBN: 978-3-540-38813-5
eBook Packages: Springer Book Archive