Lecture Notes in Computer Science

Edited by G. Goos and J. Hartmanis

237

CONPAR 86

Conference on Algorithms and Hardware for Parallel Processing Aachen, September 17–19, 1986 Proceedings

Edited by Wolfgang Händler, Dieter Haupt, Rolf Jeltsch, Wilfried Juling and Otto Lange

Springer-Verlag

Berlin Heidelberg New York London Paris Tokyo

Editorial Board

D. Barstow W. Brauer P. Brinch Hansen D. Gries D. Luckham

C. Moler A. Pnueli G. Seegmüller J. Stoer N. Wirth

Editors

Wolfgang Händler Universität Erlangen-Nürnberg Institut für Mathematische Maschinen und Datenverarbeitung Martensstr. 3, D-8520 Erlangen

Dieter Haupt RWTH Aachen Lehrstuhl für Betriebssysteme Templergraben 55, D-5100 Aachen

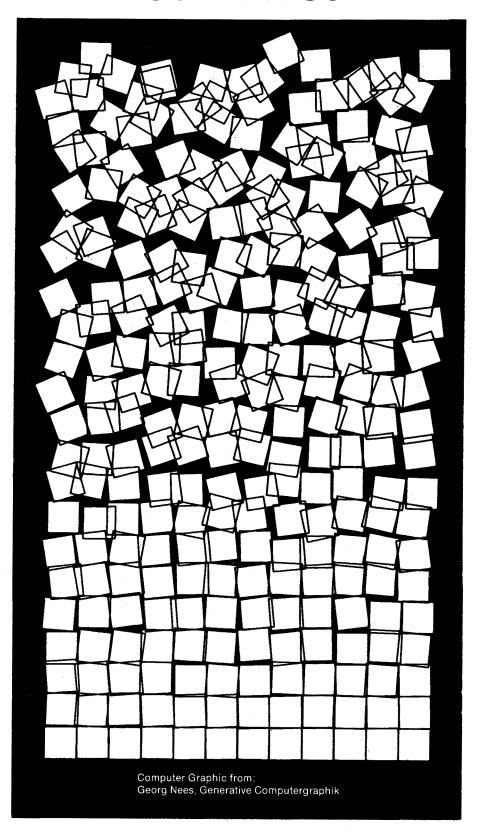
Rolf Jeltsch RWTH Aachen Institut für Geometrie und Praktische Mathematik Templergraben 55, D-5100 Aachen

Wilfried Juling RWTH Aachen Rechenzentrum Templergraben 55, D-5100 Aachen

Otto Lange RWTH Aachen Allgemeine Elektrotechnik und Datenverarbeitungssysteme Templergraben 55, D-5100 Aachen

CR Subject Classifications (1985): C.1.1, C.1.2, C.1.3, F.2.1, F.2.2

ISBN 3-540-16811-7 Springer-Verlag Berlin Heidelberg New York ISBN 0-387-16811-7 Springer-Verlag New York Berlin Heidelberg


This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically those of translation, reprinting, re-use of illustrations, broadcasting, reproduction by photocopying machine or similar means, and storage in data banks. Under § 54 of the German Copyright Law where copies are made for other than private use, a fee is payable to "Verwertungsgesellschaft Wort", Munich.

© Springer-Verlag Berlin Heidelberg 1986 Printed in Germany

Printing and binding: Druckhaus Beltz, Hemsbach/Bergstr.

2145/3140-543210

CONPAR 86

PREFACE

The second Conference on Algorithms and Hardware for Parallel Processing, CONPAR 86, has long been overdue. During the past five years since the first CONPAR was held in 1981 there has been a dramatic increase in awareness for the necessity of parallel processing. This resulted in many significant publications and an increasing number of related conferences in this field. The 1980s are proving to be the decade of parallel processing.

It is the goal of CONPAR to bring together researchers involved in parallel processing. It is intended to create a forum to allow for the interaction of people designing algorithms and architectures of different kinds of parallelism utilizing todays exploding hardware possibilities.

In contrast to CONPAR 81 where 29 papers were selected for presentations this year we received 106 papers. Reviewing these papers proved a tremendous task requiring the assistance of 43 referees. 42 papers from 13 countries are included in these proceedings. Academia, industry and research laboratories are all represented. Because of the large number of excellent papers submitted, the task of arriving at a program was an extremely difficult one. CONPAR 86 will have parallel sessions in order to accommodate more papers. But still there were many interesting papers which could not be included. Therefore, all of the papers finally accepted and included in these proceedings should be of the highest quality. We sincerely thank all of the authors who submitted papers for their interest in this conference.

CONPAR 86 will be complemented by presentations, demonstrations and exhibits of various manufacturers. The significant aspect of this joint event is that all of the parallel systems presented are commercially available today or will be in the immediate future and many more significant developments are expected soon.

Professor Arthur Burks from The University of Michigan, Ann Arbor, will act as the Honorary Chairman and will address the conference with his keynote "A Radically Non-von-Neumann-Architecture for Learning and Discovery".

Together with J. von Neumann and H.H. Goldstine, Professor Burks created what is now the "Classical General Purpose Computer". In spite of all criticism regarding what is called the "von-Neumann-Bottle-Neck" or the "von-Neumann-Programming-Style" the Burks/ Goldstine/von-Neumann-Approach has proved to be viable and outstanding.

At CONPAR 86 several renowned experts have been invited to give presentations in their respective fields:

I.S. Duff, AERE Harwell, Oxfordshire, and A.H. Sameh, University of Illinois at Urbana Champaign, will concentrate on numerical algorithms for parallel processing, whereas Ph. Treleaven, University College London, S. Uchida, ICOT Tokyo, and U. Trottenberg, SUPRENUM Gesellschaft für numerische Superrechner m.b.H, Bonn, will introduce novel computer architectures and will report on the progress of current projects.

Finally, W. Händler, University of Erlangen-Nürnberg, will discuss trends in the general development of multiprocessors.

Our special thanks go to the referees who read and evaluated the manuscripts. We wish to acknowledge the efforts of the Organizing Committee and the staff of the RWTH - Computer Center for the local arrangements. We are also grateful to the Springer-Verlag for the kind assistance in preparing the proceedings.

Aachen, July 1986

W. Händler

D. Haupt

R. Jeltsch

W. Juling

O. Lange

ACKNOWLEDGEMENTS

For substantial help we are obliged to the members of the Program Committee

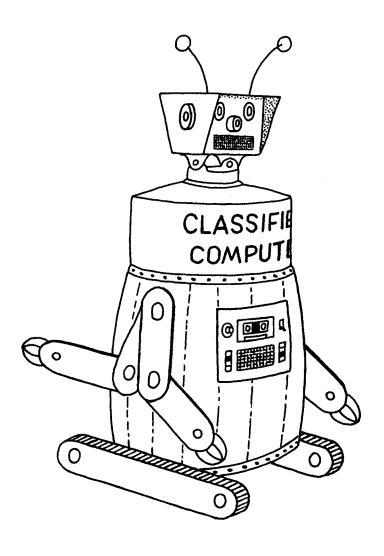
P. C. P. Bhatt	R. W. Hockney	K. Miura
G. Blaauw	R. Jeltsch	D. Parkinson
R. Dierstein	H. F. Jordan	G. Paul
A. Endres	G. Joubert	K. D. Reinartz
W. Händler	O. Lange	A.H. Sameh
D. Haupt	J. Mikloško	P. Spies

to the following referees

W. Ameling	J. Jersák	W. Schönauer
J. P. Banatre	J. S. Kowalik	D. Siewiorek
M. Broy	T. Legendi	G. Spruth
D. J. Evans	R. Mannshardt	M. Vajteršic
M. Feilmeier	K. Mehlhorn	R. Vollmar
G. Fritsch	P. Müller-Stoy	H. Wössner
F. Hossfeld	D. Müller-Wichards	Z. Xie
H. Hultzsch	J. Nievergelt	
K. Hwang	G. Regenspurg	

and to the Kernforschungsanlage Jülich GmbH for the layout and printing of the posters, the call for papers and the conference program.

TABLE OF CONTENTS


A.W.Burks A radically non-von-Neumann-architecture for learning and discovery	1
INVITED ADDRESSES	
I.S.Duff The parallel solution of sparse linear equations	18
A.H.Sameh et al. Parallel algorithms on the CEDAR system	25
Ph.Treleaven Future parallel computers	40
U.Trottenberg SUPRENUM - an MIMD multiprocessor system for multi-level scientific computing	48
HARDWARE ASPECTS (Session 1.1)	
C.Saito, H.Amano, T.Kudoh, H.Aiso An adaptable cluster structure of (SM) ² -II	53
G.Ch.Pflug Memory conflicts in MIMD-computers - a performance analysis	61
KH.Brenner, A.W.Lohmann The digital optical computing program at Erlangen	69
C.S.Raghavendra HMESH: a VLSI architecture for parallel processing	76
NUMERICAL ALGORITHMS (Session 1.2)	
K.K.Lau, X.Z.Qiao FFT on a new parallel vector processor	84
O.Kolp, H.Mierendorff, W.Seidl Analysis of multigrid methods for non-shared memory systems by a simple performance model	95
H.Schwandt Multitasking algorithms on CRAY computers for interval arithmetic Newton-like methods for a class of systems of nonlinear equations	104
B.J.Jechev Full recursive form of the algorithms for fast generalized Fourier transforms	112
SYSTEM SOFTWARE ASPECTS (Session 2.1)	
R.R.Oldehoeft, D.C.Cann, S.J.Allan SISAL: initial MIMD performance results	120
C.Martini, M.Morando, S.Ridella Caltech hypercube MIMD computer performances Measurements in a physical mathematical application	128
G.Zhang, Y.Hu, Z.Xie A new approach to decentralized control of job scheduling	133
J.Milde, T.Plückebaum, W.Ameling Synchronous communication of cooperating processes in the M ⁵ PS multiprocessor	142

NONNUMERICAL ALGORITHMS (Session 2.2)

Y.Robert, D.Trystram Parallel implementation of the algebraic path problem	149
O.Vornberger Implementing branch-and-bound in a ring of processors	157
N.P.Turkedjiev Synthesis of systolic algorithms and processor arrays	165
R.Böhm, D.Homeister Fraktale und ihre Untersuchung mit Parallelrechnung	173
R.H.Perrott, C.Holt, M.Clint, A.Stewart A parallel processing algorithm for thinning digitised pictures	183
ARCHITECTURAL ASPECTS (Session 3.1)	
E.Mähle, K.Moritzen, K.Wirl Fault-tolerant hardware configuration management on the multiprocessor system DIRMU 25	190
K.von der Heide A general purpose pipelined ring architecture	198
D.T.Morris, P.M.Dew An adaptive parallel algorithm for display of CSG objects	200
M.K.O.Lee A packet based demand/data driven reduction model for the parallel execution of logic programs	214
HA.Schneider, W.Dilger Information processing with associative processors	222
R.E.Bührer A high performance interconnection concept for dataflow- or other closely coupled multiprocessors	230
NUMERICAL ALGORITHMS (Session 3.2)	
A.Polster Parallel solution of eigenvalue problems in acoustics on the distributed array processor (DAP)	239
M.Cosnard, M.Marrakchi, Y.Robert, D.Trystram Gauss elimination algorithms for MIMD computers	247
M.Vajteršic Fast parallel algorithms for eigenvalue and singular value computations	255
L.Qi-wei A new parallel algorithm for solving general linear systems of equations	264
A. Uresin, M. Dubois Generalized asynchronous iterations	272

SYSTEM SOFTWARE & PROGRAMMING LANGUAGE ASPECTS (Session 4.1)

P.Brezány Parallel compilation on a multiprocessor system	279
H.P.Zima, HJ.Bast, M.Gerndt, P.J.Hoppen Semi-automatic parallelization of FORTRAN programs	287
C.Hammer, G.Raebel Code generation for partially vectorizable loops in the vectorizing PASCAL-XT compiler	295
T.Brandes Automatic vectorisation for high level languages based on an expert system	303
HARDWARE ASPECTS & NONNUMERICAL ALGORITHMS (Session 4.2)	
S.Momoi, S.Shimada, M.Kobayashi, T.Ishikawa Hierarchical array processor system (HAP)	311
A.A.A.Kader OCSAMO - a systolic array for matrix operations	319
M.Kunde A general approach to sorting on 3-dimensionally mesh-connected arrays	329
Th. Vogell Complexity of parallel partitioned algorithms	338
ARCHITECTURAL ASPECTS (Session 5.1)	
F.Wagner Shuffle/Exchange is the natural interconnection scheme for the parallel Fast Fourier Transform	345
O.Lange Kronecker products of matrices and their implementation on shuffle/exchange-type processor networks	353
G.M.Megson, D.J.Evans LISA: a parallel processing architecture	361
NONNUMERICAL ALGORITHMS (Session 5.2)	
K.D.Thalhofer, K.D.Reinartz A classification of algorithms which are well suited for implementations on the DAP as a basis for further research on parallel programming	376
T.Härder, Ch.Hübel, B.Mitschang Use of inherent parallelism in database operations	385
M.Veldhorst Parallel dynamic programming algorithms	393
W.Händler, general chairman Multiprocessors: main trends and dead ends	403
LATE ARRIVAL	
S.Uchida, invited address Toward the parallel inference machine	404

Classifier Robot
Figure 1
(Paper by Burks)